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Abstract
Band selection is an effective means to reduce the hyperspectral data size and to overcome the Hughes phenomenon in ground
object classification. This paper presents a band selection method based on particle swarm dynamic with sub-swarms optimiza-
tion, aiming at the deficiency of particle swarm optimization algorithm being easy to fall into local optimum when applied to
hyperspectral image band selection. This algorithm treats fitness function as criterion, dividing all particles into different
adaptation degree interval corresponding to the dynamic subgroup and adopting different optimization methods for different
subgroups as well as sub -swarms parallel iterative searching for the optimal band. In this way, we can make achievement of
clustering optimization of particle with different optimization capability, ensuring the diversity of particles in order to reduce the
risk of falling into local optimum. Finally, we prove the effectiveness of this algorithm through selected bands validation by
support vector machine.
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1 Introduction

Hyperspectral remote sensing is an important breakthrough in
the field of remote sensing technology. It organically com-
bines the traditional two-dimensional remote sensing imaging
technology with the spectrum technology, imaging ground
objects with tens to hundreds of narrow and continuous band
at the same time. Each pixel has a corresponding continuous
spectral curve [1, 2], which greatly improves the resolution.
But the increasing number of bands of hyperspectral images
has problems of large amount of data and redundant informa-
tion. This will have a more direct impact [3] on the accuracy of
hyperspectral classification. Therefore, dimensionality reduc-
tion is very necessary in hyperspectral image analysis before

analyzing and processing data [4]. The dimensionality reduc-
tion of hyperspectral image is usually solved by two ways,
namely feature extraction [5] and feature selection [6].
Feature extraction reduces dimension through a transforma-
tion based a certain rules from high-dimensional space to low
dimensional space. But this method is usually very complicat-
ed, and may also cause damage to the original physical prop-
erties of band, which is not conducive to the image interpre-
tation and inversion [7, 8]. In contrast, feature selection selects
several bands from all bands which can be effectively used to
analyze the composition to form a simplified feature space. By
this way, the physical meaning of the original hyperspectral
image is maintained and the amount of image data can effec-
tively be reduced as well. So it attracts a wide spread attention.

Band selection of hyperspectral image is a complex com-
binatorial optimization problem [9, 10], in general, in order to
obtain the optimal wave subset, exhaustive search must be
used, which will take a lot of time. However, the intelligent
algorithm can obviously simplify the process of searching
optimal band and greatly improve the searching efficiency.
In recent years, intelligent algorithms have been widely used
in band selection of hyperspectral image and achieved good
results. These intelligent algorithms applied to band selection
include genetic algorithm [11–14], ant colony algorithm [15]
and the particle swarm optimization algorithm [16–19]. In
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these algorithms, genetic algorithm can effectively solve the
problem that the band combination number is huge and the
traversal is difficult in the process of band selection process,
but the convergence speed is slow. On account of the initial
lack of pheromone, ant colony algorithm has a slow solving
speed and easily stagnates in the search process. Particle
swarm optimization algorithm is easy to realize and has a
faster convergence speed, but it is easy to fall into local opti-
mum. Therefore, how to find the optimal band combination
quickly and accurately is a problem of hyperspectral image
band selection which is needed to solve.

In this research, this article proposes a band selection meth-
od based on particle swarm optimization algorithm with dy-
namic sub-swarms. In this algorithm, we treat the classification
accuracy as the fitness function, and divide particles into dy-
namic subgroup in different subgroups according to the fitness
value. Through the subgroup’s cooperation and parallel
searching of optimum band, the risk of particle swarm algo-
rithm of falls into local optimum can be reduced effectively
because of dependence only on a single information exchange
and local optimum. By overcoming the disadvantages of parti-
cle swarm optimization algorithm, the performance of the se-
lected band can be ensured. Finally, the effectiveness of pro-
posed method was verified by the AVRIS hyperspectral images
experiments. The main contribution of the work lies in intro-
ducing the particle swarm optimization algorithmwith dynamic
sub-swarms into band selection for hyperspectral images.

