
Journal of Signal Processing Systems (2019) 91:235–245
https://doi.org/10.1007/s11265-018-1395-2

GPUBlocks: GUI Programming Tool for CUDA and OpenCL

Yuan-Shin Hwang1 ·Hsih-Hsin Lin1 · Shen-Hung Pai1 · Chia-Heng Tu2

Received: 15 November 2016 / Revised: 5 February 2018 / Accepted: 9 July 2018 / Published online: 24 July 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Recent advances in general-purpose graphics processing units (GPGPUs) have resulted in massively parallel hardware that
is widely available to achieve high performance in desktop, notebook, and even mobile computer systems. While multicore
technology has become the norm of modern computers, programming such systems requires the understanding of underlying
hardware architecture and hence posts a great challenge for average programmers, who might be professionals in specific
domains, but not experts in parallel programming. This paper presents a GUI tool called GPUBlocks that can facilitate
parallel programming on multicore computer systems. GPUBlocks is developed based on the OpenBlocks framework, an
extendable tool for graphical programming, to construct the GUI-based programming environment for CUDA and OpenCL
parallel computing platforms. Programmers simply need to drag-n-drop blocks, fill the fields of the blocks, and connect them
according to array or matrix computations that are specified by algorithms. GPUBlocks can then translate block-based code
to CUDA or OpenCL programs. Furthermore, a couple of optimization constructs have also been offered for rapid program
optimization. Experimental results have shown that the generated CUDA and OpenCL programs can achieve reasonable
speedups on GPUs. Consequently, GPUBlocks can be used as a tool for fast prototyping of GPU applications or a platform
for educational parallel programming.

Keywords GPGPU · CUDA · OpenCL · Heterogeneous computing · Programming tool · GUI

1 Introduction

Nowadays, multicore systems equipped with homogeneous
or heterogeneous processing elements are popular and com-
mon in modern computers. For example, world leading
semiconductor chip makers, such as Intel, IBM, AMD,
MediaTek, and Qualcomm, add data accelerators, e.g.,
digital signal processor and graphical processing unit, to
improve system performance for certain types of data com-
putation jobs. There are lots of programming paradigms that
have been proposed to facilitate programming for such het-
erogeneous platforms, such as OpenMP [6], OpenMPI [14],
OpenCL [5], OpenVX [15], and CUDA [13].

While these programming facilities are helpful to abstract
underlying hardware at certain level, they are simply too

� Yuan-Shin Hwang
shin@csie.ntust.edu.tw

1 Department of Computer Science and Information
Engineering, National Taiwan University of Science
and Technology, Taipei 106, Taiwan

2 Department of Computer Science and Information Engineering,
National Cheng Kung University, Tainan 701, Taiwan

complicated for average programmers or algorithm devel-
opers. Therefore, a more intuitive environment can greatly
reduce the burden of parallel programming. There have been
several visual programming frameworks proposed to sim-
plify general programming tasks, such as OpenBlocks [7],
NetLogo [12], StarLogo The Next Generation (TNG) [11],
Scratch [10], Blockly [3], and Scratch Blocks [16]. In addi-
tion, several tools have been designed to support specific
programming languages, such as Android App Inventor for
Android system [9], and Hopscotch for Apple iOS [4]. How-
ever, there are few tools available to ease the pain of parallel
programming on multicore platforms.

This paper presents a graphical programming tool for
CUDA and OpenCL called GPUBlocks. A prototype
implementation of GPUBlocks has been constructed upon
the open source visual programming frameworks Open-
Blocks [7] and ArduBlock [1]. Major building blocks have
been developed so that the CUDA and OpenCL programs
can be generated automatically after users graphically spec-
ify array and matrix computations of target applications.
Furthermore, several optimization blocks have also been
developed to quickly optimize the program performance by
switching from the standard code blocks to the optimized

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-018-1395-2&domain=pdf
http://orcid.org/0000-0002-1348-082X
mailto: shin@csie.ntust.edu.tw


236 J Sign Process Syst (2019) 91:235–245

Figure 1 OpenBlocks.

ones. In addition, as the tool is capable of displaying the
generated CUDA or OpenCL programs alongside corre-
sponding CUDA or OpenCL blocks, beginners will be able
to learn the CUDA or OpenCL programming by compar-
ing the blocks against the generated codes. Experimental
results have shown that the generated CUDA and OpenCL
programs can achieve reasonable speedups on GPUs.

