Journal of Signal Processing Systems (2019) 91:745-757
https://doi.org/10.1007/511265-018-1382-7

@ CrossMark

Heterogeneous Computing Utilizing FPGAs

A New and Flexible Approach Integrating Dedicated Hardware Accelerators into Common
Computing Platforms

Marc Reichenbach’ - Philipp Holzinger' - Konrad Haublein! @ . Tobias Lieske' - Paul Blinzer? - Dietmar Fey'

Received: 15 December 2017 / Revised: 21 March 2018 / Accepted: 15 May 2018 / Published online: 31 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Heterogeneous computing plays an ever-increasing role in power-efficient, high-performance embedded systems for various
data processing tasks, such as computer vision. One possibility to accelerate this kind of application is the usage of FPGAs
as a co-processor for standard CPUs. Although hardware design is becoming easier by utilizing High-Level-Synthesis tools,
the question of interfacing FPGAs and CPUs has yet to be completely solved. The Heterogeneous System Architecture
(HSA) Foundation defines and publishes architecture neutral standards for heterogeneous systems and programming models.
While compatible CPU, GPU and DSP designs exist, FPGA models have not been defined yet. This paper describes the IP
library LibHSA, which greatly simplifies integration of domain specific FPGA acceleration into existing HSA compliant
systems. It allows FPGA based accelerators to take immediate advantage of high-level language tool chains. Including user
space memory access, low-latency task dispatch and other benefits of the HSA programming model. We will demonstrate
LibHSA with a programmable image processor implementation on a Xilinx FPGA. The image processor supports low-level
algorithms, e.g. Sobel, Median, Laplace, or Gaussian. Our results show that the LibHS A infrastructure greatly simplifies the
effort integrating FPGAs and customized hardware into existing accelerator systems, runtimes and application software.

Keywords Heterogeneous system architectures - HSA foundation - Hardware accelerator - Image processing - FPGA

1 Introduction in deep learning methods demand fast processing of expo-

nentially larger workloads. This phenomenon, also known
Advancements in many different fields such as data mining, as the “curse of dimensionality”, challenges traditional sys-
virtual reality, (medical) image processing or the recent rise ~ tems, requires new ways of handling highly compute inten-
sive tasks [13] and therefore strongly drives the upsurge of

54 Marc Reichenbach heterogeneous compute platforms in research and industry.
marc.reichenbach@fau.de Since several years GPU compute has seen the strongest
Philipp Holzinger uptake compared to FPGAs due to their easier accessibility
philipp holzinger @fau.de and the wider support of high-level languages. However,
Konrad Haublein FPGAs can significantly improve the performance per

konrad.haecublein @fau.de

Tobias Lieske
tobias.lieske @fau.de

watt for targeted workloads versus CPUs [17] or other
accelerators [20]. Currently the main impediments of

Paul Blinzer FPGAs are the programming model and the integration

paul.blinzer @amd.com into the larger software infrastructure, among other things
Dietmar Fey due to pr.opnetar}‘/ support software. Some academic and
dietmar.fey @fau.de commercial solutions to this problem, e.g. from Altera

or Xilinx, are available, but do not cover typical, multi-

I Chair of Computer Architecture, Friedrich Alexander component heterogeneous system configurations needed for
University Erlangen-Niirnberg (FAU), Martensstrafe 3, optimal results [20]. Even today after years of research,
91058 Erlangen, Germany setting up, programming and maintaining a heterogeneous

2 Advanced Micro Devices (AMD), Bellevue, WA, USA platform is by no means trivial, but requires significant

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-018-1382-7&domain=pdf
http://orcid.org/0000-0002-3114-8716
mailto: marc.reichenbach@fau.de
mailto: philipp.holzinger@fau.de
mailto: konrad.haeublein@fau.de
mailto: tobias.lieske@fau.de
mailto: paul.blinzer@amd.com
mailto: dietmar.fey@fau.de

746

J Sign Process Syst (2019) 91:745-757

cooperation between many different hardware and software
companies.

To approach this problem members of industry and
academia formed the HSA Foundation!. They defined a
performant yet standardized system and hardware model
definition for data parallel processors and accelerators
in high-level language (HLL tool chains). By targeting
an abstracted hardware programming model, high-level
languages can directly take advantage of the underlying
accelerators with much lower dispatch overhead compared
to common API based models like CUDA or OpenCL.

The HSA infrastructure provides many software envi-
ronment tools, like compiler toolchains for C++, Python,
Fortran and many more. A compatible accelerator can take
advantage of the existing platform, greatly simplifying soft-
ware and platform integration, but designing the hardware
accelerator itself remains the vendors’ responsibility. Fortu-
nately, this task can be divided into three subtasks:

(1) the development of the accelerator core itself

(2) the development of the hardware dispatch model to
make the accelerator HSA compliant

(3) the implementation of a fast bus infrastructure to
connect the host and accelerator

While (1) is application-specific and has to be achieved
by the developer, tasks (2) and (3) can be automated
because it shares similarities with every new hardware
accelerator. Therefore, a library to ease the development
process of arbitrary hardware accelerators is needed. This
especially improves the developer productivity of FPGAs
by supplying blocks for (2) and (3). This paper focuses on
the second point above by presenting a novel library called
LibHSA. Using this enables the developer to integrate new
accelerators into a heterogeneous system easily by making
it compatible with the HSA environment.

This paper is structured as follows. In the next Section
related work is discussed. Section 3 describes the key
concepts of HSA and how LibHSA is implemented.
Afterwards, Section 4 shows how LibHSA can be used to
make an accelerator HSA compliant. This is demonstrated
with an image processing core and implemented on a Xilinx
FPGA. Section 5 presents the implementation and timing
results of our prototype. Finally, Section 6 concludes our
work and provides an outlook to future work.

2 Related Work

One of the first works to describe the HSA system
architecture is provided in [19]. This publication shows

Uhttp://www.hsafoundation.com/

@ Springer

various key concepts of the programming model, the unified
address space, queuing, context switching as well as the
benefit of HSAIL. A first performance analysis of HSA
on real hardware was first provided in 2016 [14]. There,
they compare the execution times for different algorithms
on GPGPUs utilizing OpenCL and HSA. Furthermore,
they developed a framework, called HeteroMark, to allow
benchmarking heterogeneous hardware. Overall, the HSA
runtime environment provides very promising results for
real world applications.

