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Abstract
This paper presents a scalable method of near duplicate image detection based on Gist-PCA (principal component analysis)
hashing. While most of transform coding methods have been interested in nearest neighbor search with applications to
similar image search, we solve a range search problems found in near duplicate detection problems. At first, we argue that the
PCA hashing of the Gist descriptor is adequate for near duplicate image detection. Then, we decompose the Gist-PCA binary
code into a hash key and a residual binary code for scalability into large-scale datasets. In addition, a multi-block approach
is incorporated into the method to deal with strong variations, such as image cropping and border framing. Experimental
results show that the proposed method is more accurate and faster than the real-valued Gist descriptor and other nearest
neighbor search methods.

Keywords Content-based image retrieval · Near-duplicate image detection · Hashing technique · Large-scale multimedia
search

1 Introduction

Near duplicate image detection is a key component of
Internet or large-scale image processing and analysis. For
visual search engines, the duplicated images are considered
image spams [22], and can be regarded as useful data to
be mined [24]. More interestingly, copyrighted/offensive
contents and spam can be filtered, or same category images
can be found by search near duplicate images from the
manually pre-confirmed dataset [14, 25].

Finding near duplicate images among millions to billions
of image datasets is very challenging as in a web-scale
image search, however this is different from a general
image search, which finds approximate nearest neighbors.
First, near duplicate image detection should answer the true
or false question by determining a threshold controlling
true/false positives. False positives eliminate valuable
images, and false negatives result in insufficient removal
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of identical images. Second, more resources are needed
for the following main multimedia applications, in which
the detection process acts as a pre-filter or underlining
sub-module. The image description should be compact for
storage and access efficiency, and duplicate detection needs
to be very fast and accurate with light memory usage. In
addition, it is desirable that the technical solutions are easily
adapted to general image search problems [2].

The early near duplicate image detectors were based
on the hashing-based approaches adapted from document
processing. While image search engines retrieve similar or
relevant images in a ranked order by measuring distances
in high-dimensional feature space, the near duplicate image
detectors have been developed to find perceptually/visually
identical images by counting hash key collisions between
binary codes. Ke et al. [14] introduced a near duplicate
detection system by employing locality-sentive hashing
(LSH) to index local descriptors, but it was only applied
to a small dataset. Chum et al. [5, 6] adopted the min-Hash
algorithm to local descriptors instead of LSH and extended
the scalability by improving efficiency and accuracy. Those
local descriptors are robust against viewpoint changes [6]
and partial occlusions [12], but the computational cost is
very expensive.

Others represent images by global features called signatures
or fingerprint in the field of content-based image retrieval,
and this is found to be scalable to millions to billions
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images. Zhang et al. [28] represented an image by the
average intensities on a regular grid, and its concatenation
is defined as a global image feature. The feature vector is
projected by PCA and quantized into a hash code. Their
experimental results are shown on 2.5 million images,
and similar algorithms was reported to work in billions
of images in an image-based annotation system [24].
Douze et al. [7] demonstrated the Gist descriptor, which
was originally proposed as a computational model of the
recognition of real world scenes [19], is suitable for large-
scale near duplicate detection. Their method outperformed
the state-of-the-art method, i.e., bag-of-features based on
local features, in terms of accuracy, memory efficiency,
and search speed. In the bag-of-features image search
framework, they quantized the Gist features by k-means
clustering, and the residual vectors were embedded into
hamming space. Their efficient indexing structure of
the Gist descriptor resulted in comparable accuracy to
exhaustive search.

In the field of near-duplicate image detection, other
visual descriptor are proposed instead of Gist descriptor.
[17] proposed a variable-length signature and utilized the
earth mover’s distance to compare the variable-length
signatures. Furthermore, in [29], an efficient coarse-to-fine
Riemannian image serch strategy was developed to improve
efficiency while keeping accuracy.