2 Related Work

2.1 Band Selection of Hyperspectral Image Based
on Particle Swarm Optimization

Particle swarm optimization (PSO) algorithm is a swarm intel-
ligence computingmethod, which simulates the group behavior
of bird to solve combinatorial optimization problems [20]. It
has the advantage of simple principle, ease of implement and
fast convergence, etc. Therefore, the algorithm has been widely
used in many fields. Recently, some researchers have applied
PSO algorithm to the band selection of hyperspectral images.
Li and Ding proposed a method for searching for the optimal
parameters for support vector machine and obtaining a subset
of beneficial features simultaneously [17]. Su et al. proposed a
PSO-based system to select bands and determine the optimal
number of bands to be selected simultaneously. In the system,
the outer PSO for estimating the optimal number of bands and
the inner one for the corresponding band selection. To avoid
employing an actual classifier within PSO so as to greatly re-
duce computational cost, criterion functions that can gauge
class separability are preferred [18]. Zhang et al. proposed an
unsupervised band selection method in which the fuzzy clus-
tering is combined with PSO. Moreover, an entropy-based

strategy for selecting representative bands of clusters is de-
signed to restrain noisy bands effectively [19]. In general, the
above PSO band selection algorithms are easy to fall into local
optimization for hyperspectral image.

2.2 The Basic Idea of Particle Swarm Optimization
Algorithm

In the PSO algorithm, the search space is set as d dimensions,
the total number of particles is set as m. Particle i is any
particle in d-dimensional search space, which has three prop-
erties of current position, speed and fitness value. Particle
position represents a potential solution of optimization prob-
lem, expressed as xi = (xi1,xi2,…xid). Particle velocity repre-
sents the moving direction of the particle in next iteration,
expressed as vi = (vi1,vi2,…vid). Fitness value of the particle
indicates its degree of excellence, which can be calculated
according to the fitness function. Each particle searches for
the optimal solution through moving constantly in search
space, then the particles will know their best position that has
been found, namely, individual extremum. Meanwhile the par-
ticle will find the best position of the entire particle swarm
through the experience of Bpeer^ particles, namely group’s
extremum. Particles ultimately find the global optimal solution
by tracking the two Bextremum^ in iterative optimization.

2.3 Division and Optimization of Dynamic Subgroup

Particle swarm optimization algorithm is a swarm intelligence
algorithm with good convergence, but it is easy to fall into
local optimization in the face of such complex optimization
problems as band selection of hyperspectral image. The rea-
son is that the diversity of the population will gradually weak-
en or even disappear with growth of iterations, which make
the optimization result converge to local optimum. Against
this shortcoming, this paper uses the particle swarm optimiza-
tion algorithm with dynamic sub-swarms to optimize informa-
tion exchange model. Fitness value is used as criterion to
functionally divide particles into subgroups [21], and each
sub-group takes the different optimization method, which re-
alizes clustering optimization for particles with different capa-
bilities of optimization. On the one hand, multiple subgroups
exchange collaboration and optimize in parallel of proposed
method can ensure direction and diversity. On the other hand,
it makes the information of particle swarm fully utilized, so
that the information in the whole group flows fast. It both
improves the efficiency of optimization and reduces the risk
of local optimal, which improves comprehensive optimization
capabilities of PSO.

Division of Dynamic Subgroups Criterions for the division of
dynamic subgroups are not unique. The method in this paper
divides subgroups based on the orders sorted by the size of
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fitness value. In turn, all the particles are divided into groups
of high quality group, general group and poor quality group.
The concrete methods of division are as follows:

After population with the m particles is initialized, the fit-
ness value fi of each particle is calculated and the results are
sorted. Among them, maximum and minimum values which
are defined as fmax and fmin, arithmetic average to all particles

fitness value favg is the cutoff point, f
0
avg is defined as the

arithmetic average fitness value of all the particles belonging

to the interval (favg, fmax], f
″
avg is defined as the arithmetic

average of all the particles fitness value belonging to the in-
terval [fmin, favg].

The particles whose fitness value belongs to interval

f
0
avg; f max

� i
are defined as superior group, the particles

whose fitness value belongs to interval f ″avg; f
0
avg

� i
are de-

fined as common group, and the particles whose fitness values

belong to interval f min; f
″
avg

� i
are defined as inferior group.