In 2017 AMD released Vega, anew HSA compliant high-
performance GPU architecture. It contains the so-called
High-Bandwidth Cache Controller (HBCC) which operates
as unified memory cache [15]. LibHSA also brings this
important feature to FPGA accelerators now.

With [3] a conceptual work was provided, for the use
of HSA with DSPs. This work focuses on how the HSA
execution model can be mapped to these devices. For
application purposes an FIR (Finite Impulse Response)
filter was shown. To our knowledge Soft-IP-blocks for
connecting self-designed circuits to the HSA universe were
not provided in the past. Therefore, to date, no FPGA-based
hardware has been available.

Nowadays FPGAs use several different software models
in heterogeneous systems. Commercial examples are the
developer environments Altera OpenCL [11] and Xilinx
SDAccel [4]. Both attain good results and significantly ease
the integration processes. Unfortunately, these often use
proprietary, limited and intransparent mechanisms which
makes it impossible to extend them beyond their original
scope.

Furthermore, academic approaches, as shown in [10],
have been developed as well to generate application-
specific hardware accelerators from a high-level description
(OpenCL). Unfortunately, this generated hardware suffers
from the self-integration problems described above.

Aside from generating hardware through OpenCL fur-
ther work shows how specialized programmable archi-
tectures can be integrated into a computing system. The
researchers in [18] demonstrated specialized vector unit
integration, and targeted it through C source. However, it
does not integrate well with other accelerators in a het-
erogeneous system. An FPGA cluster system based on
GBit Ethernet interconnects and a lightweight processor
architecture has been demonstrated in [2]. Here, the sys-
tem is only accessible by own C language extensions and
more powerful custom accelerators cannot be easily inte-
grated. Moreover, the Ethernet infrastructure might become
the systems bottleneck in case of heavy data transfer.
Both designs would benefit from integration through a
common heterogeneous system interface as developed in
our work.

http://www.hsafoundation.com/

J Sign Process Syst (2019) 91:745-757

747

3 LibHSA Conception
3.1 HSA System Architecture Specification

As mentioned above, LibHSA is based on the three main
specifications published by the HSA Foundation:

— The Platform System Architecture Specification [7]
defines the hardware model software is targeting

— The Programmers Reference Manual [9] specifies
the HSAIL instruction set and the software model
compilers are expected to target.

— The Runtime Programmers Reference Manual [8]
defines the resource management APIs a compatible
language runtime is expected to support.

In the following all necessary steps for successfully
launching a kernel from software and processing it in the
hardware are summarized. For further details the HSA
specification [6] can be consulted.

Each participant of an HSA compatible system is referred
to as an agent. Devices, capable of executing parallel
regions of code, are called kernel agents. These are typically
GPUs, but DSPs and, through our work also FPGAs,
can act as kernel agents. The two core concepts of an
HSA system are the queueing system and the Architected
Queuing Language (AQL) packets. Each packet has a
length of 64 bytes and represents a task the device has to
perform. There are different kinds of packets which can be
distinguished by a common header. First of all it can be
a kernel dispatch packet which contains meta information
associated with a kernel dispatch. The second type is the
agent dispatch packet used to call special built-in functions.
Thirdly barrier AND/OR packets contain synchronization
primitives to realize complex dependencies. In general AQL
packets symbolize the concept of “what should be done”
in the system, but not by whom. The distribution of tasks
to different accelerator cores is controlled by the AQL
queues. Each device can have one or more AQL queues
associated with it. The hardware is responsible for executing
the tasks in them and maintaining the state of the queue
on its own. This job is usually done by a special unit, the
packet processor. Now processes can directly interact with
the hardware by a thin runtime environment.

The general procedure for launching a kernel can be
seen in Fig. 1. At first a slot in a queue, belonging to a
kernel agent capable of executing the task, must be reserved.
This can be done by atomically incrementing the write
index of the queue. All meta-information of the kernel
is encoded in the kernel dispatch packet. This means the
number of dimensions, the kernel length, the workgroup
size, the kernel arguments and the kernel executable, are
fields in the packet and written to the allocated memory

doorbell_signal

completion_signal

write o | ~
AQL packet i
X 4
Q [
© ©
(=1 (=1

read_index write_index

Figure 1 Illustration of the HSA queuing system. Distributing work
to a kernel agent can be done in four steps [7]: (1) Allocating a packet
slot by incrementing the write_index. (2) Updating the kernel details
like arguments or workgroup size. (3) Assigning the packet to the
packet processor by writing the packet header. (4) Notifying the packet
processor by sending the doorbell_signal. As a last step the caller of the
kernel is notified by packet processor through the completion_signal
that the results are ready.

location of the packet or further referenced memory.
Due to the unified address space, required by the HSA
specification, host pointers can be used directly and explicit
copying is not needed. After submitting the packet, the
ownership can be transferred to the device by setting
the header and specifically the type field to the correct
value via an atomic write operation. From then on the
packet can, but does not necessarily have to be processed
at any time by the packet processor. In addition the
doorbell_signal must be sent to notify the accelerator in
order to check the queue for new work. Again this is
done by an atomic write operation. Eventually the hardware
evaluates the packet and takes all necessary steps to execute
it. The packet state transitions can be seen in Fig. 2.
After reaching the completion phase the packet processor
notifies the runtime via a completion_signal. Finally the
submitting process can work with the results of the kernel
invocation.

3.2 Library Overview

As described in the previous Section 3.1 certain components
must be present in all HSA compliant hardware. Our
LibHSA abstracts these by providing dedicated hardware
and software to directly address these parts on the one
hand and on the other hand the definition of highly
flexible interfaces to support all kinds of accelerator and
bus types. An overview of all system components is
summarized in Fig. 3. The most important component
is the packet processor, because it handles the entire
task processing, scheduling and management of memory
fences and accelerator cores. It is the core part of
the Packet Processing section and a fixed element in
our library and the HSA ecosystem, independent of the

@ Springer

748

J Sign Process Syst (2019) 91:745-757

barrier set and
preceding completed

write packet >
© AQL auese @.®

malformed

barrier not set and
preceding launched

Figure 2 States an AQL packet can be in after enqueuing to a kernel
agent as described in [9]. After the assignment of the task to the packet
processor it eventually reaches the launch phase. Depending on the
barrier bit in the packet header this can be delayed until the previous
completed execution. In this state the task will be parsed but has not

accelerator hardware. This processor must support 64-bit
addressing and atomic instructions to comply with the HSA
specification. Additionally it must be as small as possible
to minimize the resource overhead of the system. For that
reason we designed our own processor based on the MIPS
IIT ISA [12]. To our knowledge no other light-weight,

execution on

accelerator core .
execution
completed

unrecoverable

started the actual execution yet. This does not happen until the packet
enters the active state. Finally, after the data has been completely pro-
cessed it reaches the completion phase where the notification of the
host takes place. If an error occurs during launch or execution the
packet as well as the AQL queue reaches the error state.

synthesizeable 64-bit processors with atomic read/write
operations are available at the moment. The open design
concept of the MIPS core also makes it easily transferable
to other manufacturing platforms like Altera FPGAs.