Recently, learning-based transform coding has been
getting attention for approximate nearest neighbor search
because it represents images or high dimensional feature
vectors as compact binary codes while preserving their
neighborhood structure and/or relative distances. Torralba
et al. [20, 21] employed supervised machine learning
methods based on boosting and the Restricted Boltzman
Machines (RBMs) to compress the Gist descriptor into a
few hundred bits. Other approaches that have been utilized
include unsupervised or semi-supervised machine learning
techniques. Those methods mostly depend on PCA for
dimensionality reduction and then encode the projected
vectors into binary codes using various quantization
techniques [3, 8, 13, 23, 26]. In [26], spectral hashing
(SH) method assigned more bits to more relevant directions,
and in [23], the semi-supervised hashing (SSH) algorithm
relaxed the orthogonality constraints of PCA. Jegou et
al. [13] showed that applying a random orthogonal
transformation to the PCA-projected data works better than
SH and SSH. Gong and Lazebnik [8] improved the previous
methods by applying an orthogonal transformation, which
directly minimizes the quantization error, called iterative
quantization (PCA-ITQ). Furthermore, the relationship
between nearest neighbor search and signal quantization
was investigated by both Chandrasekhar et al. [4] and
Brandt [3].

Most of the previous PCA hashing applied to image
descriptor focus on similarity preserving property and
coding error minimization but do not pay much attention
to optimizing the performance in terms of receiver
operating characteristic (ROC) curve or precision-recall
curve. Near-duplicate image detection is one of the
important applications belonging to this category. For
example, in an e-commerce service, near-duplicate products
should be hidden or grouped in the search results. Also, for
content-based image search, near-duplicate images should
be grouped with high precision in order to extract shared
keywords from surrounding texts. Another example is
copyright protection, except original copyrighted images,
other near-duplicate images should be prohibited to be
exposed in public or search results. In this paper, we
present a fast and efficient large-scale system for near
duplicate image detection based on PCA hashing. While
other transform coding methods are interested in nearest
neighbor search for similar image search, we introduce an
effective and efficient range search method aiming to solve
near duplicate detection problem by revisiting Gist-PCA
hashing. Our contributions are threefold:

– We argue that a PCA binary coding of the scene gist
is better for near duplicate image detection because
a PCA binary embedding can keep as much distance
information as a PCA transformation does (Section 2.)

– We propose a scalable method of near duplicate image
detection by decomposing a Gist-PCA binary code into
a hash key and a residual binary code, for large-scale
duplicate image detection (Section 3.)

– The multi-block approach, i.e., encoding cropped image
regions as well as a holistic image region, can be further
incorporated to effectively deal with strong variations,
such as image cropping and border framing (Section 4.)

The paper is organized as follows. Section 2 explains
how to encode the global image characteristics based on
Gist-PCA hashing. In Sections 3 and 4, we introduce
the bit decomposition and multi-block approach for large-
scale retrieval and the accuracy improvement, respectively.
Experimental results are presented in Section 5, and we
conclude in Section 6.

2 Binary Image Representation for Near
Duplicate Detection

The near duplicate images are herein defined as the images
related by image-to-image transformations, including var-
ious photometric and geometric deformations, such as
contrast change, jpeg compression, resizing, cropping, bor-
der framing, and watermarking. In other words, they are
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Figure 1 Simulated image variation for the near duplicates and the Hamming distance from the original image. The first rows are the original
image and its near duplicate variations. In the second row, the near duplicate variation name and their hamming distance for the 128-bit binary
code are shown.

regarded as perceptually identical images instead of images
taken from identical objects/scenes [5, 7]. The examples of
near duplicate image variations 1 are presented in Fig. 1, and
more details will be given later in Section 5.

To encode the perceptual similarity of images, the Gist
descriptor is used. It is originally proposed to capture a
set of perceptual dimensions of visual scenes in [19], and
recently, it has shown promising results for image search
[7]. The Gist descriptor is extracted by concatenating 20
Gabor responses to 4x4 non-overlapping image blocks, and
it is represented by a 960-dimensional real-valued vector,
for color images. The visual similarity between different
images can be measured by computing the Euclidean (L2)
distance in the Gist vector space.

Given a query image Iq , our goal is to search the near
duplicate images in the database {I1, · · · , IN } ∈ Iref . Their
corresponding Gist descriptors are represented by xq ∈ R

n

and X = {x1, · · · , xN } ∈ R
n, respectively, where n is

vector dimension. The image similarity between the query
xq and a database image xi ∈ X is measured by the L2

distance, i.e., d(xq, xi ) = ‖xq − xi‖2. The set of near
duplicate images Xq are determined by checking that the
Gist descriptor of a database image is located within a
certain distance, dGist , from a query vector, i.e., Xq =
xi |d(xq, xi ) ≤ dGist , xi ∈ X }, and the other database
images, i.e., the complements in Iref , outside the range are
non-duplicate images: X �

q .

