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Abstract
Genome Informatics (GI) involves accurate computational investigations of strongly correlated subsystems that demands
inter-disciplinary approaches for problem solving. With the growing volume of genomic sequencing data at an alarming
rate, High Performance Computing (HPC) solutions offer the right platform to address the computational needs. GI requires
algorithm-architecture co-design of parallel and accelerated biocomputing involving reconfigurable hardware like FPGAs
and graphics accelerators or GPUs, to bridge the gap between growing data volumes and compute capabilities. Such
platforms offer high degrees of parallelism and scalability, while accelerating the multi-stage GI computational pipeline.
Amidst such high computing power, it is the choice of algorithms and implementations in the entirety of the GI pipeline
that decides the precision of bio-computing in revealing biologically relevant information. Through this paper, we present
ReneGENE-GI, an innovatively engineered GI pipeline. This paper details the performance analysis of ReneGENE-GI’s
Comparative Genomics Module (CGM), the compute intensive stage of the pipeline. This module comes in two flavours,
designed to run on GPUs and FPGAs respectively, hosted on HPC platforms. The pipeline uses a very efficient reference
indexing algorithm based on the dynamic Monotonic Minimal Perfect Hashing Function (MMPH), allowing an absolute
indexing for the reference genome, thus avoiding heuristics. Alignment time for our FPGA version is about one-tenth
the time taken by our single GPU implementation, which itself is 2.62x faster than CUSHAW2-GPU (the GPU CUDA
implementation of CUSHAW). With the single-GPU implementation demonstrating a speed up of 150+ x over standard
heuristic aligners in the market like BFAST, the FPGA version of our CGM is several orders faster than the competitors,
offering precision over heuristics.

Keywords Genome informatics · High performance computing · Reconfigurable hardware · GPU · FPGA · Accelerator
hardware · NGS · Short read mapping · Sequencing

1 Introduction

Embedded in a long string spanning several billion char-
acters, drawn from a set of genetic alphabets, the genomic
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big data encompasses a well authored genetic literary work
that narrates the story of evolution over billions of years.
Genome Informatics (GI), the study of genomes, integrates
the big data of genomes with a ubiquitous base of interoper-
able medical and engineering disciplines. GI has evolved to
be a discovery-driven approach to analyse the unstructured
genomic big data, which takes inferences from an organ-
ism’s genetic code to arrive at translationally important
interpretations. Upcoming and widely popular GI applica-
tions cater to numerous domains including targeted person-
alized diagnostics and therapeutics, thereby improving the
effectiveness of healthcare.

1.1 Sequencing for GI

Understanding the genome through GI involves determining
the order of the genetic alphabets or bases, namely adenine
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Figure 1 NGS workflow.

(A), cytosine (C), guanine (G) and thymine (T), within the
genomic sequence, and the process is widely known as
sequencing. Next Generation Sequencing (NGS) involves
massively parallel sequencing of genetic data with high
throughput, while offering an unparalleled interrogation of
the genome, throwing deeper insight into the functional and
structural investigation of genetic data [1, 2].

Data processing with NGS, over an elaborated multi-
stage data-analytics pipeline, is depicted in Fig. 1. At the
end of the primary data analysis, the pipeline generates
several intermediate files and output files of significant
magnitude, contributing to petabytes of NGS big data of
raw sequence short reads per sample per run. Each short
read is a very small fragment or substring of the target
genome string under consideration. The short reads are
then aligned or mapped to a reference genome string
through a process called Short Read Mapping (SRM) or
Short Read Alignment (SRA). By the year 2025, genomic
data acquisition through NGS, being highly geographically
distributed across multiple species, is predicted to reach the
rate of one zettabase per year [3].

1.2 Short ReadMapping (SRM): Computational
Bottleneck in GI

The SRM process, illustrated in Fig. 2, is interpreted as
a classic Approximate String Matching (ASM) problem.
SRM attempts to search the specific short read string q
of length —q— (ranging from about 25 to a few hundred
bases), over a much longer reference genome string G of
length —G— (a human reference genome is typically 3
billion bases long). SRM aims to find the regions of origin
of each short read string with respect to the reference, and
hence finds regions of similarity or dissimilarity, over the
character set � = {A, C, G, T} [4, 5].
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Figure 2 SRM workflow.

SRM performs ASM for its input strings, with a cost
function and appropriate error model to accommodate errors
in strings induced due to:

1. Genetic mutations (computationally interpreted as a
character being replaced with another over the character
set �)

2. Single Nucleotide Polymorphism (SNP) (algorithmi-
cally similar to genetic mutations, but interpretations
vary biologically over a sample population)

3. Insertions or deletions of bases (computationally
interpreted as addition or deletion of a genetic character
across the length of the string)

4. Other evolutionary genetic alterations
5. NGS platform induced errors

The algorithms here quantify the similarity or the edit
distances between the two strings under consideration. Edit
distance is the minimum number of more likely deviations
or manoeuvres that can transmute one string to another. The
cost function in ASM assigns each such manoeuvre a cost,
and eventually aims at minimizing or maximizing the total
cost based on the limits of the cost function, which serves to
quantify similarity between the two strings.

2 RelatedWork: SRM in GI Using
Accelerators and HPC Platforms

With growing volume of NGS big data, the SRM and
subsequent analytic steps demand an HPC environment
complimented with accelerators for data storage and
analyses [6, 7]. NGS has thus become a complex
engineering problem, eliciting innovative computational,
scientific and statistical approaches towards big data
analysis. A strict validation of various algorithms and
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Table 1 Alignment methods.

Steps Method 1 Method 2

1 Compute alignment matrix D with FPGA/GPU Compute matrix D and optimal score with FPGA/GPU

2 Transfer D to host Transfer optimal score to host

3 Perform traceback in the host Filter sequence pairs with scores exceeding threshold

4 Extract final optimal alignment Recompute matrix D in the host for filtered pairs

5 – Perform traceback in the host and extract final optimal
alignment for filtered pairs

Drawback Severe memory bottleneck due to large matrix data for
longer sequences

Matrix fill stage takes 98.6% of the total alignment time,
more compute intensive and complex, with repetition of
calculations to achieve alignment.

softwares in an NGS pipeline is essential, to ensure reliable
and accurate results [8–11].

