
Journal of Signal Processing Systems (2019) 91:937–952
https://doi.org/10.1007/s11265-018-1430-3

Fast and Flexible Software Polar List Decoders

Mathieu Léonardon1,2 · Adrien Cassagne1,3 · Camille Leroux1 · Christophe Jégo1 · Louis-Philippe Hamelin4 ·
Yvon Savaria2

Received: 13 October 2017 / Revised: 25 July 2018 / Accepted: 11 December 2018 / Published online: 18 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Flexibility is one mandatory aspect of channel coding in modern wireless communication systems. Among other things, the
channel decoder has to support several code lengths and code rates. This need for flexibility applies to polar codes that are
considered for control channels in the future 5G standard. This paper presents a new generic and flexible implementation
of a software Successive Cancellation List (SCL) decoder. A large set of parameters can be fine-tuned dynamically without
re-compiling the software source code: the code length, the code rate, the frozen bits set, the puncturing patterns, the cyclic
redundancy check, the list size, the type of decoding algorithm, the tree-pruning strategy and the data quantization. This
generic and flexible SCL decoder enables to explore tradeoffs between throughput, latency and decoding performance.
Several optimizations are proposed to achieve a competitive decoding speed despite the constraints induced by the genericity
and the flexibility. The resulting polar list decoder is about 4 times faster than previous generic software decoders and only
2 times slower than previous non-flexible unrolled decoders. Thanks to the flexibility of the decoder, the fully adaptive SCL
algorithm can be easily implemented and achieves higher throughput than any other similar decoder in the literature, up to
425 Mb/s on a single processor core for N = 2048 and K = 1723 at 4.5 dB.

Keywords Polar codes · Adaptive successive cancellation list decoder · Software implementation · 5G standard ·
Generic decoder · Flexible decoder

1 Introduction

Polar codes [1] are the first provably capacity achieving
channel codes, for an infinite code length. The decoding
performance of the original Successive Cancellation (SC)
decoding algorithm is however not satisfactory for short
polar codes. The Successive Cancellation List (SCL)
decoding algorithm has been proposed in [2] to counter this
fact along with the concatenation of a Cyclic Redundancy
Check (CRC). The decoding performance of SCL decoding
is such that polar codes are included in the fifth generation
(5G) mobile communications standard [3].

Cloud radio access network (Cloud-RAN) is foreseen by
both academic [4, 5] and industrial [6, 7] actors as one of
the key technologies of the 5G standard. In Cloud-RAN the

� Mathieu Léonardon
mathieu.leonardon@u-bordeaux.fr

Extended author information available on the last page of the article.

virtualization of the physical layer (PHY) would allow for
deep cooperative multipoint processing and computational
diversity [4]. PHY-layer cooperation enables interference
mitigation, while computational diversity lets the network
balance the computational load accross multiple users. But
the virtualization of the FEC decoder is a challenge as it is
one of the most computationally intensive tasks of the signal
processing chain in a Cloud-RAN context [8, 9]. Therefore,
efficient, flexible and parallel software implementations of
FEC decoders are needed to enable some of the expected
features of Cloud-RAN.

To date, the fastest software implementations of SCL
polar decoders have been proposed in [10]. The high
decoding speed is achieved at the price of flexibility,
because the software decoder is only dedicated to a specific
polar code. In a wireless communication context, the source
code of this fast software polar decoder would have to be
recompiled every time the Modulation and Coding Scheme
(MCS) changes, which may happen every millisecond.

In this work, we propose a software SCL polar decoder
able to switch between different channel coding contexts

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-018-1430-3&domain=pdf
http://orcid.org/0000-0002-9973-843X
mailto: mathieu.leonardon@u-bordeaux.fr

938 J Sign Process Syst (2019) 91:937–952

(block length, code rate, frozen bits sets, punctur-
ing patterns and CRC code). This property is denoted
as genericity. Moreover, the proposed decoder sup-
ports different list-based decoding algorithms, several list
sizes (L), quantization formats and tree-pruning tech-
niques during a real time execution. Again, this is
done dynamically without having to recompile the soft-
ware description. We denote this feature as flexibil-
ity. The genericity and the flexibility of the decoder
are achieved without sacrificing the decoding through-
put and latency thanks to several implementation optimi-
zations. Actually, the proposed software SCL decoder is
only 2 times slower than a polar code specific decoder [10]
and 4 times faster than a generic decoder [11]. The adaptive
version of the decoder reaches 425 Mb/s on a single pro-
cessor core for N = 2048, K = 1723 and L = 32 at 4.5
dB.

This paper includes several contributions. The most
significant of them are listed in this paragraph. i) Unlike
previously proposed decoders, the proposed software
decoder uses quantized information. ii) Two different
partial sum management methods are presented and their
advantages and weaknesses are discussed. iii) Novel
methods to speed up the CRC processing are presented
that greatly improve the throughput of adaptive versions
of the decoding algorithms. iv) A sorting technique [12]
particularly suited for software implementations further
increases the decoding throughput. v) Unlike previous
comparable implementations, the proposed decoder also
supports a fully adaptive version of SCL. Thanks to these
improvements, the exploration of polar coding and decoding
is greatly facilitated : many computationally intensive
configurations are explored, and their error rate is reported
down to very low error rates. vi) Finally, in a previous work,
the use of a specific kind of tree pruning was presented
as severely degrading the error correction performance in
most cases. In this paper, it is shown that in many cases,
the degradation is very low while the throughput gains are
significant.

The rest of the paper is organized as follows: Section 2
describes the SCL decoding algorithm and its variants.
The genericity and the flexibility of the proposed decoder
are highlighted in Section 3. Section 4 details the speed-
oriented optimizations. Finally, Section 5 reports the
obtained throughput and latency performances.

2 Polar Codes

In this section, the polar encoding process is first presented,
then the SC and SC-List based decoding algorithms are

reviewed. Finally, the tradeoffs between speed and decoding
performance of different decoding algorithms are discussed.

2.1 Polar Encoding Process

In the polar encoding process, an information sequence b of
length K is transformed into a codeword x of length N . The
first step is to build a vector u in which the information bits
b are mapped on a subset uA whereA ⊂ {0, ..., N −1}. The
remaining bits uAc = (ai : i �∈ A) called frozen bits are
usually set to zero. The selection of the frozen bits is critical
for the effectiveness of the polar codes. Two of the main
techniques to date for constructing polar codes are based on
the Density Evolution approach [13] and on the Gaussian
Approximation [14]. In this paper, all the evaluated polar
codes were generated with the Gaussian Approximation
method. These techniques sort the polar channels according
to their reliability in order to choose the frozen bits set
for a given code length. Then, an intermediate vector u′
is generated thanks to an encoding matrix:1 u′ = uF⊗n.
Finally the bits in the subset u′

Ac are set to zero and the
output codeword is x = u′F⊗n. This encoding method
is called systematic because the information sequence b is
present in the codeword (xA = b). In this paper, only
systematic encoding schemes are considered. A CRC of
length c may be concatenated to the information sequence
b in order to improve the decoding performance of SCL
decoding algorithms. In this case, |A| = K + c and the
CRC bits are included in uA. In this paper, the code rate
is defined as R = K/N and the c bits of the CRC are not
considered as information bits. For instance, a polar code
whose block length is N = 2048 and code rate is R = 1/2
contains 1024 informations bits. Such a code is denoted as
(2048,1024).

2.2 Polar Decoding Algorithms

2.2.1 SC Decoding Algorithm

The SC decoding process can be seen as the pre-order
traversal of a binary tree as shown in Fig. 1. The tree
contains log2 N + 1 layers. Each layer contains 2d nodes,
where d is the depth of the layer in the tree. Each node
contains a set of 2n−d Log-Likelihood Ratios (LLRs) λ

and partial sums ŝ. The partial sums correspond to the
propagation towards the top of the tree of hard decisions

1F⊗1 =
[
1 0
1 1

]
and ∀n > 1, F⊗n =

[
F⊗n−1 0n−1

F⊗n−1 F⊗n−1

]
, where

n = log2(N), N is the codeword length, and 0n is a 2n-by-2n matrix
of zeros.