1 They include intensity change (brightness 50, dark 50), blurring
(blur 11x11), resizing (resize h3w3), jpeg compression (jpegcomp 10,
jpegcomp 15, jpegcomp 20). image cropping (centercrop 10, cen-
tercrop 20, leftcrop 10), border framing (border w10, border w20,
border b10, border b20), and watermarking (watermark s1a4, water-
mark s2a5). Notationally, the first string and the following number
denote the variation type and degree, respectively. In border type, b

and w mean the black and white border frames, respectively. In crop-
ping, the “centercrop” and “leftcrop” differ in the alignment before the
cropping, and the next degree is the cropping ratio in terms of image
width and height, which is different from the surface cropping ratio
provided in Copydays.

The determination of the distance threshold, dGist , is
critical for the performance of near duplicate detection.
When the threshold is too large, non-duplicate images are
misclassified as near duplicate images, and when it is too
small, many near duplicate images are missed. It can be
fixed for all the queries or vary adaptive to each query.
For the near duplicate image detection, we found that the
advantage of the adaptive threshold is not big after binary
quantization, and it is not easy to find the adaptive threshold
for a query. The fixed threshold is used in this paper, and
it can be determined in the training stage when the allowed
false acceptance rate is given.

2.1 Binary Coding

To deal with millions and billions of large-scale images,
the size of the real-valued high-dimensional descriptors is
too large to store, and the distance computation is too
heavy to be instantly performed, so the compression of the
descriptor is crucial. For compact binary coding, while other
(approximate) nearest neighbor methods only maintains
the local neighborhood structure, we try to find a binary
embedding that keeps the distance information as much
as possible, so that a range query can discriminate near-
duplicate and non-duplicate images. In other words, when
the near duplicate images are within a certain range in the
original vector space, it is expected that they can also be
found in a certain range in the quantized space.

An m-bit binary coder, h : R
n → {0, 1}m, of a n-

dimensional vector is designed to retain the original distance
structure as much as possible. In the transform coding
framework, the binary coding can be broken into two steps.
First, the Gist descriptor (x ∈ X ) is transformed into a low-
dimensional vector space f : Rn → R

k , then the vector are
encoded into a binary code by b : Rk → {0, 1}m. The first
step is called transform coding (f (·)) and the next is binary
quantization (b(·)).

Let h(xq) and h(xi ), be the m-bit binary codes
corresponding to the Gist vector of a query image xq and
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that of a database image xi ∈ X , respectively. We then
model the Gist vectors, xq and xi , as random vectors drawn
from an underlying unknown distribution. The sets of the
binary codes belonging to the ground truth of near duplicate
images and the others are denoted by Bq and B�

q for the
query h(xq), where h(xi ) ∈ Y ≡ {0, 1}m, and B =
Bq

⋃
B�

q . Therefore, a desirable binary coding needs to
maximize the range preserving probability:

N∑

i=1

P
(
h(xi )∈Bq |xi∈Xq , xq

)−λP
(
h(xi )∈Bq |xi∈X �

q , xq

)
, (1)

for any query xq , where λ is a weighting factor. The
binary code maximizes the probability that true duplicates
are located within a certain range and at the same time
penalizes the probability that non-duplicates are inside
the range. In terms of ROC criteria, the first and second
terms are correponding to high detection rate and low false
acceptance rate, respectively. While most of the previous
hashing methods have been applied to image descriptor
focusing on similarity preserving property and coding error
minimization, we are optimizing the performance in terms
of receiver operating characteristic (ROC) curve in Eq. 1.

2.2 Gist-PCA Hashing

To find the optimal binary coding maximizing of the range
preserving probability (Eq. 1), PCA hashing is investigated.
Solving Eq. 1 is intractable because of the combinatorial
property of binary codes. In the paper, we describe why
PCA hashing is a better choice compared to other state-
of-the-art hashing methods with the similar preserving
property. We will explain it with comparison study and the
theoretical analysis for comparison of the performance of
PCAH and that of other state-of-art methods.