The main results of this paper are as follows:

• This paper presents a GUI tool called GPUBlocks that
integrates the visual programming approach to facilitate
parallel programming on GPUs.

• Programmers simply need to drag-n-drop blocks, fill
the fields of the blocks, and connect them according

Figure 2 Control Blocks of ANSI C Blocks.



J Sign Process Syst (2019) 91:235–245 237

Figure 3 ANSI C Block.

to array or matrix computations that are specified by
algorithms. GPUBlocks can then translate block-based
code to CUDA or OpenCL programs.

• A prototype visual programming tool CUDABlock that
converts the OpenBlocks-based diagrams into CUDA
programs has been implemented upon OpenBlocks and
ArduBlock [8].

• This paper extends CUDABlock by incorporating
OpenCL blocks in the frontend and an OpenCL code
generator in the backend. Consequently, programmers
can conveniently drag and connect GPUBlocks blocks
and then generate OpenCL or CUDA programs.

The rest of the paper is organized as follows. Section 2
surveys the related work. Section 3 highlights the key
components of the GPUBlocks tool. Section 4 presents the
experimental results and Section 5 concludes this paper.

2 RelatedWork

OpenCL is an open standard maintained by Khronos
Group for the systems which incorporate with different
types of computing devices, such as CPUs, GPUs, DSPs,
and FPGAs [5]. With its platform-independent APIs, all
OpenCL code is portable cross different devices. The
standard is now supported by many hardware vendors,
and with the device-specific drivers, the OpenCL-based
data-parallel programs are able to take advantage of the
computing power of underlying parallel hardware.

CUDA is a parallel computing platform and program-
ming model invented by NVIDIA [13]. CUDA is a closed,
data-parallel library, which is developed specifically to

use a CUDA-enabled GPU for general purpose process-
ing. Compared with OpenCL, CUDA is considered to be
more efficient than the OpenCL counterpart on the NVIDIA
platforms.

Overall, the above programming languages facilitate
heterogeneous computing by abstracting different hardware
architectures and generating the performance-oriented
parallel code. Still, they are way too sophisticated for
average programmers, who write programs for fun or focus
on developing application algorithms.

In recent years, there are many attempts that have been made
to develop visual programming frameworks for ease of
the programming efforts and/or for computer education
purpose, such as OpenBlocks [7], ArduBlock [1], Net-
Logo [12], StarLogo The Next Generation (TNG) [11],
Scratch [10], Blockly [3], and Scratch Blocks [16]. Further-
more, several tools have been designed to support specific
programming languages, such as Android App Inventor for
Android system [9], and Hopscotch for Apple iOS [4].

Scratch is a graphical programming tool developed by
MIT [10]. The educational purpose software aims to help
young people learn to think creatively. It can be used to build
interactive stories, games, and animations. Blockly [3],
which is a Google’s project, is an open source library that
creates the virtual code editor in the form of web pages
and Android apps. Also, Blockly helps create the programs
with its visual code editor, and users do not worry about the
language syntax. It supports the generation of various codes,
including JavaScript, Python, PHP, Lua, and Dart, where
each language has its own code generator, converting the
diagrams into the corresponding program codes. Based on
Blockly, Scratch Blocks [16] is a new development project for
building creative learning tools for young people. The ongoing



238 J Sign Process Syst (2019) 91:235–245

Figure 4 Example of ANSI C Blocks (top) and Its Corresponding C Code (bottom).

project aims to develop the next generation of graphical
programming blocks, based on the collaboration between
Google and the Scratch team from MIT. Currently, the
developer preview code is available on the project website.