J Sign Process Syst (2019) 91:937–952 939

Figure 1 Full SC decoding tree (N = 16).

made in the update paths() function. As shown in Fig. 1,
LLRs, which take real values, and partial sums, which take
binary values, are the two types of data contained in the
decoding tree, and three functions, f , g and h are necessary
for updating the nodes:

⎧⎨
⎩

f (λa, λb) = sign(λa .λb). min(|λa|, |λb|)
g(λa, λb, ŝa) = (1 − 2ŝa)λa + λb

h(ŝa, ŝb) = (ŝa ⊕ ŝb, ŝb)

In comparison with the SCL algorithm and its derivatives,
the computational complexity of the SC algorithm is low:
O(N log2 N). Therefore, both software [15] and hardware
[16] implementations achieve multi-Gb/s throughputs with
low latencies. The drawback of the SC decoding algorithm
is its decoding performance especially for short polar codes.
This is an issue for the future 5G wireless standard in which
polar codes are targeted for control channels, with code
lengths shorter than 2048 [3].

2.2.2 SCL Decoding Algorithm

The SCL algorithm is summarized in Algorithm 1. Unlike
the SC algorithm, the SCL decoder builds a list of
candidate codewords along the decoding. At each call of
the update paths() sub-routine (Alg. 1, l.16), 2L candidates
are generated. A path metric is then evaluated to keep
only the L best candidates among the 2L paths. The path
metrics are calculated as in [17]. At the end of the decoding
process, the candidate codeword with the best path metric
is selected in the select best path() sub-routine (Alg. 1,
l.18). The decoding complexity of the SCL algorithm
grows as O(LN log2 N). This linear increase in complexity
with L comes with significant improvements of Bit Error
Rate (BER) and Frame Error Rate (FER) performances,
especially for small code lengths.

2.2.3 Simplified SC and SCL Decoding Algorithms

All aforementioned polar decoding algorithms have in
common that they can be seen as a pre-order tree traversal
algorithm. In [18], a tree pruning technique called the
Simplified SC (SSC) was applied to SC decoding. An
improved version was proposed in [16]. This technique
relies on the fact that, depending on the frozen bits location
in the leaves of the tree, the definition of dedicated nodes
enables to prune the decoding tree: Rate-0 nodes (R0)
correspond to a sub-tree whose all leaves are frozen bits,
Rate-1 nodes (R1) correspond to a sub-tree in which all
leaves are information bits, REPetition (REP) and Single
Parity Check (SPC) nodes correspond to repetition and SPC
codes sub-trees. These special nodes, originally defined
for SC decoding, can be employed in the case of SCL
decoding as long as some modifications are made in the
path metric calculation [10]. This tree-pruned version of
the algorithm is called Simplified SCL (SSCL). The tree
pruning technique can drastically reduce the amount of
computation in the decoding process. Moreover, it increases
the available parallelism by replacing small nodes by larger
ones. As will be discussed in Section 3, the tree pruning may
have a small impact on decoding performance.

940 J Sign Process Syst (2019) 91:937–952

2.2.4 CRC Concatenation Scheme

The authors in [2] observed that when a decoding error
occurs, the right codeword is often in the final list, but not
with the best path metric. They proposed to concatenate a
CRC to the codeword in order to discriminate the candidate
codewords at the final stage of the SCL decoding. Indeed,
this technique drastically improves the FER performance
of the decoder. We denote this algorithm CA-SCL and its
simplified version CA-SSCL. In terms of computational
complexity, the overhead consists in the processing of L

CRCs at the end of each decoding.

2.2.5 Adaptive SCL Decoding Algorithm

The presence of the CRC can be further used to reduce the
decoding time by gradually increasing L. This variation of
SCL is called Adaptive SCL (A-SCL) [19]. The first step
of the A-SCL algorithm is to decode the received frame
with the SC algorithm. Then, the decoded polar codeword
is checked with a CRC. If the CRC is not valid, the SCL
algorithm is applied with L = 2. If no candidate in the list
satisfies the CRC,L is iteratively doubled until it reaches the
value Lmax . In this paper, we call this version of the A-SCL
decoding the Fully Adaptive SCL (FA-SCL) as opposed
to the Partially Adaptive SCL (PA-SCL), in which the L

value is not iteratively doubled but directly increased from
1 (SC) to Lmax . The simplified versions of these algorithms
are denoted PA-SSCL and FA-SSCL. In order to simplify
the algorithmic range, in the remainder of the paper, only
the simplified versions are considered. The use of either
FA-SSCL or PA-SSCL algorithmic improvement introduces
no BER or FER performance degradation as long as the
CRC length is adapted to the polar code length. If the
CRC length is too short, the decoding performance may
be degraded because of false detections. These adaptive
versions of SSCL can achieve higher throughputs. Indeed,
a large proportion of frames can be decoded with a single
SC decoding. This is especially true when the SNR is high.
This will be further discussed in Section 3.

2.3 Algorithmic Comparison

In order to better distinguish all the algorithmic variations,
we compare their main features in Table 1. Each algorithm
is characterized in terms of decoding performance, through-
put, and worst case latency for a software implementation.
The non-simplified versions of the adaptive SCL algorithms
are not included in the Table 1 for readability.

The SC and especially the SSC algorithms achieve
very high throughput and low latency with poor BER
and FER performances. The SCL algorithm improves the

Table 1 Throughput and latency comparison of polar decoding
algorithms.

Decoding BER & FER Throughput Max. Latency

Algorithm Performances (T) (Lworst)

SC poor medium medium

SSC poor high low

SCL good low high

SSCL good low medium

CA-SSCL very good low medium

PA-SSCL very good high medium

FA-SSCL very good high high

decoding performance compared to the SC algorithm, but
its computational complexity leads to an increased latency
and a lower throughput. The SSCL algorithm improves
the decoding throughput and latency without any impact
in terms of BER and FER performances, as long as the
tree pruning is not too deep, as will be discussed in
Section 3. Therefore, tree pruning is applied to all the
following algorithms, namely CA-SSCL, FA-SSCL and PA-
SSCL. By applying CRC to the SCL algorithm, one can
achieve better BER and FER performances at the cost
of computational complexity overhead. The Adaptive SCL
algorithms reduce the decoding time with no impact on
BER and FER performances as long as the CRC is carefully
chosen. Furthermore, a tradeoff between throughput and
worst case latency is possible with the use of either PA-
SSCL or FA-SSCL decoding algorithms.

CA-SCL decoding performances for large code lengths
(N > 214) combined with large list sizes (L > 8) are rarely
reported in the literature. This is probably due to the long
simulation time. The proposed decoders are integrated in
the AFF3CT2 toolset. Therefore, multi-threaded and multi-
nodes simulations are enabled to handle such computation-
demanding simulations.

All the presented simulations use the Monte Carlo
method with a Binary Phase-Shift Keying (BPSK) modu-
lation. The communication channel is an Additive White
Gaussian Noise (AWGN) channel based on the Mersenne
Twister pseudo-random number generator (MT19937) [20]
and the Box-Muller transform [21]. Figure 2 compares the
BER and FER performances of CA-SCL with SC decoding
for a large range of code lengths. As expected, it appears that
the coding gain brought by the SCL algorithm decreases for
larger N values. In the case of N = 216, the improvement
caused by the use of the CA-SCL algorithm with L = 32

2AFF3CT is an Open-source software (MIT license) for fast forward
error correction simulations, see http://aff3ct.github.io.

http://aff3ct.github.io

J Sign Process Syst (2019) 91:937–952 941

Figure 2 Decoding performance comparison between CA-SCL and
SC decoders. Code rate R = 1/2, and 32-bit CRC (GZip).

and a 32-bit GZip CRC (0x04C11DB7 polynomial) instead
of SC is about 0.75 dB compared to 1.2 dB with a polar
code of size N = 212. For larger polar codes, N = 220, the
gain is reduced to 0.5 dB, even with a list depth of 128 that
is very costly in terms of computational complexity.