PCA is a linear transformation that allows coordinate
axes to be determined in such a way as to retain as much
distance information as possible in a mean-square sense
[27]. The principal axes of PCA learns which axes have
the largest variations, where the variations effect the L2

distance (i.e., mean square distance) most [3]. PCA embeds
a n-dimentional Gist descriptor xi into a k-dim vector space
(k ≤ n.) Given a training set, the Gist vectors are mean
centered by subtracting the data mean, denoted by t, and
they concatenate into a n × N matrix. From the covariance
matrix, the eigenvectors with the k-largest eigenvalues
construct transform coordinates, which are denoted byW =
{w1, · · · ,wk}.

Using the learned transform matrix W, PCA hashing is
straightforward. First, a mean centered Gist vector x̃i = xi−
x̄ ∈ R

n is projected into a low-dimensional vector space by
PCA: f (x̃i ) =

(
f1(x̃i ), · · · , fk(x̃i )

)
=

(
wT
1 x̃i , · · · ,wT

k x̃i

)
,

then it is quantized into a binary bit in each dimension:

b(yj ) = Q(yj ), where yj = fj (x̃j ) and Q(yj ) = sgn(yj ).
Therefore, the binary coding is represented by

zPCAH = h(xi ) = b ◦ f (x̃i )

=
(
Q(wT

1 (xi − x̄)), · · · , Q(wT
k (xi − x̄))

)
, (2)

for any gist vector xi .
This approach is deceptively simple, but it turns out that

this approach is better than other state-of-the-art methods
in terms of the range preserving probability in Eq. 1.
The binary coder in Eq. 2 is only PCA followed by a
binary quantizer with a hard threshold. In the perspective of
hashing, the Gist vector space is partitioned by the hyper
planes orthogonal to the PCA principal axes wj , for j =
1, · · · , k, which have the most variations.

We assume that the maximization of the range preserving
probability requires the preservation of the L2 distance
metric of the original feature space after binary hashing
as much as possible. The problem is how to represent the
feature vectors using a small number of binary bits. First,
the PCA finds the most informative axes. The PCA axis
corresponding to the largest eigenvalue will preserve the L2

distance mostly faithfully because the axis contains most
variations. Second, the PCA minimizes the reconstruction
error between the original feature and the projection because
it retains the maximum variation.

State-of-the-art methods Before comparing PCAH with
other state-of-art methods including SH [26], LSH [11], and
ITQ [8], the major differences between each methods are
investigated. For given n-dimensional gist feature(x), the
feature is translated so that they are of zero mean(y = x−x̄).
Then, LSH projects y onto d-random axes, producing d-
dimensional feature yLSH = y ∗ (ALSH ) and quantize each
dimension to get final hash code (zLSH = sgn(yLSH )).
PCAH, ITQ, and SH transform y with PCA to get y′. PCAH
directly quantizes each component of y′ by thresholding
at zero(zPCAH = sgn(y′)). ITQ rotates y′ by multiplying
an orthogonal matrix to minimize the quantization error,
and quantize by thresholding at zero(zIT Q = sgn(y′ ∗
AIT Q). SH produces d eigen functions which apply equally-
spaced thresholds to each component of y′, resulting
in total d ∗ n components, and take d components of
smallest eigenvalues. Therefore, each component of y′ can
be assigned varying number of bits and each bit can be
quantized with many thresholds(note that PCAH, ITQ, and
LSH have only one threshold at zero).

2.3 Comparison Study

We experiment on Copydays [13], which is the most popular
benchmark for near-duplicate detection. Peekaboom dataset
is used for training hash functions. Figure 2a shows a ROC
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Figure 2 The comparison of ROC, FAR, and DR for the compared methods.

Figure 3 The example of the distance statistics of near-duplicate images from an original image.

J Sign Process Syst (2019) 91:575–586 579



curve of the state-of-the arts methods and the proposed
method. As shown in Fig. 2b PCA hashing has a wider
range of acceptable thresholds than ITQ and LSH. On
the other hand, Fig. 2c shows that PCA hashing has a
detection rate larger than the SH for a fixed threshold. This
observation will be also theoretically backed up to explore
the performance of PCA hashing in a ROC curve.

Also, Fig. 3 shows visual results of the compared
methods. the correctly retrieved images, the correctly
rejected images, and falsely detected images are marked in
cyan, yellow, and margenta, respectively. PCA hashing has
a better discriminativing power to seperate the true positive
(correctly retrieved) and true negative (correclty rejected)
images.