In the Accelerator Hardware section the actual accel-
erator is instantiated. The example application builds a

External I—inSA

PC
Components

CPU |
MEM

Bus Interface

Streaming Core

Accelerator

1
i Interface
Interrupt (L Streaming Core
Controller| Control
1 >4
Y : Processor Data-Mover
' 1
i | AcCEL config. A
1
Packet ' A ___________L_.__.
Processor

L]

AXI - Interconnect (CMD) |

AXI - Interconnect (Backend Data) |

Y

A
Y
FPGA Cache Packet
Controller .
Processing

A
Y

| AXI - Interconnect (Data) |

¥

DRAM

Figure 3 Overview of library segments and components. Segments
with dashed borders have flexible or interchangeable components.
All subblocks inside the LibHSA box represent IP cores instantiated

@ Springer

on reconfigurable hardware. All other areas mark HSA components
outside the framework, on the FPGA or off-chip.

J Sign Process Syst (2019) 91:745-757

749

streaming core for basic image processing operations, which
will be explained in detail in Section 4. The Accelerator
Interface is partly a flexible component. In our use case it
is specialized for streaming operations, but it must be also
exchangeable for other processing schemes. For this pur-
pose, we supply additional compatibility components. The
Streaming Core Control Processor is a MIPS as well, but
to be as lightweight as possible it is based on the 32-bit
MIPS I ISA from [5]. It controls a data-mover, responsi-
ble for transforming the memory-mapped interface to and
from a streaming interface. Additionally, the control pro-
cessor sets the correct configuration for the streaming core.
In this way LibHSA provides two different interfaces for
streaming and memory-mapped access. In order to make our
components even more flexible all soft core components are
interconnected by AXI based buses. This is an on-chip bus
specification defined by ARM and used by Xilinx and Altera
to connect various IP cores. Therefore all accelerator cores
can be easily exchanged with other units.

Packet processor and accelerator cores together consti-
tute the actual part where submitted kernels are processed.
This is needed for all kinds of tasks, platforms and process-
ing schemes. More complex memory management require-
ments need the additional interfaces and hardware explained
in the following.

First of all the Data Access section connects the FPGA
to the External PC Components and enables DMA transfers
to and from the board. For this part PCle is the established
high-performance solution, but other bus systems would
also be possible. Therefore, the corresponding section is a
flexible part, but has a fixed interface to our core LibHSA.

The other important component of LibHSA is the FPGA
cache controller (FCC). It is responsible for realizing
the shared virtual memory (SVM) required by the HSA
System Architecture specification from the FPGA hardware
side. All data transfers to and from the working set are
routed through this unit. It checks whether the requested
data, represented by address and process address space ID
(PASID), is present on the FPGA board. If absent FCC sends
a DMA transfer command to the data access section to fetch
this memory block. The actual block size can be configured
beforehand to be an arbitrary power of two. Thereby the on-
board DRAM acts as a large cache to speed up subsequent
data accesses to the same region. Moreover this mechanism
also hides the PCle latency and transfer times of the
complete system, because other accelerator cores can still
work in parallel on data that is already local. To ensure
data visibility both on host and accelerator side FCC also
incorporates logic to establish acquire and release memory
fences. These fences are PASID specific and the packet
processor lets FCC apply them if stated in an AQL Packet.
This means the host can improve the overall performance
by always requesting only the weakest fence applicable in

every situation. All in all FCC makes it possible from the
hardware side to process pointers to regions which are in
general not trivially accessible to accelerator cores. This
makes it especially useful for non-uniform or unpredictable
memory access patterns. In cases where data is processed
in a streaming fashion from contiguous chunks of memory,
e.g. for basic image filters, the additional resources for
the FPGA cache controller may not be worth it. In these
situations the functionality can also be provided by a custom
software for the packet processor itself.

3.3 Platform Integration

As required by the HSA specification presented in
Section 3.1, we use a kernel dispatch packet to represent an
image processing task for our Image Processing Streaming
Core. As usual the image size is entered in the dedicated grid
size fields of the packet and a completion signal is set. But
there are several differences in operation between a GPU
and FPGA execution model here. First of all the custom
FPGA accelerator design is not based on the concept of a
workgroup at execution time. Therefore, the corresponding
fields in the packet remain unused. However, this is not a
limitation, because a similar functionality can already be
realized in the hardware core itself. Secondly in contrast to
GPUs, application-specific cores are usually not capable of
executing arbitrary code. In our case the executable would
always contain just a single “instruction” differentiating the
local image operation to be used. Therefore, we directly
encode this in the kernel_object field. This is also not a
limitation since it is always possible to perform multiple
successive operations with negligible performance penalties
by using several kernel dispatch packets for each task and
caching the data on the FPGA. Lastly a custom acceleration
core on an FPGA typically has a predefined set of kernel
arguments. In our case these are the source and destination
start addresses, the color model of the image, as well as a
value threshold and optionally up to two individual masks
and normalization factors. These arguments are encoded
in the allocated memory space and pointed to by the
kernarg_address field.