The tradeoffs between speed and decoding performance
show some general trends. However, the efficiency of each
decoding algorithm is strongly dependent on the polar
code length, code rate, list depth and code construction. It
is expected that the best tradeoff is not always obtained
with a single algorithm and parameter set combination.
It is consequently highly relevant to use a generic and
flexible decoder that supports all variants of the decoding
algorithms. Thus, it is possible to switch from one to another
as shown in the following section.

3 Generic and Flexible Polar Decoder

The main contribution of this work lies in the flexibility
and the genericity of the proposed software decoder. These
terms need to be clearly defined in order to circumvent
possible ambiguity. In the remainder of the paper, the gener-
icity of the decoder concerns all the parameters that define
the supported polar code such as the codeword length,
the code rate, the frozen bits set, the puncturing patterns
and the concatenated CRC. These parameters are imposed
by the telecommunication standard or the communication
context. In the wireless communications context, these are
constantly adapted by AMC methods [22]. In this work, a
decoder is considered generic if it is able to support any
combination of these parameters that can be changed during
a real time execution. On the other hand, the flexibility of a
decoder includes all the customizations that can be applied
to the decoding algorithm for a given polar code such as

variants of the decoding algorithm, data quantization, list
size L, tree pruning strategy. These customizations are not
enforced by a standard. The flexibility gives some degrees
of freedom to the decoder in order to find the best tradeoff
between decoding performance, throughput or latency for a
given polar code.

3.1 Genericity

In the context of wireless communications, the standards
enforce several different code lengths N that have to be
supported to share bandwidth between different users. This
is also the case for the code rate R that needs to be adapted
to the quality of the transmission channel. Therefore, a
practical implementation should be adapted to both N and
R in real-time in order to limit latency.

A polar code is completely defined by N and the frozen
bits set uAc . Several methods exist to generate some ”good”
sets of frozen bits [13, 14]. The code rate R depends on
the size of uAc . In their original form, polar code lengths
are only powers of two. The puncturing and shortening
techniques in [23–25] enable to construct polar codes
of any length at the cost of slightly degraded decoding
performance. The coding scheme can be completed with the
specification of a CRC.

In [10], the unrolling method is used: a specific
description of the decoder has to be generated for a specific
polar code parameter set of N , K , R, frozen bits set,
puncturing pattern, CRC. This approach leads to very fast
software decoders at the price of the genericity, since a new
source code should be generated and compiled every time
the modulation and coding scheme (MCS) changes. This
method is not adapted to wireless communication standards,
in which these parameters have to be adapted not only over
time, but also for the different users.

The proposed decoder does not use the unrolling method
and is completely generic regarding the code dimension K ,
the code lengthN , the frozen bits set uAc and the puncturing
patterns. All of them are dynamic parameters of the decoder
and can be defined in input files. All CRC listed in [26]
are available along with the possibility to define others. It is
shown in [27] that custom CRCs for polar codes can have a
significant impact on the decoding performance.

Relying on an unique software description implies that
the tree pruning technique also has to be dynamically
defined. Indeed, this technique depends on the frozen bits
set uAc . Not sacrificing throughput or latency, while main-
taining the genericity imposed by wireless communication
standards, is at the core of the proposed implementation.
Flexibility in terms of decoding algorithms, described in the
following, along with improvements presented in Section 4,
is necessary to deal with this challenge.

942 J Sign Process Syst (2019) 91:937–952

3.2 Flexibility

On one hand, the reason for the decoder genericity is the
compliance to the telecommunication standards. On the
other hand, the flexibility of the decoder regroups several
algorithmic variations that are discussed in the following.
These variations allow several tradeoffs of multiple sorts,
irrespective of the standard. They are all included in a single
source code.

In the proposed decoders the following parameters can be
changed dynamically without re-compilation: the list sizeL,
the tree pruning strategy, the quantization of the LLRs and
the different SCL variants. Each of these adjustments can
be applied to obtain different tradeoffs between throughput,
latency, and error rate performance. As a consequence,
one can easily fine-tune the configuration of the software
decoder for any given polar code.

3.2.1 List Size

As mentioned earlier, the list size L impacts both speed
and decoding performance. In Fig. 3, the information
throughput as well as BER and FER performances of the
CA-SSCL algorithm are shown for different L values. A
(2048,1024) polar code with a 32-bit CRC is considered.
The computational complexity increases linearly with L:
the throughput is approximately halved when L is doubled,
except for the case of the SC algorithm (L = 1)
which is much faster. Indeed, there is no overhead due
to the management of different candidate paths during the
decoding. For L ≥ 4 and Eb/N0 = 2, the FER is also
approximately halved when the list size L is doubled.

Figure 3 Tradeoffs between CA-SSCL decoding and throughput
performances depending on L. R = 0.5, and 32-bit CRC (GZip). For
L = 1, the SSC decoder is used with a (2048,1024) polar code.

Figure 4 Dedicated nodes impact, CA-SSCL. N = 2048 and L = 32.

3.2.2 Tree Pruning Strategy

A second degree of flexibility is the customization of
the SCL tree pruning. The authors in [10, 18] defined
dedicated nodes to prune the decoding tree and therefore
to reduce the computational complexity. In the proposed
decoders, each dedicated node can be activated separately.
The ability to activate dedicated nodes at will is useful in
order to explore the contribution of each node type on the
throughput. Figure 4 shows the impact of the different tree
pruning optimizations on the CA-SSCL decoder throughput
depending on the code rate. The performance improvements
are cumulative. Coded throughput, in which the redundant
bits are taken in account, is shown instead of information
throughput, for which only information bits are considered
in order to illustrate the computational effort without the
influence of the fact that higher codes rates involve higher
information throughput.

The coded throughput of the original unpruned algorithm
(ref), decreases as the code rate increases. Indeed, frozen
bit leaf nodes are faster to process than information bit leaf
nodes, in which a threshold detection is necessary. As there
are more R0 and REP nodes in low code rates, their pruning
is more efficient in the case of low code rates. The same
explanation can be given for R1 nodes in high code rates.
R1 node pruning is more efficient than R0 node pruning on
average. Indeed, a higher amount of computations is saved
in R1 nodes than in R0 nodes.

It has also been observed in [10] that when the SPC node
size is not limited to 4, the decoding performance may be
degraded. Consequently the size is limited to 4 in SPC4. In
SPC4+ nodes, there is no size limit. The two node types are
considered in Fig. 4. Therefore, the depth at which dedicated

J Sign Process Syst (2019) 91:937–952 943

nodes are activated in the proposed decoder can be adjusted,
in order to offer a tradeoff between throughput and decoding
performance.

According to our experiments, the aforementioned
statement about performance degradation caused by SPC4+
nodes is not always accurate depending on the code and
decoder parameters. The impact of switching on or off
SPC4+ nodes on decoding performance and throughput
at a FER of 10−5 is detailed in Fig. 5. It shows that
SPC4+ nodes have only a small effect on the decoding
performance. With L = 8, an SNR degradation lower than
0.1 dB is observed, except for one particular configuration.
Throughput improvements of 8 to 23 percents are observed.
If L = 32, the SNR losses are more substantial (up to 0.5
dB), whereas throughput improvements are approximately
the same. Besides this observation, Fig. 5 shows how the
proposed decoder flexibility in the AFF3CT environment
enables to optimize easily the decoder tree pruning, both for
software implementations or for hardware implementations
in which tree pruning can also be applied [28].