The first step will show that, for fixed low false alarm
rates, the range of the hamming ball size (threshold)
for PCA that meets FAR constraints is larger than other
methods. In this step, you will see that PCA has smaller
variances in hamming distances between arbitrary queries,
which results in the larger range of the permitted threshold.

The Relationship between FAR and Its Threshold For arbi-
trary images A and B, the false alarm rate for threshold γ

can be written as

FAR = P(dH (A, B) ≤ γ |L(A) 
= L(B))

= P(dH (q1, q2) ≤ γ ), (3)

where q1 and q2 are the binary hash codes of arbitrary but
distinct query images.

Now, we will focus on the maximum threshold (γmax)

allowable for a fixed low false alarm rate of each hashing
method. A typical FAR is in the range of 0.01 − 0.1,
which is much smaller than 0.5. Then, the analysis of
dH (q1, q2), which is the hamming distance of arbitrary
queries q1 and q2, is necessary to compare the γmax of
each hashing methods. The key property of dH (q1, q2)
is that its mean is fixed to d/2 for any hashing method
that assigns 0 and 1 with equal probability(i.e. mean-
centered bits) (E[dH (q1, q2)] = E[∑d

n=1 dH (q1n , q2n)] =
∑d

n=1 E[dH (q1n , q2n)] = ∑d
k=1 0.5 = d

2 ). Most hashing
methods, including PCAH, SH, LSH, and ITQ, adopt a
mean-centering process (translation of data points so that
they are of zero mean), which results in the equal probability
of 0 and 1 for every bit. Therefore, for the methods we will
deal with, we can assume that he mean value of dH (q1, q2)
is fixed to d/2. Next, we consider Var(dH ) (the variance of
dH (q1, q2)) of each method. If the variance is large, as in the
case of ITQ in Table 1, the γmax s.t. P(dH (q1, q2) ≤ γ ) =
FAR will be small. This observation simplifies our original
purpose of showing that PCAH has minimum variance, and

that other methods have variances larger than that of PCAH.
This statement is strongly supports the notion that PCAH
has the largest largest γmax with an accompanying low false
alarm rate.

3 Binary Code Decomposition for Scalability

A PCA projection of the Gist image description is
decomposed into a hash key and a residual binary code
for fast neighbor search and compact storage, respectively.
A PCA-hashing-based binary hashing method of the Gist
image descriptor is introduced by decomposing a PCA
quantized vector into a hash key and a residual binary
code for efficient storage and search. The k-most significant
bits of the binary code are used as a hash key for
coarse vector quantization, then the retrieved codes are
finely measured in Hamming distance for the residual bits.
The PCA transform coding followed by quantization can
more effectively separate near duplicate images from other
visually similar non-duplicate images, compared to other
sophisticated coding techniques [3, 8] and even to the
uncompressed real-valued Gist descriptor. Also, we show
that it is closely related to the bag-of-feature image search
architecture with hamming embedding [7].

To retain enough information, the length of the PCA-
based binary code will be at least 64 bit, which contains
78.9% of the energy of the data, with 128-bit length
where 87.4% is desirable for practical applications.
The exhaustive search is too expensive in large-scale
datasets, and the hash table size will be too large to
fit into memory. In [21], the 30-bit was a practical
maximum at a moderate-level of PC memory (230 × 8
bytes/table entry = 8G Bytes) in a single machine. To
deal with the longer binary code, we decompose the
binary code into a hash key and a residual binary code.
The k-bit binary code in Eq. 2 is decomposed into the
following two codes: h(xi ) = (h1(xi ), h2(xi )), where
h1(xi ) = (

Q(wT
1 xi − x̄), · · · , Q(wT

l xi − x̄)
)
, h2(xi ) =(

Q(wT
l+1xi − x̄), · · · , Q(wT

k xi − x̄)
)
, and l ≤ k, for any

Gist vector xi . The first code h1(xi ) is the hash key, which
corresponds to the l-most significant bits of the binary
code, and the second code h2(xi ) is the residual binary
code, which stored for the finer range measure. It can
be interpreted that the Gist vector space is divided by
the hyperplanes orthogonal to the principal axes of PCA
(equivalent to K-means clusters), and then each cluster is
further quantized by the residual binary bits. The approach
is closely related to the bag-of-feature image descriptor with
hamming embedding [7]. The hash key and residual bits
correspond to the bag-of-feature quantizer and hamming
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Table 1 The comparision of variance of the-state-of-the-art methods.