2.1 Accelerators for SRM

The most popular and central scheme for SRM is
the Dynamic Programming (DP) methodology. Though
computationally complex, the DP algorithms prove to
be very efficient in discriminating substantial similarities
amongst severe noise in genetic data presented by evolution.
There are several parallel implementations of DP method
[12–17]. While some adopt parallel computations using
SIMD (Single Instruction Multiple Data) style instructions
within a single processor, others realize parallelism on
multiple processors. There are various accelerator platforms
like reconfigurable hardware (FPGAs) and GPUs on which
the DP recursive equation kernel is realized as multiple
threads or blocks to accelerate alignment. Most of these
methods can be classified into two major categories listed
in Table 1. We can see the bottlenecks offered by these
methods, thus rendered not useful while handling big data.

2.2 SRM on HPC Platforms

To perform SRM on such large data volumes, GI adopts
a multi-stage multi-algorithmic parallel pipeline. The
deployment of the GI pipeline exploits the best practices
in HPC on platforms like clouds, grids, accelerators
and clusters, while strictly following bio computational
principles in classical genetics, molecular and cell biology.
All such efforts are predominantly directed towards
prospecting the unexploited scope of parallelism and
scalability of the HPC platforms [18, 19].

However, the bio-computing within the GI pipeline is
irregular and combinatorial in nature. It is irregular due to
being heavily data dependent, lacking sense of temporal and
spatial locality of data. This severely curbs the performance
of modern processor architectures built on deep memory
hierarchies meant for pertinent data structures. The runtime
computational irregularities are perfectly complemented

by the non contiguous file accesses, making an optimal
parallelization of GI pipeline on a multi-core environment
more difficult. The big data along with an all-to-all
computation contributes to the time and computational
complexity of the combinatorial algorithms. This makes
fine-grain synchronization an utmost necessity to exploit
data-level and process-level parallelism in a multi-node and
multi-core HPC environment. In presence of a variety of
accelerator platforms to conceive the parallel versions of the
various computational algorithms, a substantial engineering
effort is required in optimizing bio-computing on the
available HPC hardware for concurrency, time, cost, and
coverage [6, 9, 20, 21].

Through this paper, we present the detailed performance
analysis of ReneGENE-GI, an innovatively engineered GI
pipeline. The architecture of ReneGENE-GI was discussed
in our previous work [22]. This paper is an extension
of the same, with more algorithmic, performance and
implementation details of the various stages of the pipeline.
It performs mapping of raw genomic data from the
NGS platforms with high precision. The pipeline hosts a
unique blend of highly dynamic multi-dimensional data
structures and parallel algorithms designed for executing the
irregular genomic computing on accelerator based hardware
and HPC platforms. ReneGENE-GI exploits the inherent
parallelism and scalability of the hardware at the level of
micro and system architecture to offer a reliable mapping
for any NGS read data, regardless of the size. This allows
for optimizing time, cost, and affordability without unduly
penalizing biological fidelity of the results. It exploits a
substantial degree of latent parallelism by engaging fine-
grain synchronization, while allowing the application to
scale up on HPC platforms.

The principal novelty of our solution involves engi-
neering of the pipeline using existing algorithms on plat-
forms using a data streaming approach that minimizes heap
memory footprint and input/output bottlenecks. It is also
supplemented by compiler-level and architecture-specific
optimizations to improve the performance in a reconfig-
urable HPC environment. We also present the performance
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Figure 3 The ReneGENE-GI pipeline.

analysis for ReneGENE-GI’s Comparative Genomics Mod-
ule (CGM), implemented on both FPGA and GPU acceler-
ator platforms.

3 The ReneGENE-GI Pipeline

The ReneGENE-GI pipeline, illustrated in Fig. 3, adopts
the multi-stage NGS workflow illustrated in Fig. 1 for data
analytics. While implementing the regular bio-computing
algorithms used for SRM and subsequent steps, the pipeline
follows a modular approach for each step and each
algorithm in an effort to deploy the respective stages on an
HPC environment to enable parallel computing.

3.1 Overview

The novelty of the ReneGENE-GI pipeline lies in the fact
that it offers a unique blend of comparative genomics
and de novo sequence assembly, offering the most precise
SRM. The CGM exploits parallel dynamic programming
methodology to accurately map the short reads against
the reference genome. The alignment is backed by an
exhaustive indexing and lookup of reads against the
reference using the parallel implementation of dynamic
MonotonicMinimal Perfect Hashing (MMPH) method [23].
This is a complete index of the reference, where the k-
mer seeds fully cover the entire span of the reference,
inclusive of the repeat regions. As compared to other
indexing techniques that employ heuristics of purging repeat
region hits, ReneGENE-GI pipeline reports those hits as
well, throwing light on many anomalies embedded in these
repeats.

The de novo module is implemented as a parallel map-
reduce based readtig generation technique. The readtigs
are extended short reads, based on a novel read extension

algorithm, prototyped and verified for precision on HPC
platforms with reconfigurable accelerator support. The
readtigs are further mapped on to the reference genome to
encompass the possible insertions and deletions of genetic
alphabets at certain locations, thereby widening the map
space and coverage.

The final SRM alignment results are then subjected to
variant calling or preliminary tertiary analysis.

3.2 Reference Preprocessing in ReneGENE-GI

With an extremely long reference sequence string, indexing
the reference over the alphabet set of � = {A, C, G, T} is a
difficult task. ReneGENE-GI presents an efficient indexing
scheme for the reference. Here, we generate a hash table for
the index, based on a static set of lexicographically ordered
keys.

It is known that, a Perfect Hash Function (PHF), for a
set U , places the keys from U in an index table for efficient
lookup operations, by mapping distinct elements in U to
distinct values, avoiding any collisions. The table is indexed
by the output of the PHF. Such PHFs are best suitable for
indexing, where the data is very large, and is less frequently
updated. This method is space-efficient, where the table
created is compact, for a static set of keys.