3.2.3 LLR Quantization

Another important parameter in both software and hard-
ware implementations is the quantization of data in the
decoder. More specifically, the quantization of LLRs and
partial sums in the decoder have an impact on decoding per-
formance. Quantized implementations of the SC algorithm
have already been proposed in [29] but to the best of our
knowledge, the proposed decoder is the first software SCL
implementation that can benefit from the 8-bit and 16-bit
fixed-point representations of LLRs and internal path met-
rics. In the 8-bit mode LLRs and path metrics are saturated
between −127 and +127 after each operation. Moreover, to
avoid overflows, the path metrics are normalized after each
update paths() call (cf. Alg. 1) by subtracting the small-
est metric to each one of them. Figure 6a shows the BER

Figure 5 Effects of using the SPC4+ nodes on the CA-SSCL @ 10−5

FER compared to a reference where they are not used.

and FER performances of the CA-SSCL decoder for 32-bit
floating-point, 16-bit and 8-bit fixed-point representations.
One can observe that the REP nodes degrade the decoding
performance in a 8-bit representation because of accumu-
lation (red triangles curve). Indeed, it is necessary to add
all the LLRs of a REP node together in order to process it,
which may lead to an overflow in the case of fixed-point
representation. It can happen when the size of the repetition
nodes is not limited (REP2+). However, the size limitation
of the repetition nodes to 8 (REP8-) fixes this issue. In
Table 2, maximum latency (Lworst in μs), average latency
(Lavg in μs) and information throughput (Ti in Mb/s) are
given. Note that in 8-bit configuration only the REP8- nodes
are used. The fixed-point implementation reduces, on aver-
age, the latency. In the high SNR region, the frame errors are
less frequent. Therefore, the SCL algorithm is less neces-
sary than in low SNR regions for Adaptive SCL algorithms.
As the gain of fixed-point implementation benefits more to
the SC algorithm than to the SCL algorithm, the through-
put is higher in high SNR regions. For instance, up to 425.9
Mb/s is achieved in 8-bit representation with the FA-SSCL
decoder. Note that the improvements described in Section 4
are applied to the decoders that are given in Table 2.

3.2.4 Supporting Different Variants of the Decoding
Algorithms

Besides the L values, the tree pruning and quantization
aspects, the proposed software polar decoder supports
different variants of the SCL algorithm: CA-SSCL, PA-
SSCL, FA-SSCL.

As shown in [10], the adaptive version of the SCL
algorithm yields significant speedups, specially for high
SNR. The original adaptive SCL described in [19], denoted

Figure 6 Decoding performance of the SSCL and the A-SSCL
decoders. Code (2048,1723), L = 32.

944 J Sign Process Syst (2019) 91:937–952

Table 2 Throughput and
latency comparisons between
floating-point (32-bit) and
fixed-point (16-bit and 8-bit)
Adaptive SSCL decoders.

Decoder Prec. Lworst 3.5 dB 4.0 dB 4.5 dB

Lavg Ti Lavg Ti Lavg Ti

PA-SSCL 32-bit 635 232.3 7.6 41.7 42.1 7.4 237.6

16-bit 622 219.6 8.0 40.1 43.8 6.6 267.5

8-bit 651 232.4 7.6 41.2 42.6 6.5 268.3

FA-SSCL 32-bit 1201 67.2 26.1 8.5 207.8 5.1 345.5

16-bit 1198 68.7 25.6 7.7 225.7 4.3 408.7

8-bit 1259 71.8 24.4 7.7 227.3 4.1 425.9

Code (2048,1723), L = 32 and 32-bit CRC (Gzip)

as Fully Adaptive SCL (FA-SSCL) in this paper, gradually
doubles the list depth L of the SCL decoder when the
CRC is not valid for any of the generated codewords
at a given stage until the value Lmax . By contrast, the
adaptive decoding algorithm implemented in [10], called
in this paper Partially Adaptive SCL (PA-SSCL), directly
increases the list depth from 1 (SC) to Lmax . In Fig. 7, the
two versions (FA-SSCL and PA-SSCL) are compared on a
(2048,1723) polar code and 32-bit CRC (GZip). The LLRs
values are based on a 32-bit floating point representation.
Note that as the FER performance of PA-SSCL and FA-
SSCL are exactly the same, the related error performance
plots completely overlap. The throughput of the FA-SSCL
algorithm is higher than that of the PA-SSCL algorithm
for some SNR values, depending on the code parameters.
Considering typical FER values for wireless communication
standards (10−3 to 10−5), in the case of a (2048,1723)
polar code, the throughput of FA-SSCL is double that of
PA-SSCL with L = 8, while it is multiplied by a factor
of 7 with L = 32. The drawback of FA-SSCL is that
although the average latency decreases, the worst case
latency increases.

The adaptive versions of the algorithm achieve better
throughputs, but CA-SCL may also be chosen depending
on the CRC. One may observe in Fig. 6b that an adaptive
decoder dedicated to an 8-bit CRC with a (2048,1723) polar
code and L = 32 leads to a loss of 0.5 dB for a FER of 10−5

compared to its non adaptive counterpart.
Both polar code genericity and decoding algorithm flex-

ibility are helpful to support the recommendations of
wireless communications in an SDR or cloud RAN con-
text. The code and decoder parameters can be dynami-
cally changed in the proposed decoder, while maintain-
ing competitive throughput and latency. The following
section introduces algorithmic and implementation-related
improvements applied in the proposed decoders to keep a
low decoding time.

4 Software Implementation Optimizations

The genericity and flexibility of the formerly described
decoder prevent from using some optimizations. Unrolling
the description as in [10] is not possible at runtime, although
code generation could be used to produce an unrolled
version of any decoder as in [30]. Moreover, in the case
of large code lengths, the unrolling strategy can generate
very large compiled binary files. This can cause instruction
cache misses that would dramatically impact the decoder
throughput. By contrast, the size of the executable files
of the proposed decoder is constant with respect to the
code parameters (N, L, K). In the experiments reported
in this paper, code size was not a significant issue as the
number of cycles lost to cache misses is less than 0.01%
of the total number of cycles. Still, some implementation
improvements are necessary in order to be competitive with
specific unrolled decoders of the literature. The software
library for polar codes from [30, 31] enables the proposed

Figure 7 Frame Error Rate (FER) performance and throughput of the
FA-SSCL and PA-SSCL decoders. Code (2048,1723) and 32-bit CRC
(GZip). 32-bit floating-point representation.

J Sign Process Syst (2019) 91:937–952 945

decoders to benefit from the SIMD instructions for various
target architectures. Optimizations of CRC checking benefit
to both the non-adaptive and adaptive versions of the CA-
SCL algorithms. The new sorting technique presented in
Section 4.3 can be applied to each variation of the SCL
algorithm. Finally, an efficient implementation of the partial
sums memory management is proposed. It is particularly
effective for short polar codes.

4.1 Polar Application Programming Interface

Reducing the decoding time with SIMD instructions is
a classical technique in former software polar decoder
implementations. The proposed list decoders are based on
specific building blocks included from the Polar API [30,
31]. These blocks are fast and optimized implementations
of the f , g, h (and their variants) polar intrinsic
functions. Figure 8 details the SIMD implementation of
these functions. This implementation is based on MIPP
[32], a SIMD wrapper for the intrinsic functions, and
the template meta-programming technique. Consequently,
the description is clear, portable, multi-format (32-bit
floating-point, 16-bit and 8-bit fixed-points) and as fast as
an architecture specific code. The mipp::Reg and
mipp::Reg<R> types correspond to SIMD registers. B
and R define the type of the elements that are contained in
this register. B for bit could be int, short or char. R
for real could be float, short or char. In Fig. 8, each
operation is made onmultiple elements at the same time. For

Figure 8 C++ SIMD implementation of the f , g and h functions.

instance, line 22, the addition between all the elements of
the neg la and lb registers is executed in one CPU cycle.