To increase the overall performance and latency of the
system, we decided to implement an asynchronous three-
step task messaging system to connect all components. At
first the initiator writes the message content to a special
memory region of the receiving partner. Secondly the
receiver is notified by an interrupt. Lastly the transmitter
eventually receives an interrupt, signaling that the other
unit executed the task. Note that the interrupts are also
individually acknowledged by an ACK signal to enable
clock domain crossing between different components. As
visualized in Fig. 4 all new packets are written to the AQL
queue in the first kilobytes of the on-board DRAM and

@ Springer

750

J Sign Process Syst (2019) 91:745-757

g 8
64 Byte x 4 Byte x NS
QUEUE_SIZE QUEUE_SIZE 4 o 1/2 x DRAM_SIZE
on board packet PASID reserved by reserved by

AQL packet buffer buffer

read_index
write_index

packet processor

FPGA Cache Controller

Figure 4 Address space layout of the on-board DRAM. It is embedded in the full 64-bit address space of the whole system and accessed with a
flat 64-bit address. The Process Address Space Identifiers (PASID) are located directly after the packets in the same order.

signaled by an interrupt. The packet processor interprets
the new packets one by one. Together with the FPGA
cache controller they are capable of applying acquire and
release memory fences as well as requesting data copies
to the on-board DRAM. This is an important ability for
the integration into the main memory system of a whole
PC. In particular kernel arguments or in our case images
can be asynchronously fetched by sending a request as
explained before to a DMA unit. For this purpose, we
defined the message as a host address, an FPGA address,
the payload size in bytes, the transfer direction and a PASID
identifying the process which submitted the packet. This
makes it possible to increase the overall throughput by
processing independent packets simultaneously. Once all
data is present, the packet processor issues a processing
command by sending a message to an available core. In our
case the streaming core control processor then addresses all
internal configurations of the PE and data-mover, while the
actual processing is performed as explained in Section 4.

After completing the operation, the data is fully updated,
but not yet visible to the caller of the kernel function.
For this purpose, the packet processor and FPGA cache
controller again apply a memory fence and request the DMA
interface to copy the results back. Finally, the caller can
be notified by sending the completion_signal. This time
the message contains the signal handle and the PASID.
Depending on the bus used this action could involve
an atomic operation over PCle. This high latency again
confirms that our asynchronous messaging approach is not
only beneficial but necessary in such a system.

4 Use Case: Image Processing

In order to demonstrate our LibHSA, we coupled an
FPGA-based accelerator to the accelerator interface. On
FPGAs algorithms are very often accelerated by designing
an application specific circuit, benefiting from processing
schemes like pipelining and/or parallel execution units.
However, these kind of accelerators are hardly flexible and
fixed to one algorithm with one set of parameters, which
would not support processing various dispatch packets.

@ Springer

We therefore decided to design a weakly programmable
accelerator core for the domain of local image processing
operations. These kind of operations require a proper
acceleration for various real-time applications, achieved
by utilizing custom-designed memory structures such as
line buffers to enable streaming. Most common examples
are linear operators like the Gaussian Blur, the Sobel or
Laplace operator and non-linear operators like the Median
operator. The accelerator is designed generically, which
makes it customizable in static image parameters (e.g.
maximum supported window size) as well as available
resource constraints in terms of logic and memory cells.
In Fig. 5 the architecture of one processing element (PE)
is shown, which can be seen as the core of the entire
accelerator unit.

The architecture is fully pipelined and able to produce
one pixel within each clock cycle. A PE is divided into
two main sections. The Buffer CLB (Configurable Logic
Block) holds the Full Buffering architecture derived from
the generic template from [16] consisting of line buffers and
mask registers. Line buffer intersections in Fig. 5 indicate
the configurability of the image size within this structure.
After instantiating the architecture with a maximum image
size (e.g. 1920x1080) all lower values are supported
through proper configuration. The mask registers have a
similar behavior. In Fig. 5 the maximum mask size is
set to 5x5. All mask values are passed in parallel to the
Kernel CLB. In the Kernel CLB the image processing
operation takes place. Several kernel modules have fully
parallel access to the mask registers. The CLB includes
two convolution modules. Each is able to perform a MAC
operation (multiply and accumulate) within one cycle
through a binary tree construct. As a second input each unit
is connected to a Configuration Matrix, where coefficients
for linear operations are stored. The second convolution
module is necessary for edge detection operations, which
have two coefficient matrices as an input for detecting
edges in the x and y-direction. The units Normalize and
Threshold Detect are responsible for the correct pixel
output. Normalization is required for the Gaussian Blur,
while a threshold enables binary output for edge detection.
To support non-linear image processing operations a fully

J Sign Process Syst (2019) 91:745-757 751
Figure 5 Internal architecture of
one PE. Buffer CLB consists of Accelerator PE
mask and line buffers. The Kernel CLB
Kernel CLB has parallel access
to the mask and is split into Buffer CLB —e Config Matrix
several computational units. .- oL RLOSY
With the proper configuration Conv0 Norm
Z;gﬁz;.local operations can be L LI LI L 260 72 T T |
d Pixel Data
640 x 480 — Stream Out
= e e resho
Binln _LL el Detect [|)
£) I
g
= Min
UL L Mask |l Sort [Max /
Median
) s
Pixel Data
Stream In Possible Operators:
Linear: Gauss, Sobel, Gradient, Laplace
! Rank Operations: Median, Erosion, Diletation

parallel Bitonic Sort structure can be accessed. By selecting
the proper sorted output value the operations Median,
Erosion and Dilation can be executed. Additional custom
made kernel modules could be easily added to the design.
All units in the design are programmable, which is indicated
by black bubbles connected to the dedicated unit. Values
for selecting the proper function are stored in a 32-bit-wide
configuration register file.

The complete accelerator design holds multiple PEs for
multicolor support, and uses several AXI interfaces for
connecting to the outside world. Through an AXI light
interface the configuration registers can be set. AXI stream
master and slave components constitute the interconnect for
streaming data to and from the accelerator. In our current
implementation images with a resolution up to 3840x2160
can be processed. Local operators may range from 2x2
to 5x5 windows for all operators. The number of color
streams has been fixed to 3, while each processing element
can handle 8 bits per channel. Switching to single gray
scale enables 16-bit processing. The instantiated kernel
modules allow linear operations like Gaussian Blur, Laplace
operator, or Sobel operator. Through the sort module, rank
operations like Median, Erosion and Dilation can be applied
to the image.

5 Results
5.1 Synthesis Results

We prototyped our design using a Virtex UltraScale
VCU108 board and Vivado 2017.2. To test the functionality

of our design we used a separate soft core processor and
BRAM to simulate a host, distant memory and DMA unit
combined. This is by no means an adequate replacement in
a full-fledged heterogeneous system and therefore a PCle
DMA unit will be added in the future. This part will not
be shown in any of the following results, since it is not a
core part of our library. Nevertheless, we could show that
LibHSA works on real FPGA hardware.