PCAH LSH [11] SH [26] ITQ [8]

Mean dist 63.34 61.36 59.51 60.42

Near dist 47.38 38.01 40.28 35.13

Variance 34.15 75.14 51.30 135.65

Dist.

embedding, respectively, but the computational cost is
expensive because the bag-of-feature quantizer needs an
exhaustive distance comparison of the Gist descriptors.

To build the indexing structure, the l-bit hash key
constructs a hash table with a size of 2l , and the resid-
ual codes are stored into the corresponding hash buckets
in linked lists. Given a query xq , its binary code h(xq)

is decomposed into h1(xq) and h2(xq). Using the hash
key h1(xq), the buckets, including relevant images, are
selected when they are located inside the range dkey . The
buckets are found by selecting all the hash keys within
the hamming ball of size dkey , and the selected buckets
include the candidate items for near duplicate images:
Nh1(xq) = {

xi |dH

(
h1(xq), h1(xi )

)
< dkey

}
. The buck-

ets can be directly accessed by the address offset by the
sum of xor between h1(xq) and the precomputed ham-
ming ball. The distance of the items for each bucket is
measured in hamming distance between the full-length
binary code: dH

(
h(xq), h(xi )

)
. The distance can also be

computed by dH

(
h1(xq), h1(xi )

) + dH

(
h2(xq), h2(xi )

)
,

where the first distance is the same for the items in
the same bucket. The final items are an intersection of
those within the range distance d in the full length, and
those are stored in the buckets whose key values are
within the range distance dkey from the query vector. The
near duplicate image set is represented by Nh(xq) ={
xi |dH

(
h1(xq), h1(xi )

)
< dkey

} ⋂{
xi |dH

(
h(xq), h(xi )

)

< d} , for all the database images Ii .
In this method, there are three important parameters to be

determined: the hash key size l and the ranges dkey and d (or
dres = d −dkey). The hash key size l is related to the size of
hash table, and it also limits the maximum recall of the near
duplicates. If the size becomes larger, i.e., the hash table size
increases, the achievable maximum recall increases. In other
words, the larger values give better recall but need larger
memory size and more buckets to be searched. The distance
range dkey in the hash table determines the hamming ball
size achieving the maximum recall or the best recall with
small hamming ball size. The last parameter d is the range
parameter, which determines the maximum detection rate
for the allowed false alarm given by the system.

4Multi-block Image Description

Although the Gist feature is effective in near-duplicate
image representation, it is limited as a global feature. It is
effective for encoding the holistic region, but the local image
region or local details cannot be explicitly encoded. Therefore,
the performance degradation is seen in strong variations,
such as cropping and border framing. We solve the problem
using a multi-block approach, which encodes a cropped
region as well as the holistic region of an original image.

We use multiple query images instead of a single query
image. The multiple query images include the original query
image and its cropped images. Although other image vari-
ations can be further used, the cropping variation is most
effective in our near-duplcate image detection scenario. We
call it the multi-block image description because it is very sim-
ilar to the multi-block approach used in face recognition [10].

The incorporation of the encoding of the cropped region
plays several roles in near duplicate image detection. First,
since the cropped image regions not only corresponds to
one instant of cropping variations of a query image but also
removes the border framing from the database images, it can
deal with some of typical and error-prune variations of the
near duplicate images. The cropped image region acts as a
new query, and it is a kind of query expansion, which turns
out to be very effective in bag-of-feature methods for local
features. Second, a hybrid feature from the multiple image
regions effectively increases the discriminability of the
feature because the cropped region gives a slight different
perceptual set of the Gist features, which results in more
discriminability.

The multi-block approach produces multiple binary
codes for each image, so they should be combined. Two
alternative method is possible to compute distance. First,
the multiple codes can be concatenated into a single binary
code, but this approach increase the code length and it is
hard to combine with the previous hash-based large scale
search. Another approach is to multiple binary codes for
each image and compare all possible distances and take the
minimum distance. This is very natural in the context of
hash-table-based search. Given a query image, the query
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Figure 4 Comparison study. (Top row) mean average precision in terms of cropping and jpeg compression. (Bottom row) The ROC curve of the
proposed code (Left) and the iterative quantization code.

image has multiple binary features. For each binary features,
the possible candidates of the near-duplicate images have
retrieved. Without directly computing minimum distances of
the possible pairs, we decide the image as a near-duplicate
image only if one of the binary code is shorter than the query.

