
Journal of Signal Processing Systems
https://doi.org/10.1007/s11265-018-1356-9

Static Compiler Analyses for Application-specific Optimization
of Task-Parallel Runtime Systems

Peter Thoman1 · Peter Zangerl1 · Thomas Fahringer1

Received: 10 August 2017 / Revised: 3 December 2017 / Accepted: 19 March 2018
© The Author(s) 2018

Abstract
Achieving high performance in task-parallel runtime systems, especially with high degrees of parallelism and fine-grained
tasks, requires tuning a large variety of behavioral parameters according to program characteristics. In the current state of
the art, this tuning is generally performed in one of two ways: either by a group of experts who derive a single setup which
achieves good – but not optimal – performance across a wide variety of use cases, or by monitoring a system’s behavior
at runtime and responding to it. The former approach invariably fails to achieve optimal performance for programs with
highly distinct execution patterns, while the latter induces overhead and cannot affect parameters which need to be set at
compile time. In order to mitigate these drawbacks, we propose a set of novel static compiler analyses specifically designed
to determine program features which affect the optimal settings for a task-parallel execution environment. These features
include the parallel structure of task spawning, the granularity of individual tasks, the memory size of the closure required
for task parameters, and an estimate of the stack size required per task. Based on the result of these analyses, various runtime
system parameters are then tuned at compile time. We have implemented this approach in the Insieme compiler and runtime
system, and evaluated its effectiveness on a set of 12 task parallel benchmarks running with 1 to 64 hardware threads.
Across this entire space of use cases, our implementation achieves a geometric mean performance improvement of 39%.
To illustrate the impact of our optimizations, we also provide a comparison to current state-of-the art task-parallel runtime
systems, including OpenMP, Cilk, HPX, and Intel TBB.

Keywords Compiler · Runtime · Task parallelism · Static analysis · Task granularity · Parallel pattern

1 Introduction

Task-based parallelism is one of the most fundamental
parallel abstractions in common use today [1], with
applications in areas ranging from embedded systems, over
user-facing productivity and entertainment software, to high
performance computing clusters. It provides a convenient
programming model for developers, and is available in the

� Peter Thoman
petert@dps.uibk.ac.at

Peter Zangerl
peterz@dps.uibk.ac.at

Thomas Fahringer
tf@dps.uibk.ac.at

1 University of Innsbruck, Technikerstraße 21a,
6020 Innsbruck, Austria

majority of mainstream programming languages, parallel
extensions, and libraries.

While relatively easy to implement and use, achieving
good efficiency and scalability with task parallelism can
be challenging. Consequently, it is the subject of ongoing
research, and several large projects seek to improve the
quality of its implementations. Of particular interest are the
efficient scheduling of tasks in ways which optimally use
the underlying hardware architecture [2, 18], and research
into reducing runtime overheads by e.g. carefully avoiding
creating more tasks than necessary [15]. What is common
to most research in this area is that it is performed at a
library and runtime system level and focuses primarily or
exclusively on the dynamic behavior of a program. For
example, a runtime system might monitor the execution of
an algorithm and continuously adjust its scheduling policy
based on an active feedback loop [6].

Although these dynamic approaches have proven very
successful and seem inherently suitable for task-parallel

(2019) 91:303–320

/ Published online: 24 April 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-018-1356-9&domain=pdf
http://orcid.org/0000-0001-5146-1251
mailto:petert@dps.uibk.ac.at
mailto:peterz@dps.uibk.ac.at
mailto:tf@dps.uibk.ac.at

programs which might have highly input-data-dependent
control flow, they come with some drawbacks:

i) they can fundamentally not manipulate settings which
need to be fixed at compile time, e.g. because they
modify the layout of data structures in memory;

ii) dynamic monitoring at the library level can never
fully exclude any possible future program behavior,
preventing some types of optimizations; and

iii) any type of feedback loop will induce some degree of
runtime overhead. While its effect can be minimized
by careful implementation, even just performing some
additional jumps and branching to check whether any
adjustments should be performed has a measurable
impact in very fine-grained scenarios.

In order to mitigate these drawbacks, we propose a set
of static analyses designed to determine features of a task-
parallel program that can be used to directly adjust the
execution parameters of a runtime system. This approach is
orthogonal to runtime optimizations, and can be combined
with them in order to find an initial configuration – parts of
which might be further refined during program execution.
Our concrete contributions are as follows:

– An overall method determining task contexts within a
parallel program, performing analyses on each of them,
and deriving a set of compile-time parameters for a
parallel runtime system.

– A set of six novel task-specific analyses to determine
code features which significantly influence parameter
selection, such as the parallel structure or granularity of
execution.

– An implementation of this approach within the Insieme
compiler and runtime system [13], targeting five
runtime parameters which affect execution time and
memory consumption.

– An evaluation of our prototype implementation on 12
task-parallel programs on a shared-memory parallel
system with up to 64 hardware threads.

– An empirical comparison of our results using the
optimizations presented here with four state-of-the-art
task-parallel runtime systems, to put these findings into
a broader context.

This paper improves upon and extends work previously
presented by the authors [26], adding an additional target
optimization parameter, two more analysis algorithms, and
an in-depth state-of-the-art comparison.

The remainder of this paper is structured as follows. We
first provide some measurements illustrating the potential
improvements possible by optimal parameter selection in
Section 2. Section 3 describes our method, including
the overall approach, the targeted runtime parameters,
and each compiler analysis. The results of our prototype

Figure 1 Execution time of the Strassen benchmark.

implementation are discussed in Section 4. An overview of
related work is provided in Section 5 before concluding the
paper.

2Motivation

Before committing to investing the effort required to
implement our envisioned method, we estimated the
potential gain which might be realized by such a system.
To accomplish this goal, we fully explored the runtime
parameter space outlined in Section 3.1.2 – spanning a
set of work queue insertion policies and sizes, as well as
settings for several buffers and initial stack dimension – by
exhaustive benchmarking. The hardware and software setup
as well as the experimental procedure were the same as for
our final evaluation runs, and details concerning these are
provided in Section 4.1.

Figure 1 depicts a comparison between the default
compile-time parameter configuration for the Strassen
matrix multiplication benchmark [7], and the optimum
determined by exhaustive search. Note that the chart is
in log-log scale, and that with 32 threads the optimal
configuration is almost twice as fast as the default. Clearly,
the advantage increases with larger degrees of parallelism
– a behavior that will be confirmed across all benchmarks
in our later experiments, and which is a manifestation of
the intuitive idea that the parallel runtime system becomes
a progressively larger factor in performance with higher
thread counts.

Since two of the runtime parameters we identified as
candidate for static tuning primarily influence memory
consumption, Fig. 2 depicts a similar comparison for this
aspect of performance. The relative advantage is lower, but
still significant, reaching 36% in memory usage reduction
at 64 threads.

Across the full set of benchmarks described in
Section 4.2, Strassen is an average example in terms of

J Sign Process Syst (2019) 91:303–320304

Figure 2 Memory consumption of the Strassen benchmark.

optimization potential with optimal static parameter selec-
tion. As such, a maximum improvement by a factor of
1.97 in execution time and a reduction of 36% in memory
consumption is a very encouraging sign for our approach.

3Method

An overview of our proposed method is provided in
Fig. 3. Initially, a given task-parallel C or C++ program
is translated to a parallelism-aware compiler intermediate
representation by the existing compiler frontend .
Subsequently, as a first pass in our approach, the full
lexical extent of each group of tasks is determined, and
the code fragments identified are stored for future analysis
as individual Task IR . Each task code fragment is then
processed by the specialized analyses presented in this work
. The results of these analyses are aggregated as required,

and used to determine parameter settings for the parallel
runtime system . The compiler backend generates some
output code for the task parallel program , which, together
with the automatically configured runtime system, builds
the final output binary .