In the context of software decoders, there are two well-
known strategies to exploit SIMD instructions: use the
elements of a register to compute 1) many frames in parallel
(INTER frame) or 2) multiple elements from a single frame
(INTRA frame). In this paper, only the INTRA frame
strategy is considered. The advantage of this strategy is
the latency reduction by comparison to the INTER frame
strategy. However, due to the nature of the polar codes,
there are sometimes not enough elements to fill the SIMD
registers completely. This is especially true in the nodes near
the leaves. For this reason, SIMD instructions in the lower
layers of the tree do not bring any speedup. In this context,
the building blocks of the Polar API automatically switch
from SIMD to sequential implementations. In the case of the
CA-SSCL algorithm, using SIMD instructions for decoding
a (2048,1723) polar code leads to an improvement of 20%
of the decoding throughput on average for different values
of the list depth L.

4.2 Improving Cyclic Redundancy Checking

By profiling the Adaptive SCL decoder, one may observe
that a significant amount of time is spent to process the
cyclic redundancy checks. Its computational complexity
is O(LN) versus the computational complexity of the
SCL decoding, O(LN logN). The first is not negligible
compared to the second.

In the adaptive decoder, the CRC verification is
performed a first time after the SC decoding. In the
following, we show how to reduce the computational
complexity of these CRC verifications.

First, an efficient CRC checking code has been
implemented. Whenever the decoder needs to check the
CRC, the bits are packed and then computed 32 by 32. In
order to further speed up the implementation, a lookup table
is used to store pre-computed CRC sub-sequences, and thus
reading CRC values directly from this table reduces the
computational complexity. The size of the lookup table is
1 KB.

After a regular SC decoding, a decision vector of size
N is produced. Then, the K information bits must be
extracted to apply cyclic redundancy check. The profiling
of our decoder description shows that this extraction takes a
significant amount of time compared to the check operation
itself. Consequently, a specific extraction function was
implemented. This function takes advantage of the leaf node
type knowledge to perform efficient multi-element copies.

Concerning SCL decoding, it is possible to sort the
candidates according to their respective metrics and then to
check the CRC of each candidate from the best to the worst.
Once a candidate with a valid CRC is found, it is chosen

946 J Sign Process Syst (2019) 91:937–952

as the decision. This method is strictly equivalent to do
the cyclic redundancy check of each candidate and then to
select the one with the best metric. With the adopted order,
decoding time is saved by reducing the average number of
checked candidates.

4.3 LLR andMetric Sorting

Metric sorting is involved in the aforementioned path
selection step, but also in the update paths() sub-routine
(Alg. 1, l.16) and consequently in each leaf. Sorting the
LLRs is also necessary in R1 and SPC nodes. Because of a
lack of information about the sorting technique presented in
[10], its reproduction is not possible. In the following of the
paragraph the sorting algorithm used in the SCL decoder is
described.

In R1 nodes, a Chase-2 [33] algorithm is applied.
The two minimum absolute values of the LLRs have to
be identified. The way to do the minimum number of
comparisons to identify the 2 smallest (or the two largest)
of n ≥ 2 elements was originally described by Schreier in
[12] and reported in [34]. The lower stages of this algorithm
can be parallelized thanks to SIMD instructions in the
way described in [35]. According to our experimentations,
Schreier’s algorithm is the most efficient compared to
parallelized Batcher’s merge exchange, partial quick-sort or
heap-sort implemented in the C++ standard library in the
case of R1 nodes.

Concerning path metrics, partial quick-sort appeared to
yield no gains in terms of throughput by comparison with
the algorithm in [12], neither did heap-sort or parallelized
Batcher’s merge exchange. For a matter of consistency, only
Schreier’s algorithm is used in the proposed decoder, for
both LLR sorting in R1 and SPC nodes and for path metrics
sorting. The sorting of path metrics is applied to choose the
paths to be removed, kept or duplicated.

4.4 Partial SumMemoryManagement

An SCL decoder can be seen as L replications of an SC
decoder. The first possible memory layout is the one given
in Fig. 1. In this layout, the partial sums ŝ of each node
is stored in a dedicated array. Therefore, a memory of size
2N − 1 bits is necessary in the SC decoder, or L(2N − 1)
bits in the SCL decoder. This memory layout is described in
[2] and applied in previous software implementations [10,
11, 36].

A possible improvement is to change the memory layout
to reduce its footprint. Due to the order of operations in
both SC and SCL algorithms, the partial sums on a given
layer are only used once by the h function and can then
be overwritten. Thus, a dedicated memory allocation is not
necessary at each layer of the tree. The memory can be

shared between the stages. Therefore the memory footprint
can be reduced from 2N − 1 to N in the SC decoder as
shown in [37]. A reduction from L(2N − 1) to LN can be
obtained in the SCL decoder.

In the case of the SCL algorithm, L paths have to
be assigned to L partial sum memory arrays. In [2], this
assignment is made with pointers. The advantage of pointers
is that when a path is duplicated, in the update paths()
sub-routine of Alg. 1, the partial sums are not copied.
Actually, they can be shared between paths thanks to
the use of pointers. This method limits the number of
memory transactions. Unfortunately, it is not possible to
take advantage of the memory space reduction: the partial
sums have to be stored on L(2N − 1) bits. There is an
alternative to this mechanism. If a logical path is statically
assigned to a memory array, no pointers are necessary at
the cost that partial sums must be copied when a path is
duplicated (only LN bits are required). This method is
called SSCLcpy whereas the former is called SSCLptr.

Our experiments have proved that the overhead of
handling pointers plus the extra memory space requirement
cause the SSCLcpy to be more efficient than the SSCLptr

for short and medium code lengths, as shown in Fig. 9. The
32-bit version uses floating-point LLRs, whereas 16-bit and
8-bit versions are in fixed-point. Notice that in this work,
each bit of the partial sums is stored on an 8-bit, 16-bit or 32-
bit number accordingly to the LLR data type. The code rate
R is equal to 1/2. The throughput of the SSCLcpy version
is higher for N ≤ 8192 whereas the SSCLptr version is
more efficient for higher values of N . Although it does
not appear in Fig. 9, experiments showed that the lower L

is, the more efficient SSCLcpy is compared to SSCLptr.
Figure 9 also illustrates the impact of the representation
of partial sums. For very high values of N , 8-bit fixed
point representation takes advantage of fewer cache misses.
According to the results presented in Fig. 2, as the decoding
performance improvements of the SCL algorithm are not

Figure 9 Information throughput of the SSCL decoder depending on
N and the partial sums management. R = 1/2, L = 8.

J Sign Process Syst (2019) 91:937–952 947

very significant compared to the SC algorithm for long polar
codes, SSCLcpy is the appropriate solution in most practical
cases.

In our decoder description, LLRs are managed with
pointers, as it is the case in other software implementations
of the literature [10, 11, 36]. We tried to remove the pointer
handling as for the partial sums, but it appeared that it was
not beneficial in any use case.

4.5 Memory Footprint

The exact memory footprint of the decoders is hard to
obtain as there are many small buffers related to the
implementation. However, the memory footprint is mainly
driven by the LLRs (λ) and the partial sums (ŝ) as they
linearly depend on LN . The buffers related to the path
metrics can be neglected as they linearly depend on L.
The memory footprint of the CRC is also negligible as the
only requirement is a lookup table of 256 integers. Table 3
summarizes the memory footprint estimation of the various
decoders. Q stands for the size of the element (1, 2 or
4 bytes). The channel LLRs are taken into account in the
approximation. As explained in the previous section, the
SSCLptr version of the code requires twice the amount of
data for the partial sums. Notice that the memory footprint
of the adaptive decoders is slightly higher than the other
SCL since it includes an additional SC decoder.