A PHF becomes a minimal PHF, when the PHF maps k

keys to consecutive integer values, usually ranging from 1
to k or 0 to k − 1. A minimal PHF is order preserving, when
the keys are given in some order like k1, k2, . . . , kn, and for
any two keys ki and kj , where i < j → PHF(ki) <

PHF(kj ).
A minimal PHF becomes Monotonic Minimal PHF

(MMPH), when the lexicographical order of the keys is
preserved. Now, considering an application like genomics,
there is dynamics involved in the form of the continuous
insertions and deletions into the set U . Hence, to avoid
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heuristics in lookup, ReneGENE-GI implements a dynamic
MMPH. This is typically done as part of preprocessing the
reference genome, and coming up with index tables, over
the lexicographically sorted set of keys extracted from the
reference.

ReneGENE-GI indexing is illustrated in Algorithm 1.
The keys are typically substrings of length k, called k-
mer seeds, extracted by a sliding window operation on the
genome. By performing a dynamic MMPH, Rene-GENE-
GI maps each k-mer from a lexicographically ordered keyset
K, to its corresponding index position in the Reference
Index Table (RIT). The number of keys is always fixed,
based on the choice of k. The natural order is always
preserved over the keyset k by the binary encoding of bases
in substring k (i.e., A → 00, C → 01, G → 10, T → 11).
This algorithm renders a small memory footprint for the
resulting reference index. For example, the human genome
reference version GRCh38 (3.1 GB) was indexed in about 5
minutes using the MPI based implementation of Algorithm
1, generating an index of 5.4 GB in size.

The values corresponding to each position in the index,
is the list of RIT IDs, which are locations corresponding
to the occurrence of the k-mer seed across the length of

the reference string. These values can be retrieved from the
table by a single access to the table, thus searching the sorted
index table with O(1) accesses to the table per key. The
lookup process per read on the RIT table is explained in
Algorithm 2.

In the context of repeat regions, a k-mer is extracted from
multiple locations over a fragment of the reference, resulting
in an extended list of values in the RIT. As compared to
other indexing techniques that employ heuristics of purging
repeat region hits, ReneGENE-GI reports those hits. These
can eventually throw light on many anomalies embedded in
the repeats, during alignment.

In an attempt to make the lookup process mutation aware,
all possible mutations from all the locations of a single k-
mer key is derived, and a lookup is performed for each of
these mutation-induced k-mers. This results in a complete
lookup, where instead of a single key, lookup is performed
for a complete set of mutation-aware keys, for each read.

3.3 SRM in ReneGENE-GI

The ReneGENE-GI pipeline performs SRMwhere the small
fragments of genome from the NGS platforms, generally
known as short reads, are mapped or aligned against a
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reference genome string. SRM works on the massive input
data set of short reads, typically of the order of petabytes,
and aims to find the region of origin of each short read
string with respect to the reference, and hence find regions
of similarity or dissimilarity. Eventually, SRM builds the
longer genome from the short reads, by putting short reads
together as in a jig-saw puzzle, with respect to a reference
genome. SRM is interpreted as a typical ASM problem in
the ReneGENE-GI pipeline, to find occurrences of a smaller
short read in a much larger reference [4, 24, 25].

The SRM, based on a Dynamic Programming (DP) [26]
method, with preprocessing, is shown in Algorithm 3.While
handling genome sequences, the DP technique is proven
to be the most sensitive in performing ASM. The DP
method comes with a quadratic time and space complexity
of O (LN). The DP based algorithms employ a recursive
scoring or cost function model, with an appropriate
linear or affine penalty model (for the dissimilarities
and string errors), to assign scores for mapping. The
algorithm adopts a matrix space, called the alignment
matrix, D.

The SRM module of ReneGENE-GI runs on accelerator
hardware like FPGAs and GPUs which are plugged in to

the HPC systems. The ReneGENE-DP algorithm within the
SRM module is designed to run as multiple parallel threads
on the accelerator hardware. This effectively speeds up the
entire pipeline providing multi-fold performance improve-
ment over the state-of-the-art SRM implementations.

3.4 Read ExtensionModule of ReneGENE-GI

The de novo read extension module of the pipeline, deals
with the problem of grouping the short reads based on
an overlap relationship among the reads, in the absence
of a reference genome. This algorithm is discussed in
detail in our previous work [27]. Related reads are grouped
together and they grow to form longer sequences called
readtigs. Here again, a single read can share a similar
overlap relationship with several of its sequence neighbours,
resulting in a single seed growing into many readtigs. This
is decided on run time and hence the computations are
clearly irregular due to the irregularity in the relationships
among the input data sets. To accommodate the readtigs or
extended reads that grow on the fly, this module implements
dynamically growing data structures cast in the map-reduce
framework, allowing a parallel deployment. The de novo
module processing is shown in Algorithm 4.
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3.5 Variant Calling in ReneGENE-GI

Variants or mutations in a genome sequence represent
the unique changes in genomic alphabets along the
length of the target genome, with respect to a reference
genome at specific locations. Variant calling is the
process of identifying such variants for the sample under
consideration. These variants can eventually throw light on
many structural and functional anomalies embedded in the
genomes and its repeat regions, manifesting in the form
of structural and Copy Number Variations (CNVs), Single
Nucleotide Polymorphisms (SNPs) etc. A precise alignment
achieved through ReneGENE-GI’s SRM enables a variant
calling of high quality and confidence levels, allowing a
more precise genotyping and phenotyping in presence of
fusion genes and translocations within repeat regions in a
genome. The SRM output from ReneGENE-GI is presented
to variant calling tools like GATK, SAMTOOLS, FreeBayes
etc which provide the resultant variant calls in the standard
VCF format.

Amidst a wide variety of state-of-the art GI solutions
[28, 29], the genomic computing community faces a lack
of consensus or standards in brewing a flawless elucidation
of biologically relevant information. In addition, the
choices of algorithms and implementations in intermediate
stages of GI have been subjective enough to snub out
the useful information for downstream analyses, in the
process of optimizing and accelerating the pipeline. As a
result, downstream analyses continue to suffer due to the
sufficiently large heuristics-driven errors that creep into the
pipeline and subsequent biologically relevant inferences.