CUDABlock is a visual programming tool which
converts the OpenBlocks-based diagrams into CUDA
programs [8]. CUDABlock has a similar programming

interface to ArduBlock [1], which is a graphic program-
ming language for Arduino [2]. This work extends CUD-
ABlock by incorporating OpenCL blocks in the frontend
and an OpenCL code generator in the backend. Con-
sequently, programmers can conveniently drag and con-
nect GPUBlocks blocks and then generate OpenCL or
CUDA programs.



J Sign Process Syst (2019) 91:235–245 239

Figure 5 CUDA and OpenCL Blocks.

3 GPUBlocks

GPUBlocks has been developed based on the OpenBlocks
framework by adding sets of new blocks for CUDA and
OpenCL programming: ANSI C Blocks, CUDA Blocks, and
OpenCL Blocks.

3.1 OpenBlocks Framework Overview

OpenBlocks is a Java-based visual programming tool that
helps facilitate programming tasks by stacking the pre-
defined blocks [7]. Programmers simply drag code blocks
to denote specific actions, and then connect the selected
blocks according to algorithms. Figure 1 shows an example
of the OpenBlocks programming environment. The visual
programming environment is divided into three areas. The
top-left area allows users to choose from different blocks for
programming, whereas the bottom-left region displays the

different categories of the available blocks. The displaying
area on the right is the main place for visual programming
by dragging the blocks on the left and connecting them on
the right.

3.2 ANSI C Blocks

Five sets of ANSI C blocks have been integrated into
GPUBlocks for C programming, namely Control, Test,
Math, System IO, and Variables/Constants:

• Control blocks denote the control-flow related con-
structs in C, as shown in Fig. 2.

• Test blocks evaluate boolean expressions.
• Math blocks represent pre-built mathematical functions.
• System IO blocks refer to services offered by the

host system, currently only the print function is
implemented.

Figure 6 CUDA Examples.



240 J Sign Process Syst (2019) 91:235–245

Figure 7 Generated CUDA Code of Fig. 6a: CUDA Kernel (left) and Host Code (right).

Figure 8 Optimized CUDA Code of Fig. 6b: CUDA Kernel (left) and Host Code (right).



J Sign Process Syst (2019) 91:235–245 241

Figure 9 Examples of OpenCL Blocks Programs.

• Variable/Constants blocks are used to declare constants
and variables, shown in Fig. 3a.

In addition, there is another class of blocks, Code Blocks,
which helps build customized C codes by allowing users
to define specialized code blocks. As shown in Fig. 3b,
there are three buttons, head, setup, and main in the Code
Blocks. Users can make customized codes for these buttons.
In particular, head button is for including a header file or
function/variable declarations, setup button can be dragged
into the main function for function/variable initialization,
and main button allows the user to specify the customized
statements.

Figure 4 depicts an example of programming a 2D array
computation. The top part of the figure depicts the blocks
for the initialization and computations of a 2D array, while
the bottom part shows its corresponding C statements that
are generated by GPUBlocks. This example clearly shows
that the above operations can be done easily with two nested
for-loop blocks and a variable block.

3.3 CUDA and OpenCL Blocks

GPUBlocks supports basic array and matrix operations of
linear algebra, e.g., addition, subtraction, multiplication,
and convolution operations, as listed in Fig. 5a. The default
setting is that these operations will be translated into a
sequential C program. When a CUDA block or an OpenCL
block is placed before these array and matrix operations,
GPUBlocks will convert the block program into a CUDA
program or an OpenCL program, respectively. In other
words, it is straightforward to switch among C, CUDA, and
OpenCL by dragging an appropriate language block and
placing it before array and matrix operations.