3.1 Runtime System

In this section, we provide an overview of the runtime
system our prototype implementation is based on, as well
as the set of parameters explored in this work. While
these parameters are specific to our runtime system, similar
parameters and concerns exist for all task-parallel systems
we are aware of. Crucially, our general approach of
task-specific static analysis for determining per-program
compile-time parameter settings is equally applicable to
other runtime systems, and could also be extended to cover
a larger set of parameters than the one implemented in this
proof-of-concept.

3.1.1 Runtime System Background

The Insieme runtime system which this work is based on
is designed to enable low-overhead task-parallel processing.
At a basic level, its implementation includes a set of
workers – generally one per hardware thread – maintaining
a local deque of work items, which are distributed in a
work-stealing manner. These work items correspond to
tasks in languages such as Cilk, but provide additional
features, including the ability to allow for work ranges with
runtime-directed splitting, binary multi-versioning [23], and
annotation of meta-data by the compiler [24].

This runtime system has been previously demon-
strated [23] to outperform many widely-used implementa-
tions of recursive task parallelism, and match or exceed the
performance of more optimized and specialized frameworks
including Cilk+.

3.1.2 Runtime Parameters

We will now describe the set of parameters explored in this
work, including their effect on the behavior of the runtime
system.

All investigated parameter values along with their
defaults (in bold face) are depicted by Table 1.

Figure 3 Overview of our
method.

J Sign Process Syst (2019) 91:303–320 305

Table 1 Tuned parameters with
all evaluated values (defaults
marked in bold).

Runtime Parameter Evaluated Values

Queue Policy
Self Push Back/Other Pop Back, Self Push Front/Other Pop Back,

Self Push Back/Other Pop Front, Self Push Front/Other Pop Front

Queue Size 4, 8, 16, 32, 64, 128

Event Table Buckets 97, 1021, 64567, 256019

Parameter Buffer Size 32, 64, 128, 256, 512, 1024

Stack Size 16 kB, 32 kB, 64 kB, 128 kB, 256 kB, 512 kB, 1 MB, 2 MB, 4 MB, 8 MB

Queue Policy The queue policy governs how the per-
worker deques are used by the runtime when new tasks are
generated or a worker is looking for a task to execute next.
By default, newly generated tasks are inserted at the end of
the executing worker’s deque, while a worker initially looks
at the front of its deque in order to find new tasks to execute.
If its own deque is empty, it will try to steal a task from the
back of another worker’s deque.

The position where newly created tasks are inserted and
from where tasks are stolen from other worker’s queues can
be configured, and thus our runtime can operate with a total
of four different queue policies, as shown in Fig. 4. In the
illustration, S refers to the worker itself while O refers to
some other worker operating on a remote deque during a
stealing operation. Note that while a worker always looks at
the front of its own queue for tasks, making this feature a
configurable parameter would only result in four additional
policies which mirror the behavior of the existing ones.
We have confirmed this idempotence across a large set of
benchmarks before eliminating this parameter from further
considerations.

The queue policy is expected to impact performance in
three major ways:

– Whether newer or older tasks are stolen will signifi-
cantly influence the granularity of the task – and how
many further sub-tasks it might spawn – for recursively
parallel algorithms which follow a divide-and-conquer
pattern.

– If a calculation is data-intensive, workers executing
the most recent task they generated can lead to
improvements in cache re-use, especially if e.g. parent
tasks make use of the data their children processed.

– When tasks are very fine grained and produced
frequently, a large number of accesses being focused on
one end of the deque can lead to lock congestion.

Queue Size The size of the per-worker deques determines
the maximum number of work items which can be held
at any point, per worker. In this context, it is important
to note that the Insieme runtime system performs lazy
task generation [15], as is common for high-performance
implementations of task parallelism. That is, if a worker’s
deque is full, a newly launched task will be immediately
executed sequentially, rather than generating the full set of
work item data and registration information required for
its eventual asynchronous execution and synchronization.
The underlying assumption is that in case the deque is
full, enough parallelism is available in the system, and the
overhead of generating more steal-able tasks can be avoided.

Due to this behavior – which is essential in order
to achieve high performance with fine-grained tasking –
selecting an effective queue size for a given problem
requires a trade-off between two conflicting goals. On the
one hand, the chosen size needs to be sufficiently large
in order to avoid a situation in which there are few or
no remaining tasks available in the system, leading to a
starvation of workers and inefficient parallel execution.
On the other hand, choosing a shorter queue can reduce
the overhead incurred for work item generation while a
sufficient number of them is available and/or more are being
generated at a good pace.

Event Table Buckets For use cases which unavoidably
require some type of global knowledge or bookkeeping,

Figure 4 Behavior of available
queue policies.

J Sign Process Syst (2019) 91:303–320306

such as work item synchronization, the Insieme runtime
system implements a thread-safe event table based on
open hashing and fine-grained locking. Since any delay
in synchronization will lead to low worker utilization,
the efficient implementation of this table is of utmost
importance, particularly for high degrees of shared-memory
parallelism. The default event table bucket count in
the Insieme runtime system is 97. We also conducted
experiments with some larger prime numbers.

The number of buckets in the event hash table needs to
be chosen based on the amount of active tasks which are
expected to require synchronization at the same time. If
there are few such tasks, a small bucket count will allow for
more effective cache utilization. However, if the number of
active tasks at any point becomes significantly higher than
the number of buckets, the open hashing implementation
will become significantly less effective, as the expected
event registration and triggering performance drops from
O(1) to O(N).

Parameter Buffer Size Whenever a task is generated by
an executing program, its set of parameters and captured
closure need to be stored for future use, potentially on
another worker. Crucially, this data might need to outlive
the current stack frame, and therefore requires heap storage.
In order to optimize this process for small tasks, the
runtime system allocates a fixed-size buffer area within
each work item data structure. If the required data fits
within that buffer, it is used directly. If not, an additional
heap memory allocation is required every time a task is
spawned.

If the required closure parameter data size for most
common tasks in a program can be determined statically, a
fixed buffer size accommodating these requirements can be
chosen exactly, eliminating the dynamic allocation overhead
without incurring additional memory requirements for over-
provisioning.

Stack Size Starting the execution of a new work item
requires allocating a stack frame for this task. While
a task-parallel runtime system can potentially grow the
stack based on demand, in a large-scale user-level tasking
scenario this quickly becomes a significant performance
hurdle and source of complexity. Therefore, a simple
solution in use in several existing systems, including the
Insieme runtime, is initially allocating a large stack (i.e.
equal to the OS maximum). By analyzing the per-task
stack requirements, the initial stack size can be reduced
for programs only storing a small amount of data on the
stack, decreasing memory requirements – and potentially
increasing performance e.g. in case the new size is small
enough to fit into per-thread storage provided by the
memory allocator in use.

3.2 Compiler Analysis

The central component of our approach are a set of compiler
analyses explicitly designed to determine information about
task-parallel codes which is relevant for configuring runtime
system parameters. In this section, we will first provide a
short overview of the compiler infrastructure we chose to
implement these analyses, and then describe each of them
in detail.

3.2.1 Compiler Background

In order to accomplish the analyses required for our
approach, a high-level intermediate representation (IR)
with native parallelism-awareness is advantageous. We
chose the Insieme research compiler infrastructure as its
INSPIRE IR [12] is designed to fully capture seman-
tics relevant for parallelism from a variety of input
languages.