In this context, the ReneGENE-GI pipeline stands out in
offering the optimal choice for performing GI, over a
fully accelerated pipeline, with an underlying confidence in
the biologically significant and causative inferences made
downstream.

4 ReneGENE CGM: The Comparative
Genomics Module of ReneGENE-GI

The ReneGENE-CGM runs on accelerator platforms like
FPGAs and GPUs. We have two flavours of this module,
ReneGENE-AccuRA for FPGAs and ReneGENE-GMAccS
for GPUs.

4.1 AccuRA: The SRM Pipeline for FPGAs

ReneGENE-GI’s CGM is implemented on a reconfigurable
accelerator platform as ReneGENE-AccuRA. This is an
extended version of AccuRA, published in our earlier work
[30, 31], which presents AccuRA’s architecture, algorithms,
mathematical model and scalability analysis. The AccuRA
hardware archetype is presented in Fig. 4.

The SRM performed by the CGM, when applied
to very long genomic sequences, is interpreted as an
Approximate String Matching (ASM) problem. SRM
algorithmically analyses the structural, functional and
evolutionary relationship between the two input strings.
SRM attempts to search the specific short read string q
of length —q— (ranging from about 25 to a few hundred
bases), over a much longer reference genome string G of
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Figure 5 ReneGENE-AccuRA:
The multi-channel architecture
based on AccuRA SRM
pipeline.
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length —G— (a human reference genome is typically 3
billion bases long). The aim is to find the regions of origin
of each short read string with respect to the reference, and
hence find regions of similarity or dissimilarity, over the
character set � = {A, C, G, T}.

The Dynamic Programming Kernel (DPK) units in
AccuRA’s hardware host a highly efficient and parallel
DPK kernel to achieve traceback in hardware, based
on a DP alignment algorithm as seen in Algorithm
3. The hardware performs alignment, in the shortest
deterministic time, agnostic to short read length. AccuRA
achieves a significant improvement in performance over
conventional RHPmodels for SRM, with adequate sequence
partitioning and scheduling schemes in the SRM workflow.
By performing traceback in hardware overlapped with
the forward scan during alignment, AccuRA eliminates
the memory bottleneck issues and reduces the compute
intensive tasks on the host significantly. The AccuRA
prototype, configured on a reconfigurable hardware like
FPGA, scaled well towards accommodating the big data
of short reads of varying lengths, from smaller prokaryotic
genomes to the larger mammalian genome, with a fine-
grained single nucleotide resolution.

4.2 ReneGENE-AccuRA: AMultichannel
Implementation of AccuRA SRM Pipeline on FPGAs

The scalability analysis and results from various prototypes
in our earlier work proved to substantiate the scalability
and performance of the parallel AccuRA SRM pipeline,
making it a promising target to accelerate the SRM
process in the NGS pipeline. Here, we present ReneGENE-
AccuRA, a multi-channel, scalable and massively parallel
computing pipeline that performs ultra-fast alignment of
DNA short reads, presented in Fig. 5. Each channel
of ReneGENE-AccuRA is composed of one AccuRA

SRM pipeline, hosting several DPK and mapper units.
A single reconfigurable hardware like FPGA can host
multiple such AccuRA SRM pipelines. Supplemented with
multi-threaded firmware architecture, ReneGENE-AccuRA
precisely aligns short reads, at a fine-grained single
nucleotide resolution, and offers full alignment coverage of
the genome including repeat regions. ReneGENE-AccuRA
is a fully streaming solution that eliminates memory
bottleneck and storage issues, thus reducing the computing
and I/O burden on the host significantly. With an appropriate
data streaming pipeline, we provide an affordable solution,
customizable according to scalability needs and budget
availability. It is also pluggable to any genome analysis
pipeline for use across multiple domains from research to
clinical environment.

4.3 ReneGENE-GMAccS: AMultichannel
Implementation of SRM on GPUs

ReneGENE-GMAccS, presented in Fig. 6 is a scalable,
massively parallel and heterogeneous GPU-based model for
SRM. This is a heterogeneous Single Instruction Multiple
Data (SIMD) system, for accelerating SRM process in the
NGS pipeline. This architecture implements Algorithm 3
for ReneGENE-GI across multiple parallel computational
threads on GPUs.

ReneGENE-GMAccS efficiently handles the task-level
parallelism and data level parallelism that is implicit within
the ASM problem presented. The Rene-GENE-GMAccS
firmware runs on a multi-node multi-core host platform,
hosting several kernels in a pipelined fashion. These kernels
are scheduled to run on a GPU based Accelerator Platform
(GAP) housing single or multiple GPUs. The firmware
allows for dynamic balancing of computations and flexible
memory hierarchy. Each kernel performs a complex, coarse
grained to fine grained parallel task, executed on a
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Figure 6 The ReneGENE-GMAccS architecture.

collection of data elements. With a seamless streaming of
data between the host and the GAP, ReneGENE-GMAccS
presents a massively parallel HPC model for SRM.

4.4 ReneGENE-GMAccS OpenCL Kernel Model on
GPUs

We have implemented SRM algorithms in ReneGENE-
GMAccS as kernels written in Open Computing Language
(OpenCL), which makes it platform independent. It also
enables ReneGENE-GMAccS to run on a heterogeneous
parallel computing environment, hosting GPUs from multi-
ple vendors. OpenCL also offers Just-In-Time (JIT) compile
options, which allows the end-to-end application to make
a superior use of the target GPU platform. ReneGENE-
GMAccS has leveraged the portability of OpenCL and the
compute efficiency of GPUs, through simplified wrappers
and libraries. The kernels take advantage of the concurrent
and parallel programming model provided by the OpenCL
framework, in association with the application code devel-
oped in C/C++ that resides on the host.

The OpenCL platform model comes with an inbuilt host
management layer and device side language support, and
defines the relationship between the Rene-GENE-GMAccS
host and the GAP. Each device on the GAP is an abstraction
of a set of Compute Units (CUs), with each CU hosting

a set of Processing Elements (PEs), presenting a Single
Instruction Multiple Thread (SIMT) parallel execution
model.