In addition to CUDA and OpenCL blocks, Fig. 5b
illustrates that GPUBlocks also includes blocks of two
basic and commonly used optimization techniques in both

CUDA and OpenCL, i.e. share blocks for shared memory
caching and a blocking blocks for data tiling. When a share
block is used, the backend of GPUBlocks will generate a
CUDA or OpenCL code that allocates data in the GPU
shared memory. As shared memory is on-chip, it is much
faster than local and global memory, roughly 100x lower
than uncached global memory latency. Therefore, speedups
generally can be observed when this optimization is applied.
Furthermore, additional speedups might be achieved if
a blocking block is chosen, since tiling (or block) is a
commonly used programming pattern that partitions data in
order to operate in well-sized blocks whose size is small
enough to be staged in shared memory.

CUDA Example This section uses a matrix multiplication
as an example to illustrate GPUBlocks programs and
their corresponding CUDA code. Two GPUBlocks vari-
able blocks are first constructed to initialize two ran-
dom matrixes a and b, and then a matrix multiplication
block and a CUDA block are added to specify perform-
ing the matrix multiplication computation c = a × b in
CUDA, as illustrated in Fig. 6a. GPUBlocks then con-
verts the code into its corresponding kernel code and host
program, as listed in Fig. 7. This example has demonstrated
that GPUBlocks is an intuitive approach that can signifi-
cantly reduce the complexity of parallel programming in
CUDA.

Performing optimizations on CUDA programs is easy
and straightforward in GPUBlocks by simply replacing the
plain CUDA blocks with the specific optimization blocks.
Figure 6b shows that only one block needs to be replaced in
order to utilize shared memory to optimize the CUDA code,
and Fig. 8 lists the optimized CUDA code that is generated
by GPUBlocks. This example has shown that this intuitive
approach can effectively reduce the complexity of writing
optimized CUDA programs.



242 J Sign Process Syst (2019) 91:235–245

Figure 10 Generated OpenCL Code of Fig. 9a, Kernel (bottom-left) and Host Code (right).

OpenCL Example Figure 9 depicts the same matrix multi-
plication example in OpenCL, which looks almost identical
to the CUDA example shown Fig. 6. The unoptimized
code in Fig. 9a is translated into the OpenCL code pre-
sented in Fig. 10. While generating OpenCL programs,
GPUBlocks makes the following assumptions unless other-
wise specified. First, GPUBlocks uses the first computing
device that could be found by the OpenCL runtime to

perform the computation of the generated code. Second,
GPUBlocks inserts the assertion functions which OpenCL
function would call to ensure that the parallel code executes
as expected. By default, the debugging feature is enabled
in order to notify programmers if there are problems during
the execution of the generated programs. Third, GPUBlocks
also injects the performance debugging code for the pur-
pose of performance analysis. However, the default settings



J Sign Process Syst (2019) 91:235–245 243

Figure 11 Generated OpenCL kernel code illustrated in Fig. 9b.

above can be changed via the configuration file, and the
new configuration will take effect when GPUBlocks is
re-started.

Figure 11 depicts the data tiling code of the matrix
multiplication program in Fig. 9b. As shown in the OpenCL
kernel code, the current thread id is obtained first to
calculate the boundary of the data block to be processed.

Inside the for loop, local memory buffers are used to
keep the data block in the device local memory, and data
required for the matrix multiplication are read from the
local buffers, which accelerates the program performance.
While data tiling is a common technique in parallel
computing, it is tedious work, and costs significant amount
of time for average programmers. GPUBlocks simplifies the
optimization process, and helps generate the optimization
code on-the-fly.

4 Experiment Results

Several array and matrix operations have been performed to
evaluate the efficiency of the generated OpenCL and CUDA
programs. Microbenchmarks, as shown in Fig. 12, have
been executed on the Linux/x86 system with the Intel Xeon
E5506 Processor, where their corresponding CUDA and
OpenCL programs have been tested on the NVIDIAGeforce
GTX 1080 (CUDA SDK 8.0 and OpenCL 1.2). Each
program is executed with the following four configurations.