From the perspective of a single particle, the position of the
particle gets changed after each iteration, so the corresponding
fitness value also gets changed. Therefore, the particles in
every subgroup preserve change in a dynamic process, which
reflects the idea of dynamic sub-swarm.

Because the three sub-groups have some differences in the
degree of convergence, different subgroups need to take cor-
responding optimization mode, and the global and local
search ability can be controlled by adjusting the inertia weight
in PSO in order to make all particles with different optimiza-
tion capabilities fulfill their responsibilities [22], which en-
sures the optimality of the selected band.

Superior Group and the Optimizing Method Particles in supe-
rior group are made up of the particles with higher fitness
value in the optimizing process. Each particle corresponds
with better position. Even though the number of particles in
superior group will change dynamically after each iteration, it
can ensure the particles in superior group is the small portion
of all with best current optimization position in population. So
they have strong searching capability, the possibility of find-
ing the optimal position in superior group according to the
global model is higher. This will determine the way of infor-
mation communication in the superior group, that each parti-
cle not only have the ability to learn the society information,
but also has its own ability to think, namely that each particle
need to follow both global extremum and individual extre-
mum. The (k + 1) times iteration of speed and position are
shown as Eqs. (1) and (2):

vkþ1
id ¼ wvkid þ c1r1 pkid−x

k
id

� �þ c2r2 Yk
gd−x

k
id

� �
ð1Þ

xkþ1
id ¼ xkid þ vkþ1

id ð2Þ

where, c1, c2 are learning factors, r1,r2 are random numbers in
interval [0,1], pkid is individual extremum, Yk

gd is a global ex-
tremum in superior group and w is the inertia weight.

In superior group, the number of particles is relatively less,
and closed to the global optimum, so it needs to accelerate to
approach the global optimum. According to Eq. (1), the ve-
locity of particles in superior depends on the first part, namely
inertial velocity, so smaller inertia weight is assigned to the
particles in superior group to strengthen the local search capa-
bilities. Concrete definition is as follows:

w ¼ w
0
− w

0
−wmin

� � f i− f
0
avg

f max− f
0
avg

�����
����� ð3Þ

where, fmaxand f
0
avg are the boundary value of superior group,

w′is a fixed value, and is set to be 0.6; wminis the minimum
value of w, and is set to be 0.4.

Common group and Its Optimizing Method Compared with
the superior group, optimizing ability of particles in the com-
mon group is general as a whole, but they also have some
differences. The particles belonging to fitness value interval

f avg; f
0
avg

h i
relatively have good positions, which have pos-

sibility to breaking away from the common population to join
the superior group. Therefore, the optimizing method needs to
get close to the superior group, which means following global
extremum of the superior group. However, it will speed up the
velocity of this part of particles so that the risk of falling into
the local optimum also is increased significantly. Therefore,
when this part of the particle pursuit the optimal particle, they
also need to follow personal extremum and global extremum
in common group, which not only can avoid falling into local
optimum, but also increase the probability of finding global
optimization. It can be seen that particles belonging to

f avg; f
0
avg

h i
in the common group needs to follow the global

extremum in the superior group, the global extremum and the
individual extremum in general group, The particle i at the
(k + 1)th iteration is shown as formula (4):

vkþ1
id ¼ wvkid þ c2r2 Yk

gd−x
k
id

� �
þ c3r3 Pk

gd−x
k
id

� �
þ c4r4 pkid þ xkid

� �
ð4Þ

where, c2, c3, c4 are learning factors, r2, r3, r4 are respectively
random number in [0,1], Yk

gd is global extremum in high qual-

ity group, Pk
gd is global extremum in general group, pkid is

individual extremum of each particle, and w is the inertia
weight.

Another part of particles of the general group belonging to

f ″avg; f avg
� i

will continue to iterating optimization value rely

on the global model by following personal best and global

J Sign Process Syst (2018) 90:1269–1279 1271



extreme of general group, the velocity of at the (k + 1)th iter-
ation is defined as:

vkþ1
id ¼ wvkid þ c3r3 pkid−x

k
id

� �þ c4r4 pkgd−x
k
id

� �
ð5Þ

Positions of all particles in common group are updated
themselves according to Eq. (2).