A scalable execution model is realized, while deploying
fine-grained work items or batches of short read inputs onto
the GAP. The kernels define the number of work-items
as an n-dimensional range or NDRange. The work items
are deployed as fixed size work groups across CUs in the
Shared Multiprocessors (SM) of the GPU. The workgroups
get scheduled as a group of threads on a set of PEs.

Each schedulable group of threads is termed wavefront
on the hardware, where all the threads execute the same
instruction while being on different control paths. Several
such work groups run concurrently in a large batch
of execution. An appropriate choice of NDRange and
workgroup size can result in the most suitable occupancy
levels for the GAP. Occupancy, a measure of concurrency
within the GAP, decides the system performance while
streaming large batches of short reads.

ReneGENE-GMAccS follows a fully consistent Open-
CL shared memory model. The kernels allow synchronized
host-device and device-host data transfers, while running
ReneGENE-GMAccS at multiple levels of granularity. This
helps the ReneGENE-GMAccS firmware to efficiently
interleave periods of computations and communication,
while handling ASM on large batches of short reads. By
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Table 2 ReneGENE-GMAccS prototype platform details.

Feature Single-GPU: P1 Multi-GPU: P2 (on Cray XC40)

Application environment C++ C++
Kernel environment STDCL/OpenCL OpenCL

Middleware – MPI

Host processor 8-core 3.5 GHz AMD FX™-8320 12-core 2.4 GHz Intel Xeon

System memory 32 GB 64 GB per node

GPU hardware Nvidia GeForce GTX 780 Ti Nvidia Tesla K40

GPU processing units 2880 2880 × 24 = 69120

GPU base clock rate 875 MHz 745 MHz

GPU memory 3 GB 12 GB × 24

GPU memory bandwidth (GB/s) 336 288

Compute capability 3.5 3.5

choosing the appropriate batch size, NDRange and level of
granularity, ReneGENE-GMAccS OpenCL kernels exploit
the underlying GPU architecture-level parallelism to its full
potential.

5 ReneGENE-GI: Solutions and Results

Here, we present the details of the prototypes developed
for ReneGENE-AccuRA and ReneGENE-GMAccS. The
performance comparison for the above CGMs are provided
for the SRM conducted on short reads for the human
genome data set.

5.1 ReneGENE-GI: Solutions

5.1.1 ReneGENE-GI Host Environment

The software stack, that runs on the host, comprises
of the preprocessing and post-processing modules of the
ReneGENE-GI pipeline. This includes: (i) the reference
index hashing step based on the MMPH algorithm, (ii)
the read-lookup algorithm against the indexed reference
for candidate genomic locations for a probable alignment,
(iii) the HPC platform specific libraries and middleware,
(iv) the hardware abstraction layer with the corresponding
device drivers and platform drivers, (v) the post-processing
module that makes decisions for the best alignment,
secondary alignments, the corresponding computations for
alignment/map qualities and (vi) a subsequent formatting
of the output data in the Sequence Alignment (SAM)
format. The pipeline also allows conversion of the SAM
file to its compressed Binary Alignment (BAM) file and
its verification towards fitness for downstream NGS data
analytics.

5.1.2 Prototype Model for ReneGENE-GMAccS

To evaluate ReneGENE-GMAccS for its performance and
scalability, we have developed a prototype model based
on both single and multiple GPUs. The single GPU
environment (Platform P1) is a workstation, hosting an
8 core AMD processor coupled with a Nvidia GPU. To
evaluate the scalability features of ReneGENE-GMAccS,
we modeled the same on SahasraT, the Cray XC40 based
in-house supercomputing cluster, with upto 24 GPUs put
to use for alignment in parallel (Platform P2) [32]. The
prototype has a set of three kernels, embedded in a
buffered pipeline. The details of the platforms are shown in
Table 2.

5.1.3 Prototype Model for ReneGENE-AccuRA

ReneGENE-AccuRA was prototyped on an HPC platform
supported with a reconfigurable accelerator card built on
multiple Xilinx Virtex 7 XC7V2000T devices, that is
scalable upto 633 million ASIC gates. The host interface
is through a Kintex-7 XC7K325T-FBG-900 FPGA. The
host processor is interfaced to the Kintex-7 FPGA via the
high speed interface of PCI-E x8 gen3. The embarassingly
parallel bio-computing in AccuRA’s SRM is further
favoured by the inherent reprogrammability of FPGAs,
massively parallel compute resources, extreme data path
parallelism and fine grained control mechanisms offered by
the FPGAs.

5.1.4 ReneGENE-AccuRA Hardware

The multi-channel ReneGENE-AccuRA is represented
as DUT within each FPGA. It is interfaced with the
prototyping infrastructure on the FPGA through the

1206 J Sign Process Syst (2020) 92:1197–1213



Table 3 Scalability analysis parameters.

Symbols Description

BWin Streaming input bandwidth

L Short read length

B Streaming buffer depth

l Subsequence length for short read

m Number of partitions for input short read, with overlapping

b Number of bits for encoding each base of input short read

bl Streaming buffer width

τMAK MAK unit clock period

τDPK DPK unit clock period

x MAK unit operating cycles

y DPK unit operating cycles

P Total number of pairs launched on MAK-DPK units for SRM

N Number of MAK-DPK units deployed on a single AccuRA SRM pipeline channel

p = P
N

Number of pairs allotted for SRM, per MAK-DPK unit

C No. of cell updates per DPK Unit

K No. of filter kernel operations per MAK Unit

Rin No. of filter kernel operations per MAK Unit Rin = 8×BWin

b×m×l

TMAK Total MAK unit time to cover P pairs TMAK = x × τMAK

TDPK Total DPK unit time to cover P pairs TDPK = y × τDPK

RRHP Read Processing Rate of a single AccuRA SRM pipeline channel RRHP = N
TMAK+TDPK

TRHP Alignment Time of a single AccuRA SRM pipeline channel TRHP = p × (TMAK + TDPK)

Tsingle channel AccuRA The total time invested in performing SRM in a single AccuRA SRM pipeline
channel Tsingle channel AccuRA ≈ TLoad + TRHP + TUnload

PMAK Performance of MAK units within a single AccuRA SRM pipeline, measured in
terms of Giga Maps Per Second (GMPS) PMAK = N×K

x×TMAK

PDPK Performance of DPK units within a single AccuRA SRM pipeline, measured in
terms of Giga Cell Updates Per Second (GCUPS) PDPK = N×C

y×TDPK

standard AXI4 interface with 256 bit-wide data bus, running
at a frequency of 125MHz. The Address Remapper unit
allows an automatic remapping of the address spaces of
DUT for transactions, allowing an ease of scalability in
adding more AccuRA SRM channels to the DUT. The
implementation is done using VHDL and Verilog.