• cpu. The baseline performance is the elapsed time of
sequential C code on the main processor.

• gpu. The total time of the generated CUDA or OpenCL
programs that have spent on both main processor and
GPU.

• shared. The total time that have been spent on both main
processor and GPU by the generated CUDA or OpenCL
programs with shared memory caching.

• blocking. The total time that have been spent on both
main processor and GPU by the generated CUDA or
OpenCL programs with the tiling optimization.

Figures 13 and 14 depict the experimental results of
the CUDA and OpenCL programs, respectively. Note
that the sequential C code, denoted as cpu, is the
baseline configuration as an indicator to show the per-
formance differences between the CUDA and OpenCL

Figure 12 The
microbenchmarks and their
input data sizes.



244 J Sign Process Syst (2019) 91:235–245

Figure 13 CUDA Performance
on NVIDIA GPU.

versions. Overall, the program performance delivered
by the NVIDIA device outperforms that by the AMD
device in our experiments. In addition, the optimized
CUDA/OpenCL versions are faster than those without opti-
mizations. Nevertheless, optimizations may lead to poor
performance, e.g., shared optimization for matmul and
blocking for Volve.

The slowdown of the optimized codes could be attribute
to the program behaviors, and software/hardware interac-
tions. For example, while the shared optimization copying
the data to the local buffers prior to the computation, the
matrix multiplication does not reuse the localized data, and
hence the data copying adds the overhead. The delivered
performance of the blocking optimization would depend on
the number of concurrent threads, which would vary across
different hardware/software combinations, and intensive
experiments should be done to explore the best configura-
tion, e.g., the thread number.

In current stage, performance tuning for the best
configuration of the generated program is not the focus of
this work. Still, we develop some facilities to help profile
the performance of the converted programs, and hopefully,

programmers could use them to tweak the program
performance.

5 Conclusion

This paper introduced avisual programming toolGPUBlocks
for CUDA and OpenCL programming. This tool could help
beginners and average programmers to implement CUDA
and OpenCL programs by simply dragging and connect-
ing blocks. The generated CUDA and OpenCL programs
could be used directly to perform computations on GPU,
or served as the first draft of CUDA and OpenCL kernels
which would be further optimized manually.

Acknowledgment This work was supported in part by the Ministry of
Science and Technology of Taiwan under Grants MOST 104-2622-8-
002-002, MOST 105-2622-8-002-002, MOST 104-2221-E-011-007,
and MOST 105-2221-E-011-069-MY3, and sponsored by MediaTek
Inc., Hsin-chu, Taiwan.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Figure 14 OpenCL
Performance on AMD GPU.



J Sign Process Syst (2019) 91:235–245 245

References

1. ArduBlock. ArduBlock: A Graphical Programming Language for
Arduino. http://blog.ardublock.com.

2. Banzi, M. (2008). Getting started with arduino. Make Books -
Imprint of: O’Reilly Media.

3. Google. Blockly. https://developers.google.com/blockly/.
4. Hopscotch. Hopscotch: A programming tool for developing apps

for ios devices https://www.gethopscotch.com/.
5. Khronos Group. OpenCL: The open standard for parallel

programming of heterogeneous systems https://www.khronos.org/
opencl/.

6. Khronos Group. The OpenMP API specification for parallel
programming http://openmp.org/wp/.

7. Klopfer, E. (2007). OpenBlocks: An extendable framework
for graphical block programming systems. Cambridge: PhD
thesis, Dept. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology.

8. Lin, H.-H., Tu, C.-H., Hwang, Y.-S. (2015). CUDABlock: A GUI
programming tool for CUDA. In 2015 International Workshop on
Embedded Multicore Systems, 44th International Conference on
Parallel Processing Workshops, ICPPW, 2015 (pp. 37–42).