A full description of this IR is beyond the scope of this
paper, and we refer the interested reader to the description
by Jordan [11]. For the purpose of our analysis discussion,
some features are of particular importance:

– Task-based parallelism is primarily encoded by the
set of constructs listed in Table 2, with an informal
description of their semantics. Note that the unit type
is the equivalent of void in C-like languages, i.e.
representing the absence of a return value.

– Built-in operands, functions in the original input
program, and functions generated during front-end
processing and optimization are encoded as Lambdas,
and referred to using LambdaReferences in a recursive
context.

Table 2 INSPIRE IR constructs for task parallelism.

Construct / Type Semantics

parallel (job) Launches a new parallel job

→ thread group with the supplied job description,

returning a thread group to synchronize on it.

job (range, f) Creates a new job with the given

→ job range, executing the lambda f

of type () → unit.

merge (thread group) Synchronizes the execution of

→ unit the given thread group, waiting

for it to finish before continuing

the current thread.

merge all () Synchronizes the execution of

→ unit all thread groups launched

by the current thread (non-recursively).

J Sign Process Syst (2019) 91:303–320 307

– Any data stored on the stack is allocated in Declaration
nodes. This includes variables in declaration statements,
as well as function call arguments and return values.

– All analyses on INSPIRE IR are inherently whole-
program and inter-procedural. Task execution generally
requires capturing of context data and passing exe-
cutable code as a parameter to a higher-order function,
so local analysis rarely provides useful insight for our
use case.

In addition to these features, some terminology related to
two fundamental concepts will be referred to throughout the
remainder of this section:

IR Nodes are the basic components which the IR is
comprised of. Each node n may have an arbitrary number
of child nodes Cn forming the sequence

[n1, n2, ..., nN]
and the directed acyclic graph (DAG) of nodes starting
from the main lambda represents an entire program.

Starting from some node n, we write ni to refer to the
ith child node of n, with further child nodes indicated by
additional indices in a tuple. For example, n(i,j) refers to
the j th child node of the ith child of n.

IR Addresses represent a specific position within a pro-
gram or smaller IR fragment. They consist of a root node
and a path, with the latter containing a list [i1, i2, ..., iD]
of child node indices. For a path length ofD, D−1 nodes
are traversed starting from the root node before arriving
at the node pointed to by the given address. Therefore D

determines the depth of an address.
When referring to an address, the sequence of nodes

indicated by the indices starting from and including the
root node r is designated as the address node sequence

[r, r(i1), r(i1,i2), ..., r(i1,i2,...,iD)].
In the context of a particular address, rij is the parent
node of r(ij ,ij+1).

3.2.2 Common Operations

Before describing individual analyses, we will first define
a set of common operations which simplify the formulation
of our algorithms.

call of (f,A) Refers to any call of the Lambda or
LambdaReference f with the given list of argument
expressions A.

all calls of (n, f) Thisoperation returns a set of all addresses
rooted at node n to calls of the construct f in any child node
of n, at arbitrary depth, regardless of their arguments.

call of ref (l) Refers to any call of the lambda l by its asso-
ciated LambdaReference, regardless of its arguments.

def of (l) Refers to the definition of a lambda with the
LambdaReference l.

loop(i, b, h) Refers to any type of loop with i iterations,
the body b and header h. The loop header includes all the
nodes to check the loop boundaries and update the loop
counter.

declaration(τ, i) Refers to a declaration node of type τ

with the initialization expression i.
reverse sequence(a) For address a with root r and path

[i1, i2, ..., iD], returns the address sequence
[r(i1,i2,...,iD), ..., r(i1), r].

all leaf addresses(n) Returns the set of a leaf addresses
(with |Ca| = 0) reachable from node n.

is builtin(f) Checks whether the construct f is a built-in
INSPIRE IR construct.

closure of (n) Computes the closure of node n and returns
the list of types of all variables captured in it.

The description of our analyses based on these primitives
matches the implemented semantics, but often does not
match the implementation exactly. Various optimizations
aimed at reducing the execution time of the compiler, such
as result caching and early pruning, increase the complexity
of describing an algorithm and are therefore omitted in this
paper.

3.2.3 Task Context Identification

Identifying the lexical IR fragments relevant for each
individual task is a prerequisite for all subsequent analyses,
and listed as step in the overview of our method provided
in Fig. 3. The input to this step is a full program in INSPIRE
IR, and its outputs are root IR nodes of the task code
fragments identified.

J Sign Process Syst (2019) 91:303–320308

Algorithm 1 depicts the task context identification process.
Initially, a set T of the addresses of all parallel calls with
a range of [1, 1] – that is, task invocations – is determined.
The node address sequences for these are then traversed
bottom-up until the first original program function is found,
and the addresses of those are then added to T ′ which is
the returned set. The bottom-up traversal is necessary to
include the entire original calling context of the task for
future analysis, as it might have been wrapped in additional
built-in calls during front-end translation to INSPIRE IR.

3.2.4 Determining the Parallel Structure

An essential feature of each task context which heavily
influences good decision-making, in particular for the
Queue Policy parameter, is its parallel structure.

Figure 5 illustrates two fundamental types of parallel
structures that can be encountered in task-parallel programs.
A recursive structure indicates that individual tasks invoke
self-similar sub-tasks, while a loop-like structure is present
if task invocation occurs within an outer loop. Note that
both can be present at the same time, if a program spawns
recursive tasks within a loop in the same or a mutually
recursive function. It is also possible in theory for a task-
parallel program to be neither recursive nor loop-like in
structure; in practice, such a program is unlikely, as its
degree of parallelism would be statically determined and
independent of its input data.

Algorithm 2 determines the set of recursive parallel paths
P within a given task invocation context. It traverses
the address node sequence of each possible leaf address

…

-

Figure 5 Fundamental parallel program structures.

bottom-up, noting the call site of a lambda invoked by
reference. If such a call has occurred, and a parallel call
exists on the path between it and the definition of the callee,
then the path performs a recursive parallel invocation.
Note that a call by reference always indicates a recursive
invocation in the INSPIRE-IR, as its structural design would
include the full implementation instead of a reference at the
call site were it not recursive. The definition of the recursive
callee always occurs at the call site of some function in the
same (mutually) recursive set of functions.

Figure 6 shows a simplified example of an INSPIRE
IR address tree for a task-parallel program, as it would
be generated from the C++/OpenMP program outlined in

Listing 1. The definition of lambda foo at will be
identified as the task context by Algorithm 1, as it is
the innermost non-built-in lambda containing a parallel

Figure 6 Example INSPIRE-IR address tree structure.

J Sign Process Syst (2019) 91:303–320 309

Listing 1 Example C++ code snippet.

invocation with a job range of [1, 1] . Algorithm 2
will evaluate all paths from each leaf. The path starting at

demonstrates the necessity for checking for a parallel
invocation on the closed recursion cycle: it is recursive and
within the parallel context, but not an instance of parallel

recursion. Conversely, the path starting at contains a

call to parallel at , and will be correctly detected by the
algorithm.

Algorithm 3 is the counterpart to Algorithm 2 for loop-
based parallel structures. It follows the same overall pattern
of traversing the reverse sequence of each leaf address in the
given task context, but the logic is somewhat simpler as it
does not have to detect and distinguish individual recursion
nests. If any loop construct is found “above” a parallel
invocation – that is, prior to it in the reverse node sequence
– that parallel invocation is counted as loop-like.

3.2.5 Task Granularity Estimation

Knowledge of the expected granularity of tasks – that is, the
average time the program spends between interactions with the
runtime system, such as task creation and synchronization – is
a highly significant feature for scheduling decisions. While a
completely accurate static analysis of this granularity is gen-
erally infeasible due to e.g. unknown input problem sizes,
even having a rough indication at compile time of whether
tasks will be particularly fine- or coarse-grained is helpful.