5.1.5 Scalability Analysis for ReneGENE-AccuRA

The parameters in scalability analysis for ReneGENE-
AccuRA are given in Table 3. Consider the multi-channel
AccuRA SRM pipeline model, where reads are streamed in
at the rate Rin (measured as Giga Reads/second or GR/s)
over an input streaming bandwidth of BWin (measured as
Giga Bytes/second or GB/s). The m subsequences of short
reads, each of length l, are streamed through a streaming
buffer of depth B, which holds one subsequence in each
word of storage.

Each MAK unit performs filtering in time TMAK , over
x cycles of the MAK unit clock, with period τMAK .
Each DPK unit performs alignment in time TDPK , over

y cycles of the DPK unit clock, with period τDPK . If N

MAK-DPK units are configured within a single AccuRA
SRM pipeline channel, then each unit gets its share of
p pairs for performing SRM. The single AccuRA SRM
pipeline channel thus performs N SRMs in a total time
of TMAK + TDPK , with N MAK-DPK units running
in parallel. The single channel hence processes reads at
a rate of RRHP measured in GR/s. At this rate, the
hardware aligns all the P reads, with p reads aligned in
parallel over N MAK-DPK units, over a total time of
TRHP .

For scaling up the performance, let us include C such
channels of AccuRA SRM pipelines within a single FPGA.
Here, each channel will take the same amount of time to
process the same number of reads.

Now, the overall performance from all the MAK units
from C channels, measured in terms of Giga Maps Per
Second (GMPS), is given by:

PMAK = C × N × K

x × TMAK

(1)
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Table 4 Small genome data.

Genome Reference length Read size Number of reads

E.coli (E.c) 4641652 150 1374751

P.aeruginosa (P.a) 6264404 300 1245456

S.cerevisiae (S.c) 12157105 50 11975806

S.pombe (S.p) 12591251 101 2467348

M.tuberculosis (M.tb) 4411532 50 4872186

H.Infuenzae (H.in) 1830092 101 1781164

B.pertussis (B.p) 4086189 101 1794963

The overall performance of DPK unit, measured in terms of
Giga Cell Updates Per Second (GCUPS), is given by:

PDPK = C × N × C

y × TDPK

(2)

Thus, we see that by scaling up the single AccuRA SRM
pipeline channel, by increasingN , the ReneGENE-AccuRA
hardware gains a better throughput, as it can handle more
pairs in parallel. The scalability is complemented by further
scaling up the number of such channels, C, within a single
FPGA. The number of such channels within an FPGA is
limited only by the allowed reconfigurable hardware space
for the DUT within the FPGA. The input data is then fairly
divided among the channels, so that the SRM process is
complete in approximately 1/C times the total time taken
for SRM by a single channel.

5.2 ReneGENE-GI: Results

5.2.1 Comparing ReneGENE-GI CGMwith Existing Aligners

Here, we compare the basic multi-core implementation of
ReneGENE-GI’s CGM with the Open source distributions
of widely used aligners namely, BWA-MEM and Bowtie2,
without the support of any acceleration hardware.

We have selected the short read data for a list of small
organisms, listed in Table 4, for running the Rene-GENE-
GI pipeline. These data vary in the length of the reads and
the reference. The performance comparisons are listed in

Table 5 ReneGENE-GI Versus state-of-the-art SRM comparisons
(time taken in seconds).

Genome Bowtie2 BWA-MEM ReneGENE-GI

E.coli (e.c) 325.1 282.8 43.28

P.aeruginosa (p.a) 1278.41 471.49 104.22

S.cerevisiae (s.c) 2778.1 845.3 436.2

S.pombe (s.p) 1032.34 304.5 107.52

M.tuberculosis (m.tb) 773.33 307.82 146.2

H.influenzae (h.in) 188.57 248.75 52.72

B.pertussis (b.p) 3934.4 1714.7 165.2

Table 6 ReneGENE-GI variant calling comparison with alignment
to forward reference strand: results derived from the output of
comparative genomics module of the ReneGENE-GI pipeline.

Organism Bowtie 2.0 BWA-MEM ReneGENE-GI

1. b.p 60 487 582

2. s.c 33804 34348 65758

3. s.p 207 250 725

4. m.tb 448 444 1114

Table 5. From the table, we can see that for these organisms,
ReneGENE-GI is much faster than the other two SRM
tools. In the subsequent sections, we present the results
for ReneGENE-GI on accelerator platforms with larger
genomes.

ReneGENE-GI has reported an increased number of
valid alignments with the precision and accuracy of
reference locations. This has helped in reporting several
unique variants (changes in genomic alphabets) at specific
genomic locations, as part of the alignment process.
Through a downstream process called variant calling, the
SRM output was analysed and scanned for quality and
quantity of such variants. A comparison of the variants
derived from ReneGENE-GI and those derived from
Bowtie2 and BWA-MEM was done, the details of which
are captured in Table 6. The table shows that several
variants are exclusively reported by ReneGENE-GI, which
would be relevant while looking for structural and biological
interpretations and filtering out causative and actionable
variants, which otherwise would have been purged by the
other SRM tools.