5 Experimental Results

We experiment on publicly available datasets, including
Copydays [7], Peekaboom [1], Mirflickr [9], and Tiny
images [20]. Copydays are mostly used to test the accuracy
of the compared methods, andMirflickr and Tiny images act
as distractors for scalability tests. For training the transform
matrix and tunning the parameters, a Peekaboom dataset is
used. Half of the set is used for training and the other half
is used for tunning the parameters and for evalution. For an
accuracy evalution, we measure the mean average precision
(mAP), which is computed from a precision/recall curve,
and we measure how many relevant images are searched in

the ranks [7]. Additionally, the detection rate (true positive)
and false acceptance rate (false positive) are used to evaluate
the performance as a detector or filter.

The near duplicate variations are tested in two ways. The
variations provided in the Copydays dataset is first used, and
they includes image croppings in terms of surface ratio and
jpeg compressions with image scale reduction. In addition,
more variations are generated to simulate the diverse near
duplicate images observed in real image collections, as
shown in Fig. 1.

5.1 More Comparison Study

We compare the proposed method (Gist+PCA+hashing)
with the state-of-the-art methods: the Gist descriptor (Gist)
and its PCA projection (Gist+PCA); the hashing methods
(Gist + PCA + VBA, Gist+PCA+ITQ, GIST+LSH), which
correspond to the optimal bit allocation [3]; iterative quan-
tization [8]; and locality sensitive hashing by random pro-
jection. They are also compared in the different dimension
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Figure 5 The hash table parameters and the decomposition verifica-
tion. (Left) The detection rates plot with respect to hamming ball size
for hash codes with various lengths. (Right) The compared mean aver-
age precision plots with respect to the near duplicate variations and

the hashing methods before and after the code decomposition. The
decomposition code is represented by ”Gist+PCA+hashTable” in the
following plots because it uses the hash table for speedup.

and code sizes: 64 and 128. The real-valued descriptors
(Gist, Gist+PCA) are the benchmarks for the hashing tech-
niques, and they are considered an upper bound for the
performance.

The first rows of Fig. 4 showed comparison results for
cropping and jpeg compression on the Copydays dataset
in terms of mAP for 157 queries. The proposed method
with 128-bits are the best performed in both cases, and
the optimal bit allocation (Gist + PCA + VBA) follows.
Interestingly, the 64-bit binary codes are comparable to
other hashing techniques (Gist+PCA+ITQ, GIST+LSH)
with 128-bit length. In the rows in Fig. 4, the ROC curves
are presented to show the detection and false acceptance
rates for the proposed code (Gist+PCA+hashing) and the
iterative quantization code (Gist+PCA+ITQ). When the
false acceptance rate is allowed at 0.05 (5%) in a system, the
proposed method can achieve an almost 90% detection rate
up to 20% cropping, while the iterative quantization method
remains below 50%.

5.2 Decomposition and Parameter Tuning

To decompose the full-length binary code, we need to find
the hash key length and the hamming ball size for the
maximum recall, i.e., l and dkey . We parameterize the hash
key length with 16, 32, 64, and 128 bits for 128-bit binary
code in full-length, and at each length, the detection rate
is computed with respect to the hamming ball size, i.e.,
the distance threshold. We set the parameters at the 10%
cropped images (centercrop 10), i.e., 19% cropping surface,
which is a strong attack. As shown in Fig. 5(left), For 16, 32,
64, and 128 bits, the maximum detection rate is achieved up
to approximately 77%, 95%, 97%, and 99%with a hamming
ball size of 4, 9, 21, and 59, respectively. Therefore, we set
the parameters: l = 16 and dkey = 4, and in this setting,
only 77% of near duplicate images can be tested for further
full-length comparison. This results in inevitable accuracy
degradation for the sake of real-time detection. The final
range threshold d is determined in the training stage when

Figure 6 Multi-block coding. (Left) The full-length code. (Right) The
decomposed code using the hash table. The number after “mb” is
the cropping rate for the multi-block region, and mb0.0 means the

multi-block scheme is not applied. The following “con” and “pw”
means the codes are compared by concatenating the vectors or a
pairwise comparision between multiple blocks, respectively.
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Figure 7 Scalibility test. (Left) 64-bit code. (Right) 128-bit code. Note that multi-block approach is not applied in the experiments.

the allowed false acceptance rate is given. Typically, it
ranges from 26 to 29 at 5% false acceptance.