Algorithm 4 performs a static effort estimation on an arbi-
trary INSPIRE IR node n. By default, it simply traverses all
child nodes (line 18). Function calls and loops are handled
specifically. For all function calls, initially the effort for evalu-
ating their arguments is determined. Built-ins – such as arith-
metic operations, array subscripts or assignments – are mapped
to predefined values supplied in an effort mapping functionB.
Other calls are evaluated by recursive invocation of the algo-
rithm. For loops, the effort determined for each iteration is
multiplied by the number of iterations. In case the iteration
count cannot be determined statically, we currently assume a
fixed estimate of 100 iterations. While this branch-invariant
approach which ignores dynamic loop iteration counts will
be highly inaccurate when trying to make e.g. absolute exe-
cution time predictions, in our use case some indication
of granularity proves sufficient to improve compile-time
decision making. Including better analysis for loops with
dynamic iteration counts could be part of future work.

J Sign Process Syst (2019) 91:303–320310

3.2.6 Stack Size Estimation

This first memory usage analysis for our parameter selection
provides an estimation of the required stack frame size
of a given task context. As explained in Section 3.1.2, a
good stack size choice can improve both performance and
particularly memory consumption for programs generating
many small tasks.

As Algorithm 5 illustrates, stack size estimation for a
given task context can be expressed quite succinctly due to
the properties of INSPIRE-IR. All stack memory allocations
derive from declaration nodes, which are handled in the
initial branch of the STACK SIZE function. This function
requires a map S from types to their size in bytes, and a
constant recursion estimate φ as its inputs, and builds up a
set of visited references during its execution. It returns a pair
of two values: the stack requirement at node n itself and the
total stack requirement for the full sub-tree rooted at that
node. The basic idea is that, for all nodes, the local stack
requirements are the sum of the local stack requirements
of all child nodes, while the total stack requirement is the
maximum of all its child stack requirements, as only a single
path in the execution tree can be traversed at a time. Thanks
to the IR structure, this simple principle accurately covers
various cases such as function call arguments, compound
statements, and all types of control flow.

3.2.7 Closure Size Computation

The final task analysis we developed is designed to enable
the static selection of an ideal parameter buffer size (as
described in Section 3.1.2). For this purpose, the total
size of all variables captured in the closure of the task
invocation needs to be computed. In case several parallel
task invocations exist within a single task context, the
maximum needs to be reported. Algorithm 6 performs the
necessary analysis, reusing the same type size mapping S

leveraged by Algorithm 5.
Note that the closure of (i) operation, while somewhat

complex, in fact already needs to be performed by the
compiler over the course of translating any given task-
parallel program, since this closure must be encoded in the
output program. As such, using this existing information
for the additional purpose of encoding a suitable parameter
buffer size is a very cheap operation a compile time (O(p ∗
v) with p parallel invocations and an upper bound of v

variables captured per closure).

3.3 Result Aggregation

As all parameters we currently study must be set once for
the entire runtime system – rather than per-task – the results
derived by our per-task analyses need to be aggregated
before they can be used to derive parameter settings. The
correct way to perform this aggregation depends on the
analysis in question and its use case.

3.3.1 Parallel Structure

The aggregate number of recursive parallel paths is chosen
as the minimum across all task contexts in the program.
Since this number indicates whether or not tasks produce
additional work, which impacts parameters such as queue
size and policy, assuming that all tasks produce further

J Sign Process Syst (2019) 91:303–320 311

tasks when this is not necessarily the case can cause
severe starvation issues. The opposite – under-estimating
the amount of tasks generated – can cause additional
overhead, but not a sudden and severe performance drop-off.
The same reasoning applies to loops, and the whole program
is only treated as featuring loop-like parallelism if all of its
task contexts do.

3.3.2 Granularity

For granularity estimation across the whole program, simply
choosing the mean granularity across all task contexts is
intuitive and works well in practice.

3.3.3 Stack Size and Closure Size

As all work items instantiated during the program’s
execution need to be accommodated, the maximum of all
individual values is chosen. It is also rounded up to the next
power of two for alignment purposes, and for the stack size
a minimum of 16 kB is applied.

3.3.4 Deriving Parameter Values

While the one-to-one mapping from the stack and closure
size analysis results to the actual runtime parameters
is obvious, defining the queue policy, queue size, and
number of event table buckets based on our analysis results
requires some strategy. For our prototype, this mapping was
derived as a simple decision tree per parameter, based on
empirical experience. Note that in the following description,
ρ represents the number of recursive parallel invocations
detected, λ lists the number of loop-like parallel invocations,
and e refers to the per-task granularity or Effort estimated
by our analysis. Actual values for these analysis results are
presented in Table 4 in the evaluation section.

queue policy(ρ, λ, e) =
⎧
⎨

⎩

PF if ρ > 5
PF if (1M < e ≤ 1T)

DEF otherwise

queue size(ρ, λ, e) =
⎧
⎨

⎩

128 if ρ = 0 ∧ λ > 0
8 else if 1M < e ≤ 1T
4 otherwise

table buckets(ρ, λ, e) =
{
256019 if ρ > 0
97 otherwise

For the queue policy parameter, the decision tree chooses
the “Self Push Front” (PF) strategy over the default
if a benchmark features many recursive tasks or is of
medium granularity. The remaining two queue policies
mostly mirrored the results we obtained for the two used
by our selection strategy. A large queue length of 128
is advantageous for loop-like parallel programs, while

very fine-grained recursive ones favor a very short queue
as new tasks are generated rapidly. Finally, the optimal
number of event table buckets depends purely on whether
recursive tasks are present – if so, a far larger number of
synchronization operations might be pending.

4 Evaluation

4.1 Evaluation Platform and Setup

Our evaluation platform is a quad-socket system with four Intel
XeonE5-4650 processors, each offering 8 cores (16 hardware
threads), which are clocked at a frequency of 2.7 GHz.

The software stack on this system is based on CentOS 6.7
running kernel version 2.6.32-573. All our binaries were
compiled with GCC 5.1.0 using -O3 optimizations to
approximate a realistic production scenario.

For parallel execution, the worker thread affinity in all
benchmark runs was fixed using a fill-socket-first policy,
in order to improve the reliability of measurements and
minimize variance. All reported numbers and figures are
based on medians over seven runs. Memory consumption is
measured as the maximum resident set size across the entire
execution of a given benchmark.

4.2 Benchmarks

Table 3 lists the benchmarks we used to validate and
evaluate our approach, along with their origin as well as
their structure, granularity and parameters. Most benchmark
code versions are taken directly from the Barcelona
OpenMP tasks suite [7], while the QAP2 benchmark
was introduced in the Inncabs [22] suite. Both of these
publications describe the involved benchmarks in some
detail. The structure (loop-like, recursive balanced or
recursive unbalanced) and granularity indicators in Table 3
are sourced from these publications, and based on human
judgment and measurements of each code.

4.3 Quality of Analysis

Before presenting execution time and memory usage
improvements achieved by our prototype implementation,
we will first evaluate the accuracy of our analyses on the
given set of benchmarks. Table 4 lists the parallel structure,
effort estimation, and stack size properties determined by
our analyses.

Comparing ρ and λ with the manual structure categoriza-
tion provided in Table 3 reveals interesting correlations:

– The only benchmarks with ρ = 0 are categorized as
loop-like, confirming this result.