In a configuration with one accelerator core LibHSA
itself consisted of 9761 LUTs, 7464 flip-flops and 18.5
BRAM blocks, as shown in Table 1. This includes the packet
processor (PP), the interrupt controller (IC), the FPGA
cache controller (FCC) as well as the bus infrastructure.
These values are mostly independent from the concrete
attached accelerator core, because the interface to them is
always the same. However, minor deviations can be caused
by cross boundary optimization and critical cell replications.
This is the fixed part of our design and with less then
2% of available LUTs and FFs comparatively small. While
managing more than one accelerator, the core components
do not need to be replicated. This was achieved by directly

Table 1 Implementation Results of fixed Library Components for one
Accelerator.

LUTs FFs BRAM DSPs
PP & IC 6199 (1.2%) 4820 (0.4%) 6 (0.3%) 0(0.0%)
infrastructure 1850 (0.3%) 1705 (0.2%) 2 (0.1%) 0 (0.0%)
LibHSA basic 8049 (1.5%) 6525 (0.6%) 8 (0.5%) 0 (0.0%)

FCC 1712 (0.3%) 939 (0.1%) 10.5(0.6%) 0 (0.0%)
LibHSA extended 9761 (1.8%) 7464 (0.7%) 18.5 (1.1%) 0 (0.0%)

@ Springer

752

J Sign Process Syst (2019) 91:745-757

Table 2 Scaling Results of LibHSA.

Accel Cores LUTsS (per core) FFs (per core) BRAM
1 9761 (9761) 7464 (7464) 18.5
2 10190 (5095) 7537 (3769) 19.5
3 10457 (3486) 7584 (2528) 20.5
4 11126 (2782) 7604 (1901) 21.5

tracking multiple AQL packet states in the packet processor
and handling all associated interrupts asynchronously.
These are sequentially executed on the main MIPS core.
Additionally, AQL interrupts are immediately preprocessed
by dedicated hardware components in the packet processor.
However, since additional multiplexers and larger AXI
interconnects are needed the resource utilization slightly
increases, as shown in Table 2. Nevertheless, this led to a
negligible amount of additional resources. In particular the
resource expenditure of LibHSA per core decreased rapidly.
This shows that LibHSA is well suited to function as a
dispatch infrastructure and leaves a great deal of room for
the actual accelerator cores.

The complete accelerator core (AC) in our image
processing use case needed 33296 LUTs, 28474 flip-
flops, 47.5 BRAM blocks and 50 DSPs. Table 3 shows,
that the image processing streaming core (Image PE) was
responsible for roughly 80% of this utilization and nearly
the entire BRAM and DSPs. This again means that our
interface is slim and leaves the important resources for
functional units.

5.2 Performance Results

All major parts (packet processor, image processing accel-
erator core, etc.) of our test design can be clocked asyn-
chronously to achieve the maximal possible performance of
each component. But for simplicity and comparability all
clocks have been constrained to 100 MHz in our working
demonstrator board.

The latencies introduced by our design depend on the
bus utilization, as well as quantity and kind of incoming
interrupts. Therefore, it is not possible to determine exact
numbers for all cases beforehand. However, the following
results show typical latencies for various scenarios which
are also representative for other usecases.

Table 3 Implementation Results of Accelerator Core Components.

LUTs FFs BRAM DSPs

Image PE 26864 (5.0%) 22467 (2.1%) 34 (2.0%) 50 (6.5%)
AC infrastructure 6432 (1.2%) 6007 (0.6%) 13.5 (0.8%) 0 (0.0%)
AC 33296 (6.2%) 28474 (2.6%) 47.5 (2.7%) 50 (6.5%)

@ Springer

5.2.1 Packet Processor Stress Test

First, the overhead of our dispatching scheme needed to
be measured. Since high PCle latencies would distort the
results we forgo them at the moment. For this purpose,
we restricted the test scenario to a situation where all data
needed was already present on the board, so the FPGA cache
controller was not needed. This is also a realistic use case,
commonly seen in MPSoC systems with an ARM processor
as host. To put the maximal load on the packet processor
we also limited the eight available accelerators to perform
simple vector copy operations with very few work. Here the
copy was simply a single read and write access on the bus
with minor parameter parsing and setup time. Therefore,
very shortly after the dispatch, the packet processor was
confronted with an answer form the accelerator core. In
this setup we fixed the AQL queue size to 128 packets and
configured our MIPS host processor to write 1000 kernel
dispatch packets to the queue. We chose to write them one
by one and not as a batch submission to further increase the
bus traffic. Every time when no more slots were available
in the ring buffer, the host had to wait until an older task
has finished, in accordance with the HSA standard. In this
setup shown in Fig. 6 accelerator core zero received the
first job after 14.51us. In comparison the interval without
any additional bus traffic amounted to a mere 14.06.s. This
difference was directly caused by the additional time needed
for the packet processor to fetch the packet data while the
host wrote new tasks concurrently. The completion signal of
the first packet arrived after 26.06.s at the host processor.
For all 1000 packets a total of 13.73ms was needed. The
measurements were also compared to the duration of strict
sequential processing. For this purpose, the packet processor
software was modified such that the next packet is not
processed before the completion signal of the previous one
had been sent. In this situation the system needed 20.10ms
for the same 1000 kernel dispatches. Consequently 32% of
execution time could be saved. This proves that the packet
processor is capable of efficiently handling multiple tasks in
parallel. This means the packet processor can dispatch up to
72833 tasks per second at 100 MHz clock speed. Since real
workloads, e.g. for high quality image processing, usually
need much more time to process, the presented hardware is
well suited for its purpose, even at lower frequencies.