5 Experiments andMeasurements

Throughput and latency measurements are detailed in
this section. The proposed decoder implementation is
compared with the previous software decoders. Despite the
additional levels of genericity and flexibility, the proposed
implementation is very competitive with its counterparts.
Note that all the results presented in the following can be
reproduced with the AFF3CT tool.

During our investigations, all the throughput and latency
measurements have been obtained on a single core of
an Intel i5-6600K CPU (Skylake architecture with AVX2
SIMD) with a base clock frequency of 3.6 GHz and a
maximum turbo frequency of 3.9 GHz. The description
has been compiled on Linux with the C++ GNU compiler

Table 3 Polar decoders data memory footprint (in bytes).

Algorithms Memory Footprint

(CA-)SSCLcpy O((2L + 1)NQ)

(CA-)SSCLptr O((3L + 1)NQ)

A-SSCLcpy O((2L + 3)NQ)

A-SSCLptr O((3L + 3)NQ)

(version 5.4.0) and with the following options: -Ofast
-march=native -funroll-loops.

5.1 Fully Adaptive SCL

Being able to easily change the list size of the SCL decoders
enables the use of the FA-SSCL algorithm. With an unrolled
decoder as proposed in [10], the fully adaptive decoder
would imply to generate a fully unrolled decoder for each
value of the list depth. In our work, only one source code
gives the designer the possibility to run each variation of
the SCL decoders. Using the FA-SSCL algorithm is the
key to achieve the highest possible throughput. As shown
in Table 2, with an 8-bit fixed point representation of the
decoder inner values, the achieved throughput in the case
of the (2048,1723) polar code is about 425 Mb/s on the i5-
6600K for an Eb/N0 value of 4.5 dB. It corresponds to a
FER of 5 × 10−8. This throughput is almost 2 times higher
than the throughput of the PA-SSCL algorithm. The highest
throughput increase from PA-SSCL to FA-SSCL, of about
380%, is in the domain where the FER is between 10−3 and
10−5. It is the targeted domain for wireless communications
like LTE or 5G. In these conditions, the throughput of FA-
SSCL algorithm is about 227 Mb/s compared to 42 Mb/s for
the PA-SSCL algorithm.

In Adaptive SCL algorithms, the worst case latency is the
sum of the latency of each triggered algorithm. In the case of
PA-SSCL with Lmax = 32, it is just the sum of the latency
of the SC algorithm, plus the latency of the SCL algorithm
with L = 32. In the case of the FA-SSCL algorithm, it is
the sum of the decoding latency of the SC algorithm and
all the decoding latencies of the SCL algorithm for L =
2, 4, 8, 16, 32. This is the reason why the worst latency of
the PA-SSCL algorithm is lower while the average latency
and consequently the average throughput is better with the
FA-SSCL algorithm.

5.2 Comparison with State-of-the-Art SCL Decoders

The throughput and latency of the proposed decoder
compared to other reported implementations are detailed
in Table 4. For all the decoders, all the available tree
pruning optimizations are applied excluding the SPC4+
nodes because of the error performance degradation they
induce. Each decoder is based on a 32-bit floating-point
representation. The polar code parameters are N = 2048,
K = 1723 and the 32-bit GZip CRC is used. The list size is
L = 32.

The latency given in Table 4 is the worst case latency
and the throughput is the average information throughput.
The first version, CA-SCL, is the implementation of the
CA-SCL algorithm without any tree pruning. As mentioned
before the throughput of the proposed CA-SSCL decoder

948 J Sign Process Syst (2019) 91:937–952

Table 4 Throughput and
latency comparison with
state-of-the-art SCL decoders.

Target Decoder Lworst (μs) Ti (Mb/s)

3.5 dB 4.0 dB 4.5 dB

i7-4790K CA-SCL [36] 1572 1.10 1.10 1.10

i7-2600 CA-SCL [11] 23000 0.07 0.07 0.07

CA-SSCL[11] 3300 0.52 0.52 0.52

PA-SSCL [11] ≈ 3300 0.9 4.90 54.0

i7-2600 CA-SCL [10] 2294 0.76 0.76 0.76

CA-SSCL[10] 433 4.0 4.0 4.0

PA-SSCL [10] ≈ 433 8.6 33.0 196.0

i7-2600 This CA-SCL 4819 0.37 0.37 0.37

This CA-SSCL 770 2.3 2.3 2.3

This PA-SSCL 847 5.5 31.1 168.4

This FA-SSCL 1602 19.4 149.0 244.3

i5-6600K This CA-SCL 3635 0.48 0.48 0.48

This CA-SSCL 577 3.0 3.0 3.0

This PA-SSCL 635 7.6 42.1 237.6

This FA-SSCL 1201 26.1 207.8 345.5

32-bit floating-point representation. Code (2048,1723), L = 32, 32-bit CRC

(2.3 Mb/s) is only halved compared to the specific unrolled
CA-SSCL decoder described in [10] (4.0 Mb/s). The
proposed CA-SSCL decoder is approximately 4 times faster
than the generic implementation in [11] (0.52 Mb/s) and
2 times faster than the CA-SCL implementation in [36]
(1.1 Mb/s) thanks to the implementation improvements
detailed in Section 4. Furthermore, the proposed decoder
exhibits a much deeper level of genericity and flexibility
than the ones proposed in [11, 36]. Indeed, in these
previous works, the following features were not enabled: the
customization of the tree pruning, the 8-bit and 16-bit fixed-
point representations of the LLRs, the puncturing patterns
and the FA-SSCL algorithm.

When implemented on the same target (i7-2600), the
proposed PA-SSCL is competitive with the unrolled PA-
SSCL in [10], being only two times slower. This can be
explained by the improvements concerning the CRC that
are described in Section 4.2, especially the information bits
extraction in the SC decoder. Finally, as mentioned before,
the throughput of the proposed FA-SSCL significantly
outperforms all the other SCL decoders (up to 345.5 Mb/s
at 4.5 dB in 32-bit floating-point).

6 Conclusion

The trend towards Cloud RAN networks in the context
of mobile communications and the upcoming 5G standard

motivated an investigation of the possibility of implement-
ing generic and flexible software polar decoders. Means of
implementing such flexible decoders are reported in this
paper. A single source code is necessary to address any code
lengths, code rates, frozen bits sets, puncturing patterns and
cyclic redundancy check polynomials.

This genericity is obtained without sacrificing the
throughput of the decoders, thanks to the possibility
to adjust the decoding algorithm and the possibility to
apply multiple implementation related and algorithmic
optimizations. In fact, to the best of our knowledge, the
proposed adaptive SCL decoder is the fastest to be found
in the literature, with a throughput of 425 Mb/s on a single
core for N = 2048 and K = 1723 at 4.5 dB.

The reported decoder being included in the open-source
AFF3CT tool, all the results presented in this paper can
be easily reproduced. Moreover, this tool can be used
for polar codes exploration, which is of interest for the
definition of digital communication standards and for
practical implementations in an SDR environment.

Acknowledgements The authors would like to thank the Natural
Sciences and Engineering Research Council of Canada, Prompt, and
Huawei Technologies Canada Co. Ltd. for financial support to this
project. This work was also supported by a grant overseen by the
French National Research Agency (ANR), ANR-15-CE25-0006-01.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

J Sign Process Syst (2019) 91:937–952 949

References

1. Arikan, E. (2009). Channel polarization: a method for constructing
capacity-achieving codes for symmetric binary-input memoryless
channels. IEEE Transactions on Information Theory (TIT), 55(7),
3051–3073.