J Sign Process Syst (2019) 91:303–320312

Table 3 Benchmark overview.
Benchmark Origin Struct. Granularity Parameters

Alignment AKM loop coarse prot.100.aa

Delannoy − rec. b. very fine 11

FFT Cilk rec. b. variable −n 16777216

Fibonacci − rec. b. very fine −n 35

Floorplan AKM rec. u. fine input.20

Health BOTS loop moderate medium.input

NQueens Cilk rec. u. moderate −n 14

QAP2 Inncabs rec. u. fine chr15a.dat

Sort Cilk rec. b. variable −n 134217728

SparseLU BOTS loop coarse −n 50 −m 100

Strassen Cilk rec. b. moderate −n 4096

UTS UNC rec. u. variable test.input

– While Health is categorized as “loop-like”, inspection
of the source code confirms the analysis result: there is
an indirect recursive invocation within the loop. Here,
our analysis provides a more exact result than a cursory
manual inspection.

– Recursive benchmarks with ρ > 1 or λ = 0 are likely
to have a balanced task workload, while the ones with
ρ = 1 are likely unbalanced.

The final observation is of particular interest, as the balance
or imbalance of recursive workloads is not something we
expected to be indicated by static analysis. Clearly, load
imbalance on an individual task level often occurs due
to input data dependence, which appears to commonly
manifest in a variable number of loop iterations containing
task invocations.

The Effort column in Table 4 lists the results of our
granularity analysis (Algorithm 4). Comparing this to the
manual categorization, we observe the following:

– The benchmarks assumed to be of “very fine”
granularity are also the most fine-grained according to
analysis, by several orders of magnitude.

– Benchmarks categorized as coarse-grained are in the
peta- and tera-scale range and at the upper end of values
according to analysis.

– Floorplan and UTS feature relatively high granularity
values compared to their manual classification based
on measurements. Inspecting their source code reveals
that this is due to their recursive invocations containing
loops with input-dependent iteration counts which are
very low with the problem sizes used in our evaluation.

Overall, while not as exact as the categorization of parallel
structure, our granularity analysis still provides a guideline
which correlates well with the actual program behavior
in most cases. Fully accurate granularity prediction at
compile time remains impossible for realistic programs with
dynamic input data.

In terms of memory analysis, the Stack column in Table 4
lists the results of our stack size estimation, in bytes. The
most important quality metric for these results is the ability
for each benchmark to complete without running out of
stack space, which is accomplished for all results. Alignment
is estimated to require a full 8 MB of stack size per task
– an investigation of its source code reveals that this is
explained by it allocating multiple large arrays on the stack
in recursive calls.

Finally, the Closure column indicates the task closure
size computed by our analysis. We have verified these
results by comparing them with the final closure structure
size in each generated output code, and all of them
are accurate. The most interesting result in this column
is the relatively large size for Floorplan, which is a
result of a fixed-size integer array being captured by
value. As the performance evaluation will demonstrate,
this large value results in a more significant impact of
the parameter buffer size optimization for this particular
benchmark.

Table 4 Benchmark properties (analyses).

Benchmark ρ λ Effort Stack Closure

Alignment 0 1 2.6 T 8 M 56 B

Delannoy 3 0 131.0 16 k 32 B

FFT 27 1 970.0 M 256 k 56 B

Fibonacci 2 0 52.0 16 k 24 B

Floorplan 1 1 39.0 G 2 M 576 B

Health 1 1 33.0 G 32 k 24 B

NQueens 1 1 601.0 M 2 M 40 B

QAP2 1 1 13.0 M 16 k 48 B

Sort 6 0 2.4 G 32 k 56 B

SparseLU 0 3 3.3 P 16 k 40 B

Strassen 7 0 282.0 G 256 k 56 B

UTS 1 1 12.0 T 2 M 40 B

J Sign Process Syst (2019) 91:303–320 313

4.4 Benchmark Performance Evaluation

While our evaluation so far has shown that our analyses
provide good approximations of important task features, we
have not yet demonstrated that these features are actually
useful for their intended purpose of optimizing runtime
settings. In this section, we apply our full method to
the benchmarks presented in Section 4.2 and measure the
resulting performance.

4.4.1 Execution Time

Figure 7 depicts the execution time using the optimized
parameter settings determined by our approach (Toptimized)
relative to the execution time using default settings (Tdefault).
Note that the default settings in this comparison are the
out-of-the-box defaults of the Insieme runtime system,
which are highly competitive with several widely-used task-
parallel systems [23]. Results from all benchmarks are
summarized in a box plot, which allows us to illustrate
the overall effectiveness of our approach without missing
important outliers, particularly if they were to occur in the
negative direction. These results allow for the following
observations:

– The lower quartile is always above 1.0, indicating that
our approach performs as well or better than the default
for at least 75% of our benchmarks, at all degrees of
parallelism.

– Starting from 8 worker threads and at all higher degrees
of parallelism, all benchmarks obtain at least some
improvement in performance. The geometric mean
factor across all evaluated benchmarks and thread
counts is 1.39.

– The largest performance increase is obtained at 32
worker threads, where our optimized versions perform
more than twice as fast as the defaults for most
benchmarks.

Figure 7 Overall execution time comparison.

– Overall, the lowest value encountered is 0.91, indicating
a 9% performance loss. This occurs for the QAP2
benchmark with four hardware threads.

The trend of increasing performance gains with higher
worker thread counts can be attributed to two reasons. For
one, with higher degrees of parallelism the effectiveness of
the runtime system in facilitating task creation, scheduling
and synchronization gains more prominence as a factor
in overall program performance, and these operations can
be optimized by good parameter choices. For another, the
default runtime parameter settings also generally appear to
be tuned for smaller shared-memory systems.

Regarding the small performance losses incurred for
a few benchmarks with two and four worker threads,
investigating the causes for these in more detail reveals
that the affected benchmarks are those which benefit
greatly from data cache locality across parent and child
tasks. For larger thread counts and particularly once more
than a single socket is used, other concerns dominate
performance. Figure 8 illustrates how this difference in
optimal parameter selection between single- and multi-
socket execution manifests in diverging patterns in practice.
Currently, we do not perform any analysis which tries
to determine the impact of stack memory access locality
for a benchmark. There is an opportunity for future
work in this area to eliminate the cases of performance
degradation, however, as it is relatively minor and limited to
a small number of specific benchmarks and thread counts,
the significant complexity of such analysis might not be
justifiable.

To round out our look at execution time optimization,
Table 5 lists the default time (Def.), the optimium time
(Opt. – derived from exhaustive search), and the resulting
time of our analysis and classification method (Class.)
for each benchmark. Finally, the % column lists the ratio
of the improvement of the absolute optimum over the
default which was achieved by our method. Note that
for most realistic benchmarks, this lies between 80% and

Figure 8 QAP2 execution times with varying queue size.

J Sign Process Syst (2019) 91:303–320314

Table 5 Achieved speedup vs. optimum.

Benchmark Def. Opt. Class. %

Alignment 0.49 0.38 0.39 98.9%

Delannoy 0.61 0.20 0.34 59.6%

FFT 0.94 0.40 0.41 98.0%

Fibonacci 0.58 0.14 0.22 65.0%

Floorplan 2.25 0.89 0.89 99.7%

Health 2.24 1.50 1.73 86.7%

NQueens 2.76 1.14 1.42 80.7%

QAP2 1.47 0.41 0.59 69.9%

Sort 1.63 1.04 1.04 100.0%

SparseLU 0.51 0.45 0.46 99.8%

Strassen 1.88 1.06 1.24 85.9%

UTS 0.79 0.56 0.66 84.1%

100%. Over-fitting our method to the very fine-granular
benchmarks would produce worse results for realistic
programs.