A special characteristic of this test scenario was that
the execution time of the actual task was lower than the
dispatch latency. This means all work was handled by
a single accelerator core, even when several more were
present in this system. To lessen this effect to a point
where all cores are used, we increased the vector length to
256 times more data to copy. The basic task sequence as
described in Fig. 6 remained the same. However, this time
accelerator zero has not finished execution yet when the

J Sign Process Syst (2019) 91:745-757

753

Figure 6 Basic sequence
diagram of the first testcase. All Host
AQL packets are scheduled and

Packet Accelerator
Processor Core O

dispatched to the same core. T
AQL IRQ 1
QL IRQ -
14.51 us
DISPATCH IRQ 1
26.06 us >
AQL IRQ 2
QL IRQ s
COMPLETION IRQ 1
-<— Q 5 < DONE IRQ 1
FINISHED TRQ 1 DISPATCH IRQ 2
AQL IRQ 3 -
QL IRQ — >
COMPLETION IRQ 2 -<—
> DONE IRQ 2
FINISHED IRQ 2 DISPATCH IRQ 3

packet processor received a new AQL packet. Therefore it
had to be dispatched by another core. The same held true
for the following packets such that further dispatches had
to be stalled until one of the accelerators concluded. In
this scenario the host received the completion signal after
133.06us. With 114.62us 86.1% of this time was spent
in the first accelerator core. The last packet finished after
22.14ms passed since the first one has been submitted to
the queue. Therefore, this scenario took 61% longer than
the first one. Considering the 256 times as much data to be
transferred and the occurring bus contention this is only a
minor increase. This still holds even when accounting for
the additional accelerator cores used. On the one hand, this
phenomenon can be explained by a better bus utilization,
up to the point where contention problems arise. On the
other hand, the packet processor has more work available at
all times and therefore spends less time in idle states. This
effectively hides the dispatching time and the setup latencies
of the accelerators, making the whole system more efficient.

5.2.2 SVM Capabilites

In setups where the FPGA is a PCle add-in card, the
previous observations need to be adapted to account for the
additional copy latencies. As explained in Section 3.2 the
copying is fully automated by the FPGA cache controller
unit, but acquire and release memory fences may need to
be applied by setting the appropriate bits in the packet
header. In this test cases the block size of FCC was set to
2 MB to match the size of x86_64 huge pages. Our Virtex
UltraScale board provides a PCle 3.0 x8 interface which
can theoretically transfer up to 7.9 GB/s. This bandwidth
is unaccounted for the protocol overhead and additional
latencies and real rates are most probably lower. That means
the following measurements are a worst case scenario for
LibHSA. Since we only have a MIPS host processor, these

(]

transfer times of about 260us for 2 MB were approximately
simulated by this unit. To maximize the load on the LibHSA
components a simple multiplication by two was used again
as an “‘accelerator core”. Nevertheless, this also accounts
for setup times with realistic kernels (e.g. processing of
arguments written to the unit by the packet processor). The
amount of data was chosen to be transferable in a single AXI
burst at 16 beats length in each direction.

First, a single kernel with an acquire and release fence
was tested. This is a common use case for a wide range of
kernels when only a single task is to be computed by a GPU.
For now kernel arguments and data resided in the same 2
MB page of the host address space. This means only a single
transfer was needed to fetch both, but naturally this is not
a requirement. Figure 7 shows the corresponding sequence
diagram. The packet processor applied the specified acquire
fence 3.85us after the packet has been submitted. Since
there was no dirty data in the cache at the beginning, FCC
only had to check if all valid signals were unset, which
takes 1.50us. Next, 11.72us after the packet arrived, the
packet processor started fetching the kernel arguments with
a simple AXI transfer. This was needed as described in
Section 3, because there is only a pointer to the kernel
arguments embedded in an AQL packet. This access was
done with an untranslated address, so that FCC had to
resolve it and ultimately request the copy of the whole 2 MB
block. 259.85us later the transfer finished and all additional
data access could be done locally. The packet processor
then needed an additional 1.22us to dispatch the kernel to
the accelerator core. After the core had processed the data
there were two further steps which needed to be done. First
the release fence had to be applied. This happened after
5.04ps and flushed the whole 2 MB block, where the dirty
data resided, back to host address space. Again, this took
quite some time as shown before when loading the data.
Finally the completion signal arrived 551.55us after the

@ Springer

754 J Sign Process Syst (2019) 91:745-757
Host Packet FPGA cache Accelerator
Processor controller Core O
AQL IRQ
 — >>m ACQUIRE IRQ
< - 11.72 us
DONE IRQ _
AXI CACHE MISS
L] 272.79 us
259.85 us
S51.55 ue ,.,F?T?f‘.ﬁ.‘?.?ﬁ?’ﬂ?.‘f?.’?‘.'ﬁ.,,D DISPATCH IRQ
‘ <]
5.04 us § L DONE IRQ
RELEASE IRQ D
264.94 us
y __ COMPLETION IRQ \ \: DONE IRQ

I —
FINSHED IRQ > L7

Figure 7 Sequence diagram of one kernel dispatch. Data and kernel arguments were not present in local memory and thus had to be copied by

FCC.

AQL packet had been submitted. Therefore 95.1% of the
time had been spent copying data between different memory
regions.

Compared to the scenario where all data was already
local on the board, a vast amount of additional time was
needed. This can not be avoided, but handling these cases
is automatically done by hardware. As with GPUs it is only
reasonable to use this processing scheme if the benefit is
great enough to justify the transfer costs. One way to reduce
unnecessary flushes is the fine-grained use of memory
fences. When multiple successive AQL packets operate on
the same working set, fences with system scope are usually
only needed in the first and last packet. Once the data is
fetched by the FPGA cache controller the work is processed
similar to the previous local test cases.

To demonstrate this capability we ran another example
directly after the previous test case. This time 1000 packets
were launched and each one multiplies the data in a
newly malloced buffer by two. Thereby the host was not
interested in intermediate results, so a release fence was
only needed in the last packet. However, to make sure the
newly allocated data buffer was visible to the accelerator
the first one also needed an acquire fence. Thus in total
two copy operations to and from the host were performed.
To reduce bus contention we set a completion signal for
every packet, so that we did not need to perform active
waiting for an excessive amount of time on a variable in
shared local memory. The sequence diagram is similar to
Fig. 7, but this time the host wrote multiple AQL packets

@ Springer

as visualized in Fig. 6. However, the packet processor
dispatches all intermediate tasks without involving the FCC,
because no memory fences were specified in the packet
header. The only acquire fence was applied 3.24us after
the first packet had been submitted. This needed 1.62us
to invalidate all cache lines. The respective data transfer to
fetch the new data was performed after 11.54us while the
first completion signal arrived at the host after 284.18us.
Subsequent completion signals arrived every 12.84us. This
was possible due to the absence of intermediate copies.
Finally the only release fence was applied 13.11ms after the
first packet had been submitted. The whole batch of work
needed 13.38ms to process. In this usage pattern only 3.9%
of the time was spent transferring data between the disjoint
memory regions of host and agent. The amount of work to
set up this behavior of the hardware is negligible because
only two header entries per AQL packet need to be set. This
proves that the FPGA cache controller eases the work of
application developers by enabling the “pointer is a pointer”
equivalence from the hardware side.