9. MIT. MIT App Inventor: A blocks-based programming tool for
developing apps for android devices http://appinventor.mit.edu/
explore/.

10. MIT. Scratch: A free desktop and online multimedia authoring tool
https://scratch.mit.edu/.

11. MIT. Starlogo TNG: The next generation of starlogo mod-
eling and simulation software http://education.mit.edu/projects/
starlogo-tng.

12. NetLogo. Netlogo: a multi-agent programmable modeling envi-
ronment http://ccl.northwestern.edu/netlogo/.

13. NVIDIA. CUDA: A parallel computing platform and program-
ming model http://www.nvidia.com/object/cuda home new.html.

14. OpenMPI. Open MPI: Open source high performance computing
http://www.open-mpi.org/.

15. OpenVX. OpenVX: Protable, power-efficient vision processing
https://www.khronos.org/openvx/.

16. Scratch for Developers. Scratch Blocks https://scratch.mit.edu/
developers.

Yuan-Shin Hwang received
the B.S. and M.S. degrees in
electrical engineering from the
National Tsing Hua Univer-
sity, Hsinchu, Taiwan in 1987
and 1989, respectively, and
the M.S. and Ph.D. degrees
in computer science in 1994
and 1998 from the Univer-
sity of Maryland at College
Park. He is a professor in the
Department of Computer Sci-
ence and Information Engi-
neering, National Taiwan Uni-
versity of Science and Tech-
nology, Taipei, Taiwan. His

research interests include parallel and distributed computing, parallel
architectures, parallelizing compilers, and programming languages.

Hsih-Hsin Lin received the
B.S. and M.S. degrees in com-
puter science from National
Taiwan University of Science
and Technology, Taiwan in
2014. He is an engineer in
the Wistron Corporation, Tai-
wan. His research interests
include program analysis, par-
allel programming, and com-
piler optimization.

Shen-Hung Pai received
the B.S. degree in computer
science from National Dong
Hwa University in 2014, and
the M.S. degree in computer
science form National Taiwan
University of Science and
Technology, Taiwan in 2016.
His research interests include
parallel programming, and
compiler optimization.

Chia-Heng Tu is an assistant
professor with Department of
Computer Science and Infor-
mation Engineering (CSIE),
National Cheng Kung Univer-
sity (NCKU). Before joining
NCKU-CSIE, he worked as
Postdoctoral Researcher in
MEDIATEK-NTU Advanced
Research Center, National
Taiwan University (NTU) in
2015, and as R&D Manager
in Institute for Information
Industry from 2012 to 2015,
after he completed his Ph.D.
training from NTU in 2012.

His research interests are developing tools (e.g., computer architec-
ture simulators, performance analyzers/optimizers, and parallelizing
compilers) for designing/optimizing specialized computer systems.

http://blog.ardublock.com
https://developers.google.com/blockly/
https://www.gethopscotch.com/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
http://openmp.org/wp/
http://appinventor.mit.edu/explore/
http://appinventor.mit.edu/explore/
https://scratch.mit.edu/
http://education.mit.edu/projects/starlogo-tng
http://education.mit.edu/projects/starlogo-tng
http://ccl.northwestern.edu/netlogo/
http://www.nvidia.com/object/cuda_home_new.html
http://www.open-mpi.org/
https://www.khronos.org/openvx/
https://scratch.mit.edu/developers
https://scratch.mit.edu/developers

	GPUBlocks: GUI Programming Tool for CUDA and OpenCL
	Abstract
	Abstract
	Introduction
	Related Work
	GPUBlocks
	OpenBlocks Framework Overview
	ANSI C Blocks
	CUDA and OpenCL Blocks
	CUDA Example
	OpenCL Example



	Experiment Results
	Conclusion
	Acknowledgment
	Publisher's Note
	References