2. Tal, I., & Vardy, A. (2011). List decoding of polar codes. In
Proceedings of the IEEE International Symposium on Information
Theory (ISIT) (pp. 1–5).

3. “3GPP TSG RANWG1 meeting #87, Chairman’s notes of agenda
item 7.1.5 Channel coding and modulation,” 2016.

4. Wübben, D., Rost, P., Bartelt, J.S., Lalam, M., Savin, V.,
Gorgoglione, M., Dekorsy, A., Fettweis, G. (2014). Benefits
and impact of cloud computing on 5G signal processing:
flexible centralization through cloud-ran. IEEE Signal Processing
Magazine, 31(6), 35–44.

5. Rost, P., Bernardos, C.J., De Domenico, A., Di Girolamo,
M., Lalam, M., Maeder, A., Sabella, D., Wübben, D. (2014).
Cloud technologies for flexible 5G radio access networks. IEEE
Communications Magazine, 52(5), 68–76.

6. Ericsson (2015). Cloud ran - the benefits of cirtualization, cen-
tralisation and coordination, Tech. Rep. [Online]. Available:
https://www.ericsson.com/assets/local/publications/white-papers/
wp-cloud-ran.pdf.

7. Huawei (2013). 5G: A technology vision, Tech. Rep.
[Online]. Available: https://www.huawei.com/ilink/en/download/
HW 314849.

8. Rodriguez, V.Q., & Guillemin, F. (2017). Towards the deployment
of a fully centralized cloud-ran architecture. In Proceedings of
the IEEE International Wireless Communications and Mobile
Computing Conference (IWCMC) (pp. 1055–1060).

9. Nikaein, N. (2015). Processing radio access network functions in
the cloud: critical issues and modeling. In Proceedings of the ACM
International Workshop on Mobile Cloud Computing and Services
(MCS) (pp. 36–43).

10. Sarkis, G., Giard, P., Vardy, A., Thibeault, C., Gross, W.J. (2016).
Fast list decoders for polar codes. IEEE Journal on Selected Areas
in Communications (JSAC), 34(2), 318–328.

11. Sarkis, G., Giard, P., Vardy, A., Thibeault, C., Gross, W.J. (2014).
Increasing the speed of polar list decoders. In Proceedings of
the IEEE International Workshop on Signal Processing Systems
(SiPS) (pp. 1–6).

12. Schreier, J. (1932). On tournament elimination systems. Mathesis
Polska, 7, 154–160.

13. Tal, I., & Vardy, A. (2013). How to construct polar codes. IEEE
Transactions on Information Theory (TIT), 59(10), 6562–6582.

14. Trifonov, P. (2012). Efficient design and decoding of polar codes.
IEEE Transactions on Communications, 60(11), 3221–3227.

15. Le Gal, B., Leroux, C., Jego, C. (2015). Multi-Gb/s software
decoding of polar codes. IEEE Transactions on Signal Processing
(TSP), 63(2), 349–359.

16. Sarkis, G., Giard, P., Vardy, A., Thibeault, C., Gross, W.J. (2014).
Fast polar decoders: algorithm and implementation. IEEE Journal
on Selected Areas in Communications (JSAC), 32(5), 946–
957.

17. Balatsoukas-Stimming, A., Parizi, M.B., Burg, A. (2015). LLR-
Based successive cancellation list decoding of polar codes. IEEE
Transactions on Signal Processing (TSP), 63(19), 5165–5179.

18. Alamdar-Yazdi, A., & Kschischang, F. (2011). A simplified
successive-cancellation decoder for polar codes. IEEE Communi-
cations Letters, 15(12), 1378–1380.

19. Li, B., Shen, H., Tse, D. (2012). An adaptive successive
cancellation list decoder for polar codes with cyclic redundancy
check. IEEE Communications Letters, 16(12), 2044–2047.

20. Matsumoto, M., & Nishimura, T. (1998). Mersenne twister:
a 623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 8(1), 3–30.

21. Box, G.E.P., Muller, M.E., et al. (1958). A note on the generation
of random normal deviates. The Annals of Mathematical Statistics,
29(2), 610–611.

22. Dahlman, E., Parkvall, S., Skold, J. (2013). 4G: LTE/LTE-
advanced for mobile broadband. New York: Academic Press.

23. Wang, R., & Liu, R. (2014). A novel puncturing scheme for polar
codes. IEEE Communications Letters, 18(12), 2081–2084.

24. Niu, K., Chen, K., Lin, J.R. (2013). Beyond turbo codes: rate-
compatible punctured polar codes. In Proceedings of the IEEE
International Conference on Communications (ICC) (pp. 3423–
3427).

25. Miloslavskaya, V. (2015). Shortened polar codes. IEEE Transac-
tions on Information Theory (TIT), 61(9), 4852–4865.

26. “Cyclic redundancy check,” https://en.wikipedia.org/wiki/Cyclic
redundancy check, accessed: 2017-03-13.

27. Zhang, Q., Liu, A., Pan, X., Pan, K. (2017). CRC Code design for
list decoding of polar codes. IEEE Communications Letters, 21(6),
1229–1232.

28. Lin, J., Xiong, C., Yan, Z. (2014). A reduced latency list
decoding algorithm for polar codes. In Proceedings of the IEEE
International Workshop on Signal Processing Systems (SiPS)
(pp. 1–6).

29. Giard, P., Sarkis, G., Leroux, C., Thibeault, C., Gross, W.J. (2016).
Low-latency software polar decoders. Springer Journal of Signal
Processing Systems (JSPS), 90, 31–53.

30. Cassagne, A., Le Gal, B., Leroux, C., Aumage, O., Barthou, D.
(2015). An efficient, portable and generic library for successive
cancellation decoding of polar codes. In Proceedings of the
Springer International Workshop on Languages and Compilers for
Parallel Computing (LCPC) (pp. 303–317).

31. Cassagne, A., Aumage, O., Leroux, C., Barthou, D., Le Gal, B.
(2016). Energy consumption analysis of software polar decoders
on low power processors. In Proceedings of the IEEE European
Signal Processing Conference (EUSIPCO) (pp. 642–646).

32. Cassagne, A., Aumage, O., Barthou, D., Leroux, C., Jégo, C.
(2018). MIPP: A portable c++ simd wrapper and its use for error
correction coding in 5G standard. In Proceedings of the 2018 4th
Workshop on Programming Models for SIMD/vector Processing:
ACM.

33. Chase, D. (1972). Class of algorithms for decoding block codes
with channel measurement information. IEEE Transactions on
Information Theory (TIT), 18(1), 170–182.

34. Knuth, D. (1973). The art of computer programming. Reading:
Addison-Wesley. no. 3.

35. Furtak, T., Amaral, J.N., Niewiadomski, R. (2007). Using SIMD
registers and instructions to enable instruction-level parallelism
in sorting algorithms. In Proceedings of the ACM Symposium on
Parallel Algorithms and Architectures (pp. 348–357).

36. Shen, Y., Zhang, C., Yang, J., Zhang, S., You, X. (2016). Low-
latency software successive cancellation list polar decoder using
stage-located copy. In Proceedings of the IEEE International
Conference on Digital Signal Processing (DSP).