5.2.2 Performance Evaluation of ReneGENE-GI for Large
Genome Benchmarks

The ReneGENE-GI prototypes for FPGA and GPU plat-
forms were tested by running SRM for very large data
sets of the order of several Giga Bytes, for the mam-
malian human genome. The details of the input data
set is provided in Table 7. We have used the GrCh38
reference genome assembly, which is around 3 billion
bases long, consisting of 23 chromosomes and mito-
chondrial DNA. We have considered alignment of three
human genomes, each of which corresponds to a fam-
ily of father (SRR1559289, SRR1559290, SRR1559291,
SRR1559292, SRR1559293), mother (SRR1559294, SRR-
1559295, SRR1559296, SRR1559297, SRR1559298) and
their child (SRR1559281, SRR1559282, SRR1559283,
SRR1559284). Here, each read is 200 bases long. The reads
are subjected to lookup against the reference gen-ome index.
Subsequently, they are sent for alignment on the FPGA and
GPU by streaming over the PCIe link through buffers. The
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Table 7 Human genome experiment details.

ID SRR Read No. of reads No. of bases Buffer contents for SRM No. of streamed batches

1 SRR1559289 27594045 5.5G 1545583696 82

2 SRR1559290 28019239 5.6G 1567102768 84

3 SRR1559291 169777482 34G 9616084216 510

4 SRR1559292 168278483 33.7G 9031420804 479

5 SRR1559293 168484341 33.7G 9194814968 488

6 SRR1559294 180827103 36.2G 10449482200 554

7 SRR1559295 96741850 19.3G 5716247292 303

8 SRR1559296 148849161 29.8G 8719041172 462

9 SRR1559297 33028205 6.6G 1872052764 100

10 SRR1559298 33621893 6.7G 1899810824 101

11 SRR1559281 146929886 29.4G 8661172200 459

12 SRR1559282 143848074 28.8G 8348191016 443

13 SRR1559283 144871968 29G 8415342112 446

14 SRR1559284 142831237 28.6G 8303472652 440

Table 8 ReneGENE-GMAccS alignment time per chromosome for human genome read sets on P1. The values indicate time taken in seconds.

Read → Father, SRR15592xx Mother, SRR15592xx Child, SRR15592xx

Chr ↓ 89 90 91 92 93 94 95 96 97 98 81 82 83 84

1 24.61 26.3 162.66 149.16 143.99 160.49 88.38 128.91 29.3 28 144.05 140.48 132.93 137.5

2 19.61 21.06 129.7 119.06 114.99 126.11 70.7 102.58 23.04 22 116.12 112.79 106.75 110.6

3 17.62 18.86 116.6 106.37 103.04 117.04 65.41 94.97 21.44 20.45 103.34 100.43 95.04 98.44

4 16.85 18 111.25 101.55 98.15 105.91 59.16 86.3 19.5 18.69 97.74 95.1 90.24 93.34

5 19.33 20.65 127.6 116.88 112.82 126.63 69.12 101.52 23.29 22.27 112.39 109.77 103.91 107.48

6 14.71 15.72 97.21 88.67 86.01 91.65 51.45 74.56 16.73 15.94 90.03 87.36 82.74 85.62

7 27.69 29.81 184.06 165.85 162.25 181.96 100.21 147.9 33.68 32.11 169.86 166.95 157.35 163.14

8 13.83 14.82 91.74 83.35 80.85 86.7 48.3 70.4 15.86 15.17 80.29 78.18 74.07 76.76

9 15.1 16.08 99.4 90.58 87.96 93.63 51.75 75.73 17.29 16.49 86.08 84.23 79.79 82.61

10 12.19 13.08 80.6 73.91 71.56 77.94 43.6 63.18 14.2 13.59 70.87 68.95 65.24 67.51

11 22.42 23.97 147.89 133.66 129.33 137.13 74.7 109.88 25.12 23.87 113.53 110.96 105.14 108.41

12 17.99 19.36 118.66 108.41 104.86 108.73 59.86 87.68 20.03 19.03 97.59 94.78 90.01 93.43

13 9.35 9.95 62.01 56.39 54.64 59.39 32.72 47.78 10.83 10.38 56.27 54.86 52.03 53.9

14 10.33 10.99 68.45 62.39 60.42 65.8 36.38 53 11.99 11.49 62.08 60.49 57.34 59.42

15 9.85 10.55 65.1 59.35 57.43 64.98 35.84 52.51 11.87 11.37 63.87 62.81 59.23 61.29

16 12.25 13.22 80.86 74.05 71.46 76.36 41.78 61.32 13.97 13.41 73.38 71.66 67.73 70.15

17 11.49 12.3 75.69 69.39 67.28 90.92 50.25 73.01 16.44 15.63 76.11 74.04 70.09 72.56

18 19.29 20.59 129.65 116.16 113.04 104.97 56.91 84.91 19.52 18.86 109.86 107.61 102.75 106.77

19 12.99 13.87 85.69 79.06 76.1 85.86 46.28 68.03 15.72 15.04 74.71 73.24 69.27 71.66

20 11.01 11.8 73.02 65.63 63.95 60.62 33.27 48.95 11.19 10.72 62.97 61.65 58.36 60.42

21 5.95 6.32 39.54 35.82 34.73 36.96 20 29.46 6.75 6.49 35.81 35.06 33.28 34.5

22 7.01 7.45 46.49 42.35 41.01 44.12 24.12 35.24 8.02 7.69 42.28 41.31 39.17 40.62

X 17.24 18.4 113.72 103.7 100.18 160.06 88.41 130.16 29.64 28.06 122.72 119.55 113.13 116.76

Y 2.31 2.46 15.22 13.8 13.39 12.57 7.03 10.23 2.31 2.21 13.61 13.22 12.52 12.95

MT 0.007 0.008 0.049 0.042 0.041 0.038 0.025 0.035 0.007 0.007 0.046 0.043 0.041 0.043

Total (minutes) 5.85 6.26 38.71 35.26 34.16 37.94 20.93 30.64 6.96 6.65 34.59 33.76 31.97 33.1
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Figure 7 ReneGENE-GMAccS performance in MMPS, on P2 with
multiple GPUs.

sample FPGA buffer sizes, are configured to hold up to
18874368 words of data in one batch, as shown in Table 7.
For GPUs, this is configured across two variables, the batch
size (number of parallel GPU compute threads) and the
NDRange (NDR).