4.4.2 Memory Consumption

Since two of the parameters we optimize primarily
affect memory consumption, we also evaluated this aspect
of runtime system performance. Figure 9 provides this
overview, using the same methodology as employed for
Fig. 7. We observe the following:

– For all thread counts, no benchmarks suffer from an
increase in memory consumption. However, a few
benchmarks also show no improvement at all.

– There is an increase in the impact of our optimizations
with increasing thread counts, but the correlation is not
as high as it is for execution times.

– The maximum improvement is very high, at a factor of
more than 100.

Figure 9 Overall memory consumption comparison.

All of these observations can be explained by considering a
few factors. First of all, some programs feature heavy heap
memory use for their own data, or require a large stack size,
which explains why no improvement can be achieved for
some benchmarks regardless of the level of parallelism.

The fact that improvements scale with the degree of
parallelism initially but flatten out soon is due to the
behavior of lazy task generation: initially, more parallelism
will lead to significantly more tasks being generated, and
thus more stacks allocated, but these effects becomes less
pronounced after a certain point. Finally, the reason for the
extremely high factors achieved in some benchmarks is due
to the default behavior of the runtime system: without any
static knowledge, it provides each task with an initial stack
frame of 8 MB to ensure correct execution. For benchmarks
with extremely small stack and heap data sizes such as
Fibonacci, reducing that per-task allocation down to e.g.
16 kB will massively decrease overall relative memory
consumption. Systems such as Cilk which implement a
cactus stack layout [9] would not benefit as dramatically
from this optimization.

An interesting observation can be made by looking
at the data in more detail: the memory optimizations
we perform in this work can also result in performance
improvements in some very specific scenarios. In particular,
the Floorplan benchmark requires a larger parameter buffer
size than the default, and using this knowledge enables a
significant performance improvement of up to 46%, which
can be seen in Fig. 10. Note that the difference once again
becomes more pronounced at larger degrees of parallelism
– with more threads, more tasks are invoked, and with
an insufficient parameter buffer size each such invocation
requires an additional heap memory allocation.

4.5 State-of-the-art Comparison

While our evaluation so far demonstrates that applying
static analyses in order to optimize task-parallel runtime

Figure 10 Floorplan execution times with optimal parameter buffer
size.

J Sign Process Syst (2019) 91:303–320 315

system parameter selection provides significant perfor-
mance improvements within the Insieme runtime system, it
is not yet clear whether these are merely improvements over
a low baseline.

This section is designed to provide a more holistic
assessment of the quality of our approach, and to illustrate
that the comparative basis chosen for our performance
evaluation is meaningful. To this end, we will compare the
absolute performance achieved by of our approach to four
state-of-the-art and widely-used task-parallel systems in this
section.

OpenMP is the industry standard for shared-memory
parallelism, and supports task parallelism since version
3.0 [3]. This task support has since been widely deployed
and studied [19]. For our evaluation, we use the GCC
OpenMP implementation, libGOMP [17].

Cilk+ continues the development of the Cilk [5] language,
which is considered the first widely-deployed high-
performance task parallel system. It pioneered many
techniques implemented in modern runtime systems [9].
Again, we use the implementation included in GCC.

Intel TBB [20] is a highly optimized parallel program-
ming library widely used in industrial applications.
For this evaluation, we used version 2017 Update 7
(20170604oss) of the library.

HPX [14] is a general purpose C++ runtime system for
parallel and distributed applications of any scale. In our
comparison, we employed the most recent git revision
62b12248ce of the library.

The backend compiler for all of these technologies was
the same as the one used to compile the output programs
of our system, GCC 5.1.0. All systems were configured
according to the optimal settings in their user guides, e.g.
HPX uses tcmalloc [10] rather than the default system
allocator.

As performing this comparison required us to write
versions of the benchmarks for some of the technologies
in cases where they did not already exist, we focused
on a subset of three benchmarks, representing three very
distinct task granularities. Figures 11, 12 and 13 show
the comparison for the Fibonacci, Strassen and SparseLU
benchmark respectively.

As previously described, Fibonacci is a very unrealistic
workload designed to test how an implementation reacts
to tasks of minimal size. Both OpenMP and HPX are not
designed to deal with this type of workload, and require
more than 100 seconds (our cut-off point) at most thread
counts. Intel TBB has some fixed overhead, but scales
well up to 32 cores. Cilk+ is by far the most proficient at
this particular scenario, scaling well without overhead. Our
optimized version keeps up with Cilk+ on a single CPU,
but fails to scale beyond that. This is due to work item

Figure 11 Performance charts for the Fibonacci benchmark.

synchronization inefficiencies in the underlying runtime,
and unrelated to the compiler-based optimizations in this
work.

Strassen is a much more representative test case, as it
features tasks of medium granularity as they might be found
in real-world codes. All implementations scale relatively
well up to 8 cores. OpenMP, Cilk+ and TBB follow the same
overall pattern, scaling up to 16 cores and then dropping
off, with TBB offering higher absolute performance. The
default Insieme system also follows this pattern. HPX shows
a regression in performance when crossing the NUMA
boundary, but then scales well to 32 cores. Our optimized
version scales to 32 cores, primarily due to the scheduling
policy being adjusted in a way that allows for good cache
reuse.

Figure 12 Performance charts for the Strassen benchmark.

J Sign Process Syst (2019) 91:303–320316

Figure 13 Performance charts for the SparseLU benchmark.

Finally, SparseLU features very large-grained, uniform
tasks, and as expected the impact of the runtime system on
performance is smaller. Except for Cilk+ – which fails to
scale beyond two sockets – all other systems scale well up
to 32 cores.

Summarizing these results, Fig. 14 compares the best
performance achievable using each of these technologies,
at their respective optimal degree of parallelism. In the
pathological Fibonacci case, Cilk+ performs significantly
better than any other competing technology.

In both of the more realistic applications, the Insieme
default is already very competitive with the best competing
technologies, and our optimization approach presented in
this work results in significant further improvements. For
Strassen, the best-performing competitor is Intel TBB, and
our optimized solution is 28% faster.

In SparseLU all results are closer, with only Cilk+
showing a large difference due to its failure to scale on
additional NUMA domains. Despite this smaller potential,
our optimizations still result in a 14% performance
improvement compared to HPX, which is the best-
performing competing technology in this case.

5 RelatedWork

There is a very large body of work dealing with the
optimization of task-parallel programs at runtime, often at
the library level. A small subset of these works was referred
to in Section 1. As noted there, these types of optimizations
are orthogonal to and can be combined with our method.
In this section, we will focus on research which performs
runtime optimization with a parallelism-specific compiler
analysis component.

Tick and Zhong [27] propose a combined compile-time
and run-time method to improve performance and reduce
execution overheads caused by too small-grained parallel
tasks. A compiler analysis produces estimator functions for

parallel tasks, which can then be evaluated at execution
time to improve task scheduling. This matches a single
component of our analysis approach, which estimates
granularity, however we also provide analyses for the
parallel structure and memory footprint of individual tasks,
and take these into account at compile time rather than
during execution. In a similar work [23], we leveraged a
compiler component to control task granularity, but rather
than providing estimates, granularity was actively adjusted
by multiversioning of task functions.

A similar approach is followed by Baskaran et al. [4].
The automatic parallelization system Pluto can generate
parallel OpenMP programs by analyzing and transforming
sequential input codes. In order to improve load balancing
on multi-core target platforms, the compiler generates
functions which allow the runtime system to extract
inter-tile data dependencies and thus improve scheduling
decisions and reduce load-imbalance. The focus of their
work is to improve the performance of loop-based auto-
parallelized code generated from sequential input codes,
while our approach works with parallel input programs and
tries to improve runtime system performance based on static
features of task-parallel programs.