Since the particles in common group are good and bad, this
group has capability of global search and local search. In order
to ensure convergence precision, nonlinear descend inertia

weight is used. In the early iterations, inertia weight is large
and global search dominates. In the latter, as inertia weight
descends, local search is enhanced. The inertia weight of k
time iteration is:

w ¼ wstart− wstart−wendð Þ k
kmax

� �2

ð6Þ

where, wstart is the maximum of inertia weight, wendis the
minimum of inertia weight, kmax is the maximum number of

hyperspectral image 

data

initialize particle swarm 

optimizaion

caculate fitness value

band grouping

output optimal bands of each 

subgroup

all optimal band 

combination

Whether meet optimization 

criterion 

Divdive subgroup and 

search for global optimum

common group inferior groupsuperior group 

update the velocity 

and position 

according to  feature 

of common group 

update the velocity 

and position 

according to  feature 

of inferior group 

update the velocity 

and position 

according to  feature 

of superior group 

evaluate the paritcle after 

iteration , update individual 

and global extremum

end

Figure 1 The flowchart of
proposed algorithm.

1272 J Sign Process Syst (2018) 90:1269–1279



iterations, and the value interval of inertia weight is ranged
from 0.4 to 0.9.

Inferior Group and Its Optimizing Method Inferior group in-
cludes the particles with the worst evaluation during the
process of optimization, namely the position of these par-
ticles are very poor in the whole population. So particles in
inferior group are not iterated and updated, which has a big
difference with the other two subgroups. Therefore, opti-
mizing mode is different from others. According to the
division rule of each subgroup, the particles in this group
are eliminated by superior group and common group, so
the particles in inferior group can’t follow the global ex-
tremum of the other two subgroups. Meanwhile, the own
poor positions makes inferior particles lose memory func-
tion. So they longer follow the individual extremum. For
the feature of inferior particles, the method is to search the
whole searching space means particles randomly. Because
inferior particles are few, searching at random has rarely
effect on global optimization. In addition, inferior particles
are not altogether bad, which contributes to keep the diver-
sity of the population, and avoid particles falling into local
optimum.

vkþ1
id ¼ vkid ð7Þ

xkþ1
id ¼ xmin þ r5 � xmax−xminð Þ ð8Þ

where, xmax is the maximum of spatial position xmin is the
minimum of spatial position, r5 is a random number with-
in [0,1].

3 Proposed Band Selection Method

During the process of band selection based on particle swarm
optimization algorithm with dynamic sub-swarms, the particle
information exchange model is improved. According to dif-
ferences of search capability among all subgroups, parameters
selection and iterative optimization are completed adaptively,
which can avoid particles falling into local optimum. This
method consists of the following three parts:

(1) Data preprocessing

Due to the influence of atmospheric noise and compli-
cated changes of airborne remote sensing platform posi-
tion, the original hyperspectral image always has serious
distortion. Therefore, before hyperspectral data is analyzed
and processed, the first is to preprocess the hyperspectral
remote sensing image [23] in order to remove the bands
which are seriously polluted by moisture and noise.

(2) Construction of fitness function

Fitness function is the criterion to evaluate bands. This
paper uses the classification accuracy as the criterion of se-
lected band subset. But the classification accuracy is only for
specific classifier. As a widely used classifier, Support Vector
Machine (SVM) is built on statistical learning theory. It maps
the original data to high-dimensional data space through ker-
nel function [24], which can transform a linear inseparable
problem of low-dimensional space to a separable one of
high-dimensional space so that a linear discriminate function
is constructed in a high-dimensional space to find optimal
surface. Although the data dimension is increased, the com-
putational complexity is not increased accordingly. It effec-
tively overcomes the difficulties from the features of non lin-
earity and small samples brought to the classification.
Therefore, the SVM classifier accuracy is selected as band
selection criteria, namely the fitness function.

Figure 2 AVIRIS false color composite image.