5.2.3 Results from Large Genome Benchmarks for
ReneGENE-GMAccS on P1

Table 8 captures the time taken by P1, in seconds, to align
the read sets across all the chromosomes in the reference.
We can see that, for the largest read set SRR1559291, P1
could align about 169 million short reads of 100 bases
each, in a total time of 162.66 seconds against chromosome
1. Thus, with a single GPU, we could achieve SRM for
the entire read set of 169777482 reads, against all the
chromosomes within the human reference genome, in about
38.71 minutes, which is the GPU run time for all the
alignments.

Table 9 ReneGENE-GMAccS overall alignment time comparison for
human genome read sets.

SRR Read Sets P1 time (s) P2 time 24 GPUs (s)

SRR1559289 351.02 17.18

SRR1559290 375.61 18.39

SRR1559291 2322.85 113.71

SRR1559292 2115.58 103.61

SRR1559293 2049.49 100.33

SRR1559294 2276.57 111.45

SRR1559295 1310.95 64.17

SRR1559296 1838.24 89.99

SRR1559297 417.75 20.45

SRR1559298 398.94 19.53

SRR1559281 2075.57 101.61

SRR1559282 2025.54 99.16

SRR1559283 1918.12 93.9

SRR1559284 1985.89 97.22
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Figure 8 Performance comparison of FPGA versus GPU for human short read sets.

5.2.4 Results from Large Genome Benchmarks for
ReneGENE-GMAccS on P2

We have exploited the scalability of ReneGENE-GMAccS
to achieve a better SRM performance on P2, where the
system was configured to use up to 24 GPUs in parallel.

Figure 7 shows the performance of P2, with 1, 2, 4, 8 and
24 GPUs, for a batch size of 1283776 and NDR of 64, for the
large genome read sets. Table 9 depicts the total time taken
by P1 and P2 to align all the input read sets. Here we can see
that, with 24 GPUs, P2 took 113.71 seconds to complete the
alignment of the largest read set SRR1559291, as against
P1, which took 2322.85 seconds to finish the job with a
single GPU. Thus, from Fig. 7 and Table 9, the performance
improvement is evident in terms of the throughput levels
measured in Million Maps Per Second (MMPS) as well as
the total time taken. The distributed memory architecture on
P2 along with the MPI middleware in ReneGENE-GMAccS
thus helps in achieving a more-than-linear improvement in
performance without overwhelming the shared resources, as
the number of GPUs increases.

5.2.5 Results from Large Genome Benchmarks for
ReneGENE-AccuRA

The ReneGENE-AccuRA prototype was tested with single
and dual channel AccuRA SRM pipelines within a single
FPGA while aligning the human short read sets. Each
channel hosted 16 MAK units and 16 DPK units. With
this configuration, to align 500 million reads (100 bases
long) against the reference genome (3 billion bases long),
with each read reporting a mapping at five locations on
the reference, ReneGENE-AccuRA performs 4.65 Tera map
operations and 10.24 Tera cell updates at the rate of 21.14
GMPS and 46.56 GCUPS in about 3.68 minutes. The
implementation results for the dual-channel ReneGENE-
AccuRA are provided in Table 10.

For the human genome read sets in Table 7, the alignment
times for various configurations are shown in Fig. 8. Here,
we can see that the time taken by ReneGENE-AccuRA
is about one-fifth (with single channel AccuRA SRM

pipeline) and about one-tenth (with dual channel AccuRA
SRM pipeline), the time taken by the single GPU OpenCL
implementation of ReneGENE-GI’s CGM. This single GPU
implementation is itself 2.62x faster than CUSHAW2-
GPU (the GPU CUDA implementation of CUSHAW) [33,
34]. With the single-GPU implementation demonstrating
a speedup of 150x over standard heuristic aligners in the
market like BFAST [35], the reconfigurable accelerator
version of ReneGENE-AccuRA is several orders faster
than the competitors, offering precision over heuristics.
By extending the implementation to four and six channels
within a single FPGA, there is a definite increase expected
in the performance as evident from the scalability analysis.
With multiple FPGAs available on the platform, the scope
for further improvement in performance increases with
increase in number of FPGAs and number of channels
supported within the FPGAs.

6 Conclusion

Through this paper, we have presented ReneGENE-GI, an
innovatively engineered GI pipeline. The pipeline strikes the
right balance between comparative genomics and de novo
read extension, to run an irregular application like GI. With
parallel algorithms executed on reconfigurable accelerator
hardware, ReneGENE-GI exploits the inherent parallelism
and scalability of the hardware at the level of micro and
system architecture, amidst fine-grain synchronization.

The k-mer based dynamic MMPH algorithm for ref-
erence genome indexing provides an accurate hash table,
allowing a heuristic free multi-read alignment across
repeat regions of the reference. Supplemented with a
multi-threaded firmware architecture, the CGM in Rene-
GENE-GI precisely aligns short reads, at a fine-grained
single nucleotide resolution, and offers full alignment
coverage of the genome including repeat regions. The
CGM has been deployed on two accelerator platforms, as
ReneGENE-AccuRA and ReneGENE-GMAccS, on FPGA
and GPU respectively, The parallel dynamic programming
kernels on multiple channels of CGM seamlessly perform
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traceback process in hardware in parallel with forward scan,
thus achieving short read mapping in a minimum possible
deterministic time.

ReneGENE-GI is a fully streaming solution that elimi-
nates memory bottleneck and storage issues, thus reducing
the computing and I/O burden on the host significantly.
The performance analysis shows that Rene-GENE-AccuRA
is faster in comparison with ReneGENE-GMAccS and the
state-of-the-art aligners, with similar levels of precision
and accuracy, while aligning significantly large volumes of
human genome data. With an appropriate data streaming
pipeline, we provide an affordable solution, customizable
according to scalability needs and budget availability. It
is also pluggable to any genome analysis pipeline for use
across multiple domains from research to clinical envi-
ronment. The precise secondary analysis offered by the
CGM of ReneGENE-GI running on accelerator hardware,
associated with an efficient tertiary analysis down- stream
serves to be a promising target to derive more meaning-
ful inferences from NGS data with biological and clinical
significance.
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