The accuracy degradation by the decomposition is shown
in Fig. 5. In this experiment, 25,000 images from Mirflickr
are used as distractors, and Copydays are used for a test
set. The degradation can be neglected up to centercrop 10%
with 0.95 in mAP, and the mean average precision values are
still acceptable for leftcrop 10% and centercrop 20% with
0.94 and 0.86, respectively. Even in the centercrop 20%, the
degradation rate is less than 10%.

5.3 Effectiveness of theMulti-block Coding

The effectiveness of the multi-block encoding is shown in
Fig. 6. When the full-length code is considered, the multi-
block approach is slightly better than the PCA hashing, as
was expected in some cases: border w10 and border b10.
For the decomposed codes, the improvement is huge and
the mean average precision remains high. For the border
variation, the gain is over 2.1 and up to 3.1 in mean average
precision. That shows that the multi-block approach is very
effective for large-scale systems with strong variations.

5.4 Scalability to Large-Scale Images

Finally, scalability of the method is tested by increasing the
size of the distractors: 0 (no distractor), 25,000 (Mirflickr
25K), 1,000,000 (Mirflickr 1M), and 10,000,000 (10 M
random sample from Tiny images), Fig. 7 shows the results
for both 64-bit and 128-bit binary codes. For 64-bit code,
the mAP decreases very quickly and only centercrop 10%
can be handled well. However, for 128-bit code, the mAP
is good for the challenging variations, such as centercrop

20%, leftcrop 10%, and watermark s2a5 under 10 million
distractors.

To compute speed and memory usage at the larger scale,
29,000 queries from Peekaboom dataset for the centercrop
10% variation under 10 million distractors were tested and
the results are averaged for stable computation. The RAM
usage was 600M bytes, and the detection speed was 0.2
seconds on average on a single thread of 2.40GHz Intel
Xeon CPU. The detection accuracy is 0.89 in mean average
precision. When the hamming ball size of the hash table
is reduced from three to four for the sake of accuracy, the
speed is faster up to 0.07 sec, and the accuracy degradation
is not big, 0.85 in mean average precision.

Finally, the algorithm is evaluated on the video data
set with manual ground truth. We crawled 73,100 video
thumbnails (i.e., 438,600 images, considering that each
video has six thumbnails) with the most popular 673
keywords, and the near duplicate images are carefully
verified by a human expert within each keywords. The
different videos are determined as duplicates if more than
three thumbnails are within a certain range. We set the
false acceptance rate at 1.1%, and the detection rate of the
algorithm is 78.4% with the distance range d = 26.

5.5 Computation Time

As shown in Table 2, PCAH are the most efficient method
for training except for LSH, which does not require any
training process. Supervised hashing methods such as MLH
[18] and KSH [16] adopts optimization process for training,
and requires much more time than other compared methods.
Note that PCAH, ITQ, MLH and LSH spends same time
for testing, because they just multiply the transform matrix

Table 2 Training and testing
time of each method on
CIFAR100 dataset [15]+ 4k
distractor.

PCAH KSH [16] MLH [18] ITQ [8] SH [26] LSH [11]

Ttrain,32bit 0.138 128 964 0.349 0.264 −
Ttest,32bit 0.0234 0.267 0.0234 0.0234 0.105 0.0234
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of the same dimension(WT ∈ R
d×d ′

). However, the test
time of KSH and SH are much larger than others because
KSH needs to compute the distance between anchor and test
data, and SH uses multiple threshold for a single dimension.
All the experiments were implemented in MATLAB and
performed on the desktop with Intel-core i7 CPU at
3.30GHz and 16GB RAM.

6 Concluding Remarks

We proposed a scalable near duplicate image detection
method by decomposing the binary code of Gist-PCA
hashing and extending the holistic image region into
multiple blocks. Comparison studies and experiment results
verified the effectiveness in terms of accuracy, speed, and
memory usage. In future, we will find a more compact code
with sophisticated machine learning techniques and also
extend this work to similar image search problem.
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