Figure 3 Reference map.
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(3) Band selection

After the hyperspectral images are preprocessed, after pre-
treatment use dynamic grouping bands are selected based on
PSO algorithm with dynamic sub-swarms, the concrete pro-
cedure are as follows:

(a) Particle swarm initialization. The initialization in-
cludes the initialization of velocity and location of
each particle, which are set according to the calcula-
tion complexity in order to ensure the population di-
versity and search efficiency. It should be noted that
the band combinations are represented by binary vec-
tor in this paper, so sigmoid function is used to map
particle position, which transforms from continuous
variables into discrete variables, and the mapping
function is shown as formula (9):

xkþ1
id ¼ 1; sig vkþ1

id ≥u
� �

0; else

	
ð9Þ

where, sig represents the Sigmoid function, u is the
predetermined threshold value which is used to control the
probability mapping into 1, and the rest has the same with
continuous particle swarm algorithm, u is set as 0.5.

(b) Calculate the fitness value of particles and then sort
them. According to this criterion, the whole popula-
tion is firstly divided into three subgroup: superior
group, common group and inferior group, and then
the optimization begins in parallel. In the process of
iteration, the velocity, position and inertia weight up-
date themselves. By this way, the best band combina-
tion will be found.

(c) During the iterative process of particle velocity and po-
sition, whether it is out of the boundary value is needed to
judge. If velocity goes out of the set value, it will be set as
boundary control the maximum length of each move-
ment step of particles.

(d) The optimal band combinations are achieved according
to the output band from each band group.

The pseudo code and flowchart of the proposed algorithm
are shown in Algorithm 1 and Fig. 1 respectively.

4 Experiment Simulation

4.1 Description of Experimental Data

The experimental image data used in this paper is AVIRIS
hyperspectral remote sensing data which is offered by
Purdue University of the United States American for free
(http://dynamo.ecn.purdue.edu/biehl/MultiSpec). AVIRIS
hyperspectral image was taken in the northwest of remote
sensing experimental area in Indiana. The Spatial resolution
of the image is 20 m and the size of the image is 145 × 145
pixels, the number of the band is 224, and the wavelength
ranges from 400 nm to 2500 nm. Before the band selection
and classification, it is necessary to remove bands which are
seriously polluted bymoisture and noise (Band 1 ~ 4, 7 ~ 8, 80
~ 86, 103 ~ 110, 149 ~ 165, 217 ~ 224). As a result, 179 bands
are reserved to be selected in experiment. Figure 2 is the false
color image synthesized by band 90, 5, 120, Fig. 3 shows the
reference map of the original ground feature.

In this paper, band selection based on particle swarm opti-
mization with dynamic sub-swarms (DPSO), while selected
PSO and Genetic Algorithm (GA) as a reference to verify the

Table 2 Product’s accuracy and
user’s of classification
experiment.

Band selection method GA PSO DSPSO

Ground feature class PA UA PA UA PA UA

Class 1 0.9148 0.9135 0.9286 0.9293 0.9297 0.9299

Class 2 0.9086 0.9313 0.9113 0.9315 0.9132 0.9384

Class 3 0.9693 0.9571 0.9702 0.9546 0.9863 0.9658

Class 4 0.9157 0.9259 0.9425 0.9168 0.9433 0.9253

Class 5 0.9369 0.9131 0.9297 0.9321 0.9349 0.9410

Class 6 0.8971 0.8862 0.9164 0.9175 0.9185 0.9303

Class 7 0.9242 0.9434 0.9325 0.9407 0.9498 0.9370

Table 1 The numbers of training
and test samples. Class Class1 Class2 Class3 Class4 Class5 Class6 Class7

The numbers of training sample 150 485 378 463 835 331 682

The numbers of test sample 150 485 378 463 835 331 682
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proposed method is effective. In the experiments, we selected
seven of categories feature for classification, and the training
and test samples will be selected based on equal ratio (shown
in Table 1).

The parameters of proposed algorithm are set as follows:
population size N = 50; particle swarm learning factor c1, c,
c3, c4 are taken as 1.4962; inertia weight are changed in the
way described by the algorithm, the total number of iterations
is 50. SVM classifier selected RBF kernel function, whose
penalty parameter c and the kernel parameter γ is set as c =
16, γ = 2.5874.

4.2 Analysis of Experimental Results

Classification accuracy assessment of hyperspectral remote
sensing images includes product’s accuracy (PA), user’s accu-
racy (UA), the overall classification accuracy and Kappa co-
efficient which is a comprehensive assessment of the overall
classification accuracy, product’s accuracy and the user preci-
sions of the experiment. Classification accuracy of each
ground feature in the experiment is shown in Table 2.