5.2.3 Image Processing Performance

The last scenario demonstrates the real-world use case of
image processing explained in Section 4. Since images are
usually stored in a contiguous block of memory we can also
implement the SVM without the FPGA cache controller,
but with a custom packet processor software as briefly
discussed in Section 3.2. We measured a total number of

J Sign Process Syst (2019) 91:745-757

755

5805 clock cycles (58.1us) for processing an AQL packet
and handling all associated dispatch steps as described in
Section 3.3. From that number 901 clock cycles (9.0us)
are spent in the initial phase after receiving the interrupt,
stating that new AQL packets arrived. This includes reading
and analyzing the packet, writing the DMA configuration
and sending the first DMA interrupt. This cost is nearly
constant for all kernel dispatches. Our accelerator needs at
least 1920 x 1080 = 2073600 clock cycles to perform a
filter operation on a full HD image, regardless of additional
bus traffic. This is a common workload and more than 350
times slower than the dispatch and shows that processing an
AQL packet is comparatively cheap. Even while managing
multiple accelerators in parallel the additional latency
introduced by DRAM bus contention is small, since the
packet processor transfers only approximately 100 bytes per
AQL packet over this bus. This is also negligible compared
to real data set sizes and other high latencies. In particular
data copy to the FPGA is generally very expensive due to
bus limitations and also far slower than our dispatch cost.

We also observed on our demonstrator board that the
DMA data copy cost needs the most time. As mentioned
in Section 5.1 this is due to our non-optimal DMA
unit replacement. However, if we again assume a PCle
3.0 x8 interface, the theoretical maximum transfer rate
unaccounted for the bus protocol overhead would be 7.9
GB/s. The authors in [1] proved that a bandwidth close to
the optimum is attainable. To match this rate we can increase
the AXI data bus width to 1024 bits for 100 MHz or 512
bits for 200 MHz. If we consider the 2.4 GB/s DDR4 data
rate of our Virtex UltraScale board we can still choose a
128-bit AXI bus at 200 MHz. If we account for this full
bus utilization in our measurements we need 31709.31us
(31.53 FPS) from packet arrival to completion signal for
full HD images. This shows that LibHSA does not limit the
attainable transfer rate and does not impact the performance
more than a non-HSA solution, but eases the integration
noticeably. The time spent copying data onto the FPGA
board and back via DMA cannot be considered a cost to our
library, since this has to be done in a real system regardless.
Moreover, the custom packet processor can also cache the
data in the FPGA DRAM so that subsequent kernels on the
same data can operate directly on the DRAM data without
further DMA access. Therefore, when our accelerator works
on the same image multiple times the associated packets
only need 20856.14us (47.95 FPS) or 34% less time than
the first operation. However, the time for the accelerator
core to process the kernel function is, strictly speaking,
also not a cost to our library and depends on the type and
implementation of the accelerator core actually connected.
All in all the throughput and latency penalty introduced
by LibHSA is negligible for workload sizes like Full HD
images which are commonly used nowadays.

6 Conclusion and Outlook

With LibHS A we provide a library with several components
that enable developers to make their own hardware
accelerator HSA compliant. Most components, like the
packet processor or FPGA cache controller, can be reused
for any custom accelerator, while we provide additional
hardware for accelerators with the same processing scheme.
By using AXI as a standard interface between components,
interchanging devices can be managed easily. LibHSA
was demonstrated by building a prototype with a weakly
programmable image streaming core as the back end. We
were able to synthesize our design on a Xilinx Virtex
Ultra Scale FPGA. Moreover we showed that several
packets can be processed at a time and executed on
multiple accelerator cores in parallel. Duration of packet
processing, data copying and data processing have been
evaluated and compared to each other. With this approach
we provide the first step to use FPGAs transparent in
modern heterogeneous computing architectures.
Nevertheless, as for the complexity of such a system,
various optimizations could speed up the entire processing.
While the accelerator core is capable of high frame rates,
data transfer on our on-chip prototype remains to be
our system’s bottleneck. However, this is not an inherent
design flaw of LibHSA, but rather a problem of a missing
high-performance DMA unit. In the future we will port
LibHSA to an off-the-shelf PC system by adding such
a PCle DMA unit, which is compliant with the HSA
standard and our interface. This unit could perform the
copy operations between the main and FPGA on-board
memory when requested by the FPGA cache controller on
runtime. Combined with our work this would be a further
step in establishing FPGAs in heterogeneous systems for
accelerated data processing similar to GPUs nowadays.

References

1. de la Chevallerie, D., Korinth, J., Koch, A. (2016). Fflink: A
Lightweight High-Performance Open-Source PCI Express Gen3
Interface for Reconfigurable Accelerators. SIGARCH Computer
Architecture News, 43(4), 34-39.

2. Georgakoudis, G., Gillan, C., Hassan, A., Minhas, U.,
Spence, I.T.A., Tzenakis, G., Vandierendonck, H., Woods, R.F.,
Nikolopoulos, D.S., Shyamsundar, M., Barber, P., Russell, M.,
Bilas, A., Kaloutsakis, S., Giefers, H., Staar, PW.J., Bekas, C.,
Horlock, N., Faloon, R., Pattison, C. (2016). Nanostreams Code-
signed microservers for edge analytics in real time. SAMOS, pp.
180-187.

3. Glossner, J., Blinzer, P., Takala, J. (2015). HSA-Enabled DSPs
and accelerators. In IEEE Global Conference on Signal and
Information Processing (GlobalSIP) (pp. 1407-1411).

4. Guidi, G., Reggiani, E., Tucci, L.D., Durelli, G., Blott, M.,
Santambrogio, M. (2016). On How to Improve FPGA-Based
Systems Design Productivity via SDAccel. In 2016 IEEE

@ Springer

756

J Sign Process Syst (2019) 91:745-757

5.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

International Parallel and Distributed Processing Symposium
Workshops (IPDPSW) (pp. 247-252).