Vuduc et al. [28] forward compiler analysis results to the
runtime in the form of a decision function, in order to select
among several versions of the same algorithm depending on
input features. However, their optimization affects program-
and algorithm-specific decision making during execution
time, while we focus on general runtime system decisions
made at compile time.

Another work which takes advantage of forwarding
compiler analysis results to the runtime system is described
by Sabeghi et al. [21]. Their focus is on improved task
scheduling for reconfigurable processors. This is achieved
by forwarding additional meta-data – specifically a so-
called configuration call graph, which contains information
about dependencies between tasks – along with the
program binary to the runtime scheduler. This enables
the scheduler component to take better decisions when
configuring the hardware for task execution. Our work
differs primarily in the targeted execution environment,
and also in the specific analyses used. While Sabeghi et
al. use the compiler-provided information to configure the
hardware environment, our goal is to tune runtime system
parameters for improved program execution on general
purpose processors.

In the context of software distributed shared memory sys-
tems, Dwarkadas et al. [8] implement a combined compile-
time and run-time method. The compiler component ana-
lyzes programs to reason about data access patterns and
forwards this information to the runtime part of the system.
This additional information enables the runtime system to
aggregate communication and synchronization operations,

J Sign Process Syst (2019) 91:303–320 317

Figure 14 Performance
comparison (at best thread
count) of all evaluated
technologies.

and thus reduce runtime overheads. Another approach com-
bining a custom compiler component with a runtime library
is described by Nikolopoulos et al. [16]. Their compiler ana-
lyzes OpenMP programs and evaluates the thread memory
reference semantics. The gathered information enables the
runtime system to accurately perform page migrations to
improve program throughput independently of the operat-
ing system’s memory page placement strategy. Both of these
papers focus on data access patterns and data parallelism,
which is not currently part of our analyses but could be
treated in our general framework.

One of our previous works [24] leverages static analy-
sis of programs for improved runtime behavior in relation
to program characteristics. However, it focuses entirely on
loop parallelism and one specific optimization. Conversely,
all analysis and optimization in this work applies primar-
ily to task-parallel programs. Recently, we investigated
semantics-aware compilation of the C++11 standard library
primitives for task-based parallelism [25]. While an ad-hoc
task classification procedure was implemented, this work
lacks sophisticated compiler analysis, features a very lim-
ited set of parameters, and only supports a single task type
per program.

6 Conclusion

We have presented a method for optimizing parameters of
task-parallel runtime systems by statically identifying tasks
and performing a set of compiler analyses – specifically
designed to classify and characterize their features – on each
of them. As our approach is entirely static, it improves upon
common purely dynamic task optimization by being able to
manipulate parameters which need to be set at compile time,
as well as having the ability to leverage information which is
expensive or infeasible to obtain during program execution.

Evaluation of our prototype implementation on a set
of 12 benchmarks representing a variety of parallel algo-
rithm structures and granularities demonstrates increasingly
significant performance improvements with an increasing

degree of parallelism. At 32 threads, a geometric mean
improvement in execution time across all benchmarks by
more than a factor of 2 is achieved. At the same time,
peak memory usage is reduced by over an order of magni-
tude for fine-grained benchmarks with only very small stack
requirements which can be determined statically.

An in-depth empirical comparison to existing task-
parallel technologies indicates that, for realistic applica-
tions, our optimization approach can improve performance
by up to 28% compared to the best-performing state-of-the-
art systems.

The general method presented here can be extended
in several areas which present opportunities for future
research. More task context analyses, such as data reuse
across parent and child tasks, can be integrated in
order to make even more accurate parameter selections.
Additionally, the set of runtime parameters being optimized
might be extended to increase the potential performance
gains, particularly for large-scale NUMA systems. Finally,
our current prototype mapping from analysis results to
parameter settings can be replaced by a more sophisticated
and automated approach.

Overall, we believe that our research indicates that there is
significant untapped potential in static analysis for improv-
ing the performance of parallel runtime systems. Unlike
most compiler analysis work, analyses designed for the
purpose of guiding the non-functional behavior of runtime
systems are not required to be fully accurate; inaccuracies
will only result in potentially degraded performance rather
than program failure, and even partially correct results
might well allow for improved performance compared to a
complete lack of static information. This property greatly
extends the scope of feasible static analyses.

Acknowledgements Open access funding provided by University of
Innsbruck and Medical University of Innsbruck. This project has
received funding from the European Union’s Horizon 2020 research
and innovation program as part of the FETHPC AllScale project
under grant agreement No 671603 as well as from the FWF Austrian
Science Fund as part of project I 1523 “Energy-Aware Autotuning for
Scientific Applications”.

J Sign Process Syst (2019) 91:303–320318

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands,
P., Keutzer, K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams,
S.W., et al. (2006). The landscape of parallel computing research:
A view from Berkeley. Tech. rep., Technical Report UCB/EECS-
2006-183, EECS Department University of California, Berkeley.

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A. (2009).
StarPU: a unified platform for task scheduling on heterogeneous
multicore architectures.

3. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y.,
Massaioli, F., Teruel, X., Unnikrishnan, P., Zhang, G. (2009).
The design of openmp tasks. IEEE Transactions on Parallel and
Distributed Systems, 20(3), 404–418.

4. Baskaran, M.M., Vydyanathan, N., Bondhugula, U.K.R.,
Ramanujam, J., Rountev, A., Sadayappan, P. (2009). Compiler-
assisted dynamic scheduling for effective parallelization of loop
nests on multicore processors. In ACM sigplan notices (Vol. 44,
pp. 219–228). ACM.

5. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E.,
Randall, K.H., Zhou, Y. (1996). Cilk: an efficient multithreaded
runtime system. Journal of Parallel and Distributed Computing,
37(1), 55–69.

6. Chen, S., Gibbons, P.B., Kozuch, M., Liaskovitis, V., Ailamaki,
A., Blelloch, G.E., Falsafi, B., Fix, L., Hardavellas, N., Mowry,
T.C., Wilkerson, C. (2007). Scheduling threads for constructive
cache sharing on CMPs. In Proceedings of the nineteenth annual
ACM symposium on parallel algorithms and architectures, SPAA
’07 (pp. 105–115). New York: ACM. https://doi.org/10.1145/
1248377.1248396.

7. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.
(2009). Barcelona openMP tasks suite: a set of benchmarks
targeting the exploitation of task parallelism in openMP. In 2009
international conference on parallel processing (pp. 124–131).
https://doi.org/10.1109/ICPP.2009.64.

8. Dwarkadas, S., Cox, A.L., Zwaenepoel, W. (1996). An integrated
compile-time/run-time software distributed shared memory sys-
tem. In Proceedings of the seventh international conference on
architectural support for programming languages and operat-
ing systems, ASPLOS VII (pp. 186–197). New York: ACM.
https://doi.org/10.1145/237090.237181.

9. Frigo, M., Leiserson, C.E., Randall, K.H. (1998). The implemen-
tation of the Cilk-5 multithreaded language. In Proceedings of
the ACM SIGPLAN 1998 conference on programming language
design and implementation, PLDI ’98 (pp. 212–223). New York:
ACM. https://doi.org/10.1145/277650.277725.

10. Ghemawat, S., & Menage, P. (2009). Tcmalloc: Thread-caching
malloc.

11. Jordan, H. (2014). Insieme: a compiler infrastructure for
parallel programs. Ph.D. thesis, Ph D. dissertation, University of
Innsbruck.

12. Jordan, H., Pellegrini, S., Thoman, P., Kofler, K., Fahringer,
T. (2013). INSPIRE: the Insieme Parallel intermediate repre-
sentation. In Proceedings of the 22nd international conference
on parallel architectures and compilation techniques, PACT ’13
(pp. 7–18). Piscataway: IEEE Press.