As the experimental data shown in Table 2, under the same
sample selective conditions, PSO has a better convergence

Algorithm 1: Proposed DSPOS algorithm for band selection of hyperspectral image

Input:  I Hyper spectral image
N The initial number of particle swarm
d The dimension of searching space
xid The location of the ith particle in the d-dimension searching space, which is 

randomly selected from the bands of image I after data processing
vid The location of the ith particle in the d-dimension searching space
fi The fitness value of the ith particle using SVM classification accuracy
k
gdY Global extremum in superior group 
k
gdP The global extremum in general group
k
idp Individual extremum of each particle for superior and general group

w The inertia weight for superior and general group
k The iteration number

M The maximum iterative number 
c1, c, c3, c4 learning factor for particle swarm

Output: B The optimal bands selected by DSPSO algorithm 
1: Select bands from image I by removing the bands which are seriously polluted by 

moisture and noise.
2: While k M do
3: Compute fitness value f for each particle
4: Divide particle swarm into three categories: superior group, common or general group, 

and inferior group according to Section 2.3.1
5: Update the velocity and location each particle in superior group according to Eqs (1), (2) 

and (3) 
6: Update the velocity and location each particle in common group according to Eqs (4), (5) 

and (6)
7: Update the velocity and location each particle in inferior group according to Eqs (7) and 

(8) 
8: k k  1
9: If find the optimal bands combination for a group Then

Go to Step 11
End

10: end
11: Output the optimal bands combination for superior, common and inferior groups.
12: Combine three optimal band combinations into B
13: Return B
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accuracy than GA in response to such high-dimensional
problems like the band selection, and the user accuracy
and producers accuracy of DSPSO are both better than
GA and PSO. The phenomenon of classification has
been significantly improved. The classification accuracy
of all ground features are improved in different degrees,
which shows a certain advantage in the performance of
algorithm.

Table 3 shows the overall classification accuracy and
Kappa coefficient. It is shown in Table 3 that the im-
proved algorithm proposed in this paper has the highest
classification accuracy (94.64%) and Kappa coefficient

(0.9327) compared with GA and PSO algorithms. The
optimization of particle information model is beneficial
to improve the search efficiency. Compared with GA
and PSO algorithm, the improved algorithm has better
performance of combinational classification, which is
verified the effectiveness of the proposed method.

Figure 4 is the fitness value of the three algorithms in
whole iterative process, namely the change of classifi-
cation accuracy. According to the fitness value trend of
the three algorithms, it is shown that GA algorithm and
PSO algorithm stagnate in a short time and fall into
local optimum. The DSPSO algorithm improved this
situation than other two algorithms. It can be observed
from Fig. 4 that the DSPSO algorithm converges after
about 20 generations, and GA and PSO algorithms con-
verge after 35 generations. The DSPSO algorithm can
achieve the highest classification accuracy and get away
from local optimum quickly. The above analysis shows
that the effectiveness of the proposed method on the
hyperspectral image.
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Figure 4 Fitness value change curves of GA-SVM, PSO-SVM, and DSPSO-SVM algorithms, respectively.

Table 3 The overall classification accuracy and Kappa coefficient.

Bband selection method Overall accuracy Kappa coefficient

GA 92.59% 0.9178

PSO 93.25% 0.9236

DSPSO 94.64% 0.9327
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Figure 5 is the result of classification experiment. As the
images shown intuitively, the improved algorithm proposed in
this paper has better performance than GA algorithm and PSO
algorithm in the classification results.

5 Conclusion

While particle swarm algorithm showed better convergence in
band selection, but its shortcomings that is easy to fall into
local optimum will cause adverse effects on following classi-
fication. This paper proposed a band selection method based
on particle swarm optimization algorithm with dynamic sub-
swarms, which divides up all particles into dynamic sub-
groups to optimize the information exchange information. It
effectively reduces the risk of falling into local optimum in
iterative optimization process in order to ensure the optimality
of the selected bands. Experiment results shows that the im-
proved algorithm proposed in this paper has higher

classification accuracy of band combination than GA and
PSO, which is verified the effectiveness of the algorithm.
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