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Abstract
Being the enabling technique for 5G wireless communications, massive multiple-input multiple-output (MIMO) system
can drastically increase the capacity efficiency. However, a few hundreds of antennas will inevitably introduce notable
complexity and therefore hinders its direct adoption. Though the state-of-the-art (SOA) iterative methods such as conjugate
gradient (CG) detection show complexity advantage over the conventional ones such as MMSE detection, their convergence
rates slow down if the antenna configurations become more complicated. To this end, first this paper devotes itself in
exploring the convergence properties of iterative linear solvers and then leverages the proposed adaptive precondition
technique to improve the convergence rate. This adaptive precondition technique is general and has been incorporated with
steepest descent (SD) detection as a show case. An approximated calculation for log-likelihood ratios (LLRs) is proposed for
further complexity reduction. Analytical and numerical results have shown that with the same iteration number, the adaptive
preconditioned SD (APSD) detector outperforms the CG one around 1 dB when BER = 10−3. Hardware architecture for the
APSD detector is proposed based on iteration bound analysis and architectural optimization for the first time. Architectures
for other adaptive preconditioned iterative linear detectors can be easily derived by following similar design flow. Compared
with the SOA designs, FPGA implementations have verified the APSD detector’s advantage in balancing throughput and
complexity, and guaranteed its application feasibility for 5G wireless.
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1 Introduction

Past few decades have witnessed the explosive increase of
digital devices and the exponential growth of data rate in
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modern communication systems. Thanks to predecessors’
unremitting efforts, the data rate of wireless communication
systems has been drastically improved from 9.6 Kbps of the
Global System for Mobile (GSM) for 2G to 1 Gbps of the
3rd Generation Partnership Project Long Term Evolution
Advanced (3GPP LTE-A) for 4G [1–3]. Compared to 4G, 5G
communications aim to achieve 1000 times system capacity,
10 to 100 times spectral efficiency, energy efficiency and
data rate, and 25 times average cell throughput [4, 5].

In order to fulfil those challenging requirements, ad-
vanced techniques focusing on new air-interface, coding,
modulation, waveform, and multiple-access have been pro-
posed recently. Among those key techniques, massive mul-
tiuser multiple-input multiple-output (MU-MIMO) system
has captured more attentions from and brought more imag-
inations to researchers and engineers [6, 7]. In a common
assumption, massive MU-MIMO systems employ a few
hundreds of antennas at base station (BS), simultaneously
serving many tens of terminals via the same time-frequency
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resource. This emerging technique scales up MIMO by
possibly orders of magnitude, and achieves significant
advantages in increased data rate, enhanced reliability,
improved energy efficiency, and reduced interference [8–
10].

Unfortunately, the aforementioned benefits would not
become apparent until the complexity and interference
challenges brought by the system-scale growth have been
well addressed. It has been proven in literature that the
optimal MIMO detection is NP-hard [11, 12]. And the
computational complexity of such optimal algorithms based
on either maximum-likelihood (ML) criterion or maximum
a posteriori (MAP) [13–15] criterion quickly becomes
excessive as the number of decision variables increases.
Though linear detections can achieve a good tradeoff
between performance and complexity when the system-
scale is small, such algorithms as zero-forcing (ZF) and
minimum-mean square-error (MMSE) [16, 17] still suffer
from the computation-hungry matrix inversions for massive
MIMO scenarios.

Being smarter, one should resort to some recent proposed
iterative linear detectors alternatively. While these detectors
try to strike a lower complexity in the theoretical sense,
the following issues remain unconsidered in the existing
literature and hinder them from being adopted by practical
systems.

– Convergence Issue: In order to be suitable for practical
5G applications, an iterative linear detector should not
only consider the ideal channel but also the scenarios
where the numbers of transmitting and receiving
antennas are comparable or the antenna correlations are
not negligible. However, for those cases, the spectral
condition number (SCN) of the regularized Gram
matrix will increase, and highly affects the convergence
rate as shown later. In extreme cases, even sufficiently
large iteration number could not guarantee satisfactory
performance.