Hennessy, J.L., & Patterson, D.A. (2011). Computer architecture
fifth edition: a quantitative approach, 5th ed. San Francisco:
Morgan Kaufmann Publishers Inc.

. HSA Foundation (2016). HSA Foundation Specification Version 1.1.
. HSA Foundation (2016). HSA Platform System Architecture

Specification 1.1.

. HSA Foundation (2016). HSA Programmer Reference Manual

Specification 1.1.

. HSA Foundation (2016). HSA Runtime Specification 1.1.1.
. Jaaskelainen, P.,, de La Lama, C.S., Huerta, P.,, Takala, J.H.

(2010). OpenCL-based Design Methodology for Application-
Specific Processors. In International Conference on Embedded
Computer Systems (pp. 223-230): 1EEE.

Janik, I., Tang, Q., Khalid, M. (2015). An overview of Altera
SDK for openCL A user perspective. In 2015 IEEE 28th Canadian
Conference on Electrical and Computer Engineering (CCECE)
(pp. 559-564).

Heinrich, J. (1994). MIPS R4000 Microprocessor User’s Manual.
Kim, N.S., Chen, D., Xiong, J., Wen-mei, W.H. (2017).
Heterogeneous computing meets Near-Memory acceleration and
High-Level synthesis in the Post-Moore era. IEEE Micro, 37(4),
10-18.

Mukherjee, S., Sun, Y., Blinzer, P.,, Ziabari, A K., Kaeli, D. (2016).
A comprehensive performance analysis of HSA and openCL 2.0.
In IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS) (pp. 183-193).

Radeon Technologies Group (2017). Radeon’s next-generation
Vega architecture. Tech. rep., Advanced Micro Devices (AMD).
Schmidt, M., Reichenbach, M., Fey, D. (2012). A Generic VHDL
Template for 2D Stencil Code Applications on FPGAs. In 15th
International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing Workshops (pp. 180-187).
Segal, O., Nasiri, N., Margala, M., Vanderbauwhede, W. (2014).
High level programming of FPGAs for HPC and data centric
applications. In 2014 IEEE High Performance Extreme Computing
Conference (HPEC) (pp. 1-3): 1EEE.

Severance, A., & Lemieux, G.G.F. Embedded Supercomput-
ing in FPGAs with the VectorBlox MXP Matrix Processor.
CODES+ISSS 13, IEEE Press, pp. 6:1-6:10.

Su, L.T. (2013). Architecting the future through heterogeneous
computing. In IEEE International Solid-State Circuits Conference
Digest of Technical Papers (pp. 8—11).

Wu, Q., Ha, Y., Kumar, A., Luo, S., Li, A., Mohamed, S.
A heterogeneous platform with GPU and FPGA for power efficient
high performance computing. In 2014 14th International Symposium
on Integrated Circuits (ISIC) (2014) (pp. 220-223): IEEE.

Marc Reichenbach received
his Diploma degree in
Computer Science at
Friedrich-Schiller University
Jena in 2010 and his PhD in
2017 at Friedrich Alexander
University Erlangen-Niirnberg
(FAU). He now works as a
postdoctoral researcher at
FAU at the chair of Computer
Architecture. His research
interests are embedded sys-
tems, especially smart sensor
architectures for varying
application fields.

@ Springer

Philipp Holzinger received
his Master’s degree in
Computer Science at the
Friedrich ~ Alexander Uni-
versity Erlangen-Niirnberg
(FAU) in 2017. Currently he
is a research fellow at FAU at
the chair of Computer Archi-
tecture. His research interests
are heterogeneous system
architecture, especially with
a focus on HSA Foundation
standards, FPGA accelerator
design, high-level synthesis
and deep learning.

Konrad Haublein studied
at the University of Applied
Science in Jena. He holds a
Diploma degree in Mecha-
tronics and a Master’s degree
in Electrical Engineering.
In 2012 he started as a
Ph.D. student at the chair
of Computer Architecture
at Friedrich Alexander Uni-
versity Erlangen-Niirnberg
(FAU). His research inter-
ests are smart cameras,
generic hardware architec-
tures and embedded hardware
accelerators.

Tobias Lieske received his
Master’s degree in Infor-
mation and Communication
Technology at Friedrich
Alexander University (FAU)
Erlangen- Niirnberg in 2015.
Currently he is a research
fellow at FAU at the chair of
Computer Architecture. There
he focuses on low-power
system design, architecture
generation and accelerator
design.

J Sign Process Syst (2019) 91:745-757

757

Paul Blinzer works on a wide
variety of Platform System
Software architecture projects
at Advanced Micro Devices,
Inc. (AMD) as a Fellow for
heterogeneous system soft-
ware in the Radeon Technol-
ogy Group. Living in the Seat-
tle, WA area, during his career
he has worked in various
roles on system level driver
development, system software
development, graphics archi-
tecture, graphics & compute
acceleration since the early
’90s. Paul is the chairperson of

the “System Architecture Workgroup” of the HSA Foundation. He has
a degree in Electrical Engineering (Dipl.-Ing) from TU Braunschweig,
Germany. https://www.linkedin.com/in/paul-blinzer-4523602

Dietmar Fey holds a Diploma
degree in Computer Science
from Friedrich Alexander
University (FAU) Erlangen-
Niirnberg, = Germany. In
1992 he received a Ph.D.
from FAU with his work on
“Using Optics in Computer
Architectures”. From 1994
to 1999 he researched at
Friedrich-Schiller-University
Jena where he completed his
“Habilitation”. From 1999 to
2001 he worked as a lecturer
at Siegen University before he
became a professor of Com-
puter Engineering at Jena University. Since 2009 he has led the Chair
for Computer Architecture at Friedrich Alexander University (FAU)
Erlangen-Niirnberg. His research interests are parallel computer
architectures, programming environments, embedded systems, and
memristive computing.

@ Springer

https://www.linkedin.com/in/paul-blinzer-4523602

	Heterogeneous Computing Utilizing FPGAs
	Abstract
	Abstract
	Introduction
	Related Work
	LibHSA Conception
	HSA System Architecture Specification
	Library Overview
	Platform Integration

	Use Case: Image Processing
	Results
	Synthesis Results
	Performance Results
	Packet Processor Stress Test
	SVM Capabilites
	Image Processing Performance

	Conclusion and Outlook
	References