37. Leroux, C., Raymond, A.J., Sarkis, G., Gross, W.J. (2013). A
semi-parallel successive-cancellation decoder for polar codes.
IEEE Transactions on Signal Processing (TSP), 61(2), 289–299.

https://www.ericsson.com/assets/local/publications/white-papers/wp-cloud-ran.pdf
https://www.ericsson.com/assets/local/publications/white-papers/wp-cloud-ran.pdf
https://www.huawei.com/ilink/en/download/HW_314849
https://www.huawei.com/ilink/en/download/HW_314849
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/Cyclic_redundancy_check

950 J Sign Process Syst (2019) 91:937–952

Mathieu Léonardon received
the M.Sc. degree from Bor-
deaux INP, Bordeaux, France,
in 2015. He received the Ph.D.
in electronics engineering from
PolytechniqueMontréal, Cana-
da, and from the University of
Bordeaux, France, in 2018. His
research is focused on error-
correcting codes, flexible hard-
ware architectures, and soft-
ware implementations of sig-
nal processing algorithms.

Adrien Cassagne received
the M.Sc. degree in computer
science from the University
of Bordeaux, France, in 2013.
He is currently working toward
the Ph.D. degree at the Univer-
sity of Bordeaux. His research
interests are in the design of
efficient and flexible software
implementations for modern
decoding error-correcting codes
such as LDPC, turbo and polar
codes. More precisely, he looks
at different aspects of paralle-
lism such as multi-node, multi-
threading or vectorization.

Camille Leroux received his
M.Sc. degree in Electronics
Engineering from the Univer-
sity of South Brittany, Lori-
ent, France, in 2005. He
received his Ph.D. degree in
Electronics Engineering from
TELECOM Bretagne, Brest,
France, in 2008. From 2008
to 2011 he worked as a Post
Doctoral Research Associate
in the Electrical and Com-
puter Engineering Department
at McGill University, Mon-
treal, QC, Canada. He is an
Associate Professor at Bor-

deaux INP since 2011. He was also a visiting student in the Electrical
and Computer Engineering Department at Aalborg University, Dane-
mark, in 2004 and at University of Alberta, AB, Canada, in 2005.
His research interests encompass algorithmic and architectural aspects
of channel decoder implementation. More generally, he is interested
in the hardware and software implementation of computationally
intensive algorithms in a real-time environment.

Christophe Jégo was born in
Auray, France, in 1973. He
received the M.S. and Ph.D.
degrees from the Université
Rennes 1, Rennes, France, in
1996 and 2000, respectively.
He joined the Electronic Engi-
neering Department of TELE-
COM Bretagne, Brest, France,
as a full-Time Associate Pro-
fessor in 2001. He was a vis-
iting professor in the Depart-
ment of Electrical and Com-
puter Engineering at McGill
University, Montreal, Quebec,
Canada, during 10 months

(Sept. 2006-June 2007). In 2009, he received Research Habilitation
from University of Bretagne Sud, Lorient, France. It is the highest
French university diploma passed after a few years of active research
and student supervision. He joined the graduate engineering school
ENSEIRB-MATMECA, Bordeaux, France, as a full-Time Professor
in 2010. Currently, he is member of the CNRS IMS laboratory, UMR
5218. His research activities are concerned with analysis and design
of architectures for iterative processing in the digital communication
systems.

Louis-Philippe Hamelin re-
ceived his B.Eng. degree in
computer engineering from
McGill University, Montreal,
Canada, in 1999. Between 2000
and2013, he worked as an ASIC
design engineer/lead focusing
on design and implementa-
tion of chipsets targeting vari-
ous telecommunication proto-
cols and applications. In 2013,
he joined Huawei Technolo-
gies as an ASIC researcher
for 5G wireless applications.
His work interest focuses on
efficient algorithm implemen-

tation in hardware and low power design. As a technical expert on
Polar Decoder architectures and implementations, he participated in
3GPP discussions and contributed to the adoption of the Polar code for
5G/NR Uplink/Downlink control channel for eMBB.

J Sign Process Syst (2019) 91:937–952 951

Yvon Savaria (S’77–M’86–
SM’97–F’08) received the
B.Ing. and M.Sc.A. degrees in
electrical engineering from Po-
lytechnique Montréal, Canada,
in 1980 and 1982, respec-
tively. He received the Ph.D.
in electrical engineering in
1985 from McGill University,
Canada.

Since 1985, he has been
with Polytechnique Montréal,
where he is currently Pro-
fessor. He has carried out
work in several areas related
to microelectronic circuits and

Microsystems such as testing, verification, validation, clocking meth-
ods, defect and fault tolerance, effects of radiation on electronics,
high-speed interconnects and circuit design techniques, CAD meth-
ods, reconfigurable computing and applications of microelectronics to
telecommunications, aerospace, image processing, video processing,
radar signal processing, and digital signal processing acceleration. He
is currently involved in several projects that relate to aircraft embedded
systems, green IT, wireless sensor network, virtual network, com-
putational efficiency and application specific architecture design. He
holds 16 patents, has published 140 journal papers and 440 confer-
ence papers, and was the thesis advisor of 150 graduate students who
completed their studies.

Dr. Savaria has been working as a consultant or was sponsored for
carrying research by Bombardier, CNRC, Design Workshop, Dolphin,
DREO, Genesis, Gennum, Hyperchip, ISR, LTRIM, Miranda,
MiroTech, Nortel, Octasic, PMC-Sierra, Technocap, Thales, Tundra
and VXP. He is a member of the Regroupement Stratégique en
Microélectronique du Québec (RESMIQ), of the Ordre des Ingénieurs
du Québec (OIQ), and was a member of CMC Microsystems board
since 1999 and chairman of that board from 2008 to 2010. He was
awarded in 2001 a Tier 1 Canada Research Chair (www.chairs.gc.ca)
on design and architectures of advanced microelectronic systems that
he held until 2014. He also received in 2006 a Synergy Award of the
Natural Sciences and Engineering Research Council of Canada.

www.chairs.gc.ca

952 J Sign Process Syst (2019) 91:937–952

Affiliations

Mathieu Léonardon1,2 · Adrien Cassagne1,3 · Camille Leroux1 · Christophe Jégo1 · Louis-Philippe Hamelin4 ·
Yvon Savaria2

Adrien Cassagne
adrien.cassagne@ims-bordeaux.fr

Camille Leroux
camille.leroux@ims-bordeaux.fr

Christophe Jégo
christophe.jego@ims-bordeaux.fr

Louis-Philippe Hamelin
louis.hamelin@huawei.com

Yvon Savaria
yvon.savaria@polymtl.ca

1 IMS Laboratory, UMR CNRS 5218, Bordeaux INP, University of
Bordeaux, Talence, France

2 Polytechnique Montréal, Montréal, QC, Canada
3 Inria, Bordeaux Institute of Technology, LaBRI/CNRS, Bordeaux,

France
4 Huawei Technologies Canada Co. LTD, Ottawa, ON, Canada

http://orcid.org/0000-0002-9973-843X
mailto: adrien.cassagne@ims-bordeaux.fr
mailto: camille.leroux@ims-bordeaux.fr
mailto: christophe.jego@ims-bordeaux.fr
mailto: louis.hamelin@huawei.com
mailto: yvon.savaria@polymtl.ca

	Fast and Flexible Software Polar List Decoders
	Abstract
	Introduction
	Polar Codes
	Polar Encoding Process
	Polar Decoding Algorithms
	SC Decoding Algorithm
	SCL Decoding Algorithm
	Simplified SC and SCL Decoding Algorithms
	CRC Concatenation Scheme
	Adaptive SCL Decoding Algorithm

	Algorithmic Comparison

	Generic and Flexible Polar Decoder
	Genericity
	Flexibility
	List Size
	Tree Pruning Strategy
	LLR Quantization
	Supporting Different Variants of the Decoding Algorithms

	Software Implementation Optimizations
	Polar Application Programming Interface
	Improving Cyclic Redundancy Checking
	LLR and Metric Sorting
	Partial Sum Memory Management
	Memory Footprint

	Experiments and Measurements
	Fully Adaptive SCL
	Comparison with State-of-the-Art SCL Decoders

	Conclusion
	Acknowledgements
	Publisher's Note
	References
	Affiliations