13. Jordan, H., Thoman, P., Durillo, J.J., Pellegrini, S., Gschwandtner,
P., Fahringer, T., Moritsch, H. (2012). A multi-objective auto-
tuning framework for parallel codes. In 2012 international
conference for high performance computing, networking, storage
and analysis (SC) (pp. 1–12). https://doi.org/10.1109/SC.2012.7.

14. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey,
D. (2014). Hpx: a task based programming model in a global
address space. In Proceedings of the 8th international conference
on partitioned global address space programming models (p. 6).
ACM.

15. Mohr, E., Kranz, D.A., Halstead, R.H. (1991). Lazy task creation:
a technique for increasing the granularity of parallel programs.
IEEE Transactions on Parallel and Distributed Systems, 2(3),
264–280. https://doi.org/10.1109/71.86103.

16. Nikolopoulos, D.S., Papatheodorou, T.S., Polychronopoulos,
C.D., Labarta, J., Ayguadé, E. (2000). UPMLIB: a runtime
system for tuning the memory performance of OpenMP programs
on scalable shared-memory multiprocessors. In Dwarkadas,
S. (Ed.) Languages, compilers, and run-time systems for scalable
computers: 5th international workshop, LCR 2000 Rochester, NY,
USA, May 25–27, 2000 Selected Papers (pp. 85–99). Berlin:
Springer. https://doi.org/10.1007/3-540-40889-4 7.

17. Novillo, D. (2006). Openmp and automatic parallelization in gcc.
In Proceedings of the GCC developers summit.

18. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Spiegel, M.,
Prins, J.F. (2012). OpenMP task scheduling strategies for multi-
core NUMA systems. The International Journal of High Perfor-
mance Computing Applications, 26(2), 110–124. https://doi.org/
10.1177/1094342011434065.

19. Olivier, S.L., & Prins, J.F. (2010). Comparison of openmp 3.0
and other task parallel frameworks on unbalanced task graphs.
International Journal of Parallel Programming, 38(5), 341–360.

20. Reinders, J. (2007). Intel threading building blocks: outfitting
C++ for multi-core processor parallelism. O’Reilly Media Inc.

21. Sabeghi, M., Sima, V.M., Bertels, K. (2009). Compiler assisted
runtime task scheduling on a reconfigurable computer. In
International conference on field programmable logic and
applications, 2009. FPL 2009 (pp. 44–50). IEEE.

22. Thoman, P., Gschwandtner, P., Fahringer, T. (2015). On the
quality of implementation of the c++11 thread support library.
In 2015 23rd euromicro international conference on paral-
lel, distributed, and network-based processing (pp. 94–98).
https://doi.org/10.1109/PDP.2015.33.

23. Thoman, P., Jordan, H., Fahringer, T. (2013). Adaptive granularity
control in task parallel programs using multiversioning. In
Wolf, F., Mohr, B., an Mey, D. (Eds.) Euro-Par 2013 parallel
processing: 19th international conference, Aachen, Germany,
August 26-30, 2013. Proceedings (pp. 164–177). Berlin: Springer.
https://doi.org/10.1007/978-3-642-40047-6 19.

24. Thoman, P., Jordan, H., Pellegrini, S., Fahringer, T. (2012).
Automatic OpenMP loop scheduling: a combined compiler and
runtime approach (pp. 88–101). Berlin: Springer. https://doi.org/
10.1007/978-3-642-30961-8 7.

25. Thoman, P., Moosbrugger, S., Fahringer, T. (2015). Opti-
mizing task parallelism with library-semantics-aware compila-
tion (pp. 237–249). Berlin: Springer. https://doi.org/10.1007/
978-3-662-48096-0 19.

J Sign Process Syst (2019) 91:303–320 319

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/1248377.1248396
https://doi.org/10.1145/1248377.1248396
https://doi.org/10.1109/ICPP.2009.64
https://doi.org/10.1145/237090.237181
https://doi.org/10.1145/277650.277725
https://doi.org/10.1109/SC.2012.7
https://doi.org/10.1109/71.86103
https://doi.org/10.1007/3-540-40889-4_7
https://doi.org/10.1177/1094342011434065
https://doi.org/10.1177/1094342011434065
https://doi.org/10.1109/PDP.2015.33
https://doi.org/10.1007/978-3-642-40047-6_19
https://doi.org/10.1007/978-3-642-30961-8_7
https://doi.org/10.1007/978-3-642-30961-8_7
https://doi.org/10.1007/978-3-662-48096-0_19
https://doi.org/10.1007/978-3-662-48096-0_19

26. Thoman, P., Zangerl, P., Fahringer, T. (2017). Task-parallel runtime
system optimization using static compiler analysis. In Proceedings
of the computing frontiers conference (pp. 201–210). ACM.

27. Tick, E., & Zhong, X. (1993). A compile-time granularity analysis
algorithm and its performance evaluation. New Generation
Computing, 11(3), 271. https://doi.org/10.1007/BF03037179.

28. Vuduc, R., Demmel, J.W., Bilmes, J.A. (2004). Statistical models
for empirical search-based performance tuning. The International
Journal of High Performance Computing Applications, 18(1), 65–
94. https://doi.org/10.1177/1094342004041293.

Peter Thoman is an Assistant
Professor at the University of
Innbruck, Austria, where he also
obtained his PhD. He is a core
developer and designer of the
Insieme research compiler and
parallel runtime system, and was
involved in multiple natio-
nal and international research
projects in this capacity. His
research interests include fine-
grained task parallelism, com-
piler-supported optimizations,
accelerator computing and API
design for parallelism.

Peter Zangerl is a research
assistant and PhD student at the
University of Innsbruck, where
he also received his Bachelor
and Masters degree. He is an
active developer of the Insieme
research compiler and paral-
lel runtime system. His main
research interests are compilers,
as well as parallel and distri-
buted runtime systems.

Thomas Fahringer is a Pro-
fessor of Computer Science
at the University of Inns-
bruck. He is leading a research
group in the area of distributed
and parallel processing which
develops the ASKALON sys-
tem to support researchers
worldwide in various fields
of science and engineering to
develop, analyse, optimize and
run parallel and distributed
scientific applications. Fur-
thermore, he leads a research
team that created the Insieme
parallelizing and optimizing

compiler for heterogeneous multicore parallel computers. Fahringer
was involved in numerous national and international research projects
including 10 EU funded projects. Fahringer has published 5 books, 35
journal and magazine articles and more than 160 reviewed conference
papers including 3 best/distinguished IEEE/ACM papers.

J Sign Process Syst (2019) 91:303–320320

https://doi.org/10.1007/BF03037179
https://doi.org/10.1177/1094342004041293

	Static Compiler Analyses for Application-specific Optimizationof Task-Parallel Runtime Systems
	Abstract
	Abstract
	Introduction
	Motivation
	Method
	Runtime System
	Runtime System Background
	Runtime Parameters
	Queue Policy
	Queue Size
	Event Table Buckets
	Parameter Buffer Size
	Stack Size

	Compiler Analysis
	Compiler Background
	Common Operations
	Task Context Identification
	Determining the Parallel Structure
	Task Granularity Estimation
	Stack Size Estimation
	Closure Size Computation

	Result Aggregation
	Parallel Structure
	Granularity
	Stack Size and Closure Size
	Deriving Parameter Values

	Evaluation
	Evaluation Platform and Setup
	Benchmarks
	Quality of Analysis
	Benchmark Performance Evaluation
	Execution Time
	Memory Consumption

	State-of-the-art Comparison

	Related Work
	Conclusion
	Acknowledgements
	Open Access
	References