– Complexity Issue: The complexity issue comes from
two aspects: i) To achieve comparable performance as
conventional linear detectors like MMSE, the slowed
convergence will result in more iterations, or in other
words, higher complexity and latency. ii) To speedup
the convergence, the commonly adopted precondition
relies on the incomplete Cholesky decomposition [18].
But for massive MU-MIMO, its pre-processing for the
threshold will easily leads to excessive complexity. In
summary, both aspects will offset or even eliminate the
complexity advantage of iterative linear detectors, and
such a balance point in between is pretty difficult to
figure out in general.

1.1 Existing RelevantWorks

In this subsection, the existing relevant algorithms and imple-
mentations for massive MU-MIMO detection are reviewed.

1.1.1 Iterative Linear Detectors

For a large-scale MU-MIMO system, the linear detectors
with exact matrix inversion tend to cost an unaffordable
complexity as the user number grows. To bypass the exact
matrix inversion, many works focused on the Neumann
series expansion (NSE) for approximation purpose [19–27].
However, when the number of NSE terms is greater than
2, it again suffers from considerable complexity. Recently,
iterative linear algorithms, such as conjugate gradient
(CG) [28–32], Gauss-Seidel (GS) [33–35], successive over-
relaxation (SOR) [36–41], and others [42–45] have been
considered for massive MIMO detection for a better balance
of complexity and performance. Constrained by the inherent
properties, the convergence rate heavily depends on: i) the
system loading factor α, and ii) the channel correlation
coefficient ζ . First, α indicates that with a fixed number
of antennas, the BS cannot serve a fast growing number of
users simultaneously. It is a pity that the widely adopted
antenna configuration in literature is 128 × 8 or 16
(BS v.s. users), and the corresponding detection methods
failed to take those many-user cases into consideration.
Second, for correlated channels with high ζ , performance
of the SOA iterative linear detectors appear unstable. Third,
the involved max-log-LLR computation related to either
large-scale matrix inversion or iterative processing, will
lead to high complexity and long latency. Therefore, an
iterative linear detector which successfully combines stable
convergence-rate and low complexity for a wide range of
scenarios, is highly desired for 5G applications.

1.1.2 Precondition Processor

The conventional solution to improve the convergence rate
is introducing preconditionor. The key design issue for the
precondition processor is the sparse-matrix decomposition,
which is complex and laborious. However, to the best
knowledge of the authors, very few works have been
reported for accelerating sparse-matrix decomposition.
According to benchmark study, existing accelerations of
matrix decomposition were achieved by exploring new
memory-access methods [46–49]. However, those works
mainly focused on conventional LU decomposition, which
is not suitable for sparse matrix. Therefore, sparse-matrix
decomposition with a minimum hardware cost is highly
expected.
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1.2 Contributions of This Paper

– Algorithm Innovation: To this end, this paper first
explores the convergence properties of iterative linear
solvers. Based on those properties, an adaptive precon-
dition scheme for general iterative linear detections in
massive MU-MIMO uplink is proposed. This scheme
ensures a fast convergence rate for common iterative
linear detectors with specific consideration on complex-
ity reduction. Adaptivity of the proposed precondition
lies in the threshold selection, which is based on two
critical parameters influencing the convergence rate:

1. User-to-BS antennas ratio (also referred to as the
system loading factor) α.

2. Channel correlation coefficient ζ .

This threshold assists us to accelerate the conver-
gence with acceptable overhead complexity, and is valid
not only for the steepest descent (SD) detection but also
the general iterative linear methods and scenarios. The
convergence proof of this preconditioned detection is
given in Section 3.

– Architecture Innovation: For the implementation issue,
a novel implementation methodology for the adaptive
preconditioned SD (APSD) detection is first proposed
with iteration bound analysis, timing rescheduling, and
architecture optimization. A novel incomplete decom-
position for sparse matrix along with its hardware archi-
tecture is also proposed for complexity purpose. The
proposed APSD detector architecture has been imple-
mented with FPGA. The performance and complexity
comparisons with the SOA detectors clearly demon-
strate the advantages of our design. It should be noted
that this implementation methodology is also applicable
for other adaptive preconditioned detections.

1.3 Paper Outline

The remainder of this paper is organized as follows.
Section 2 briefly describes massive MU-MIMO system
model and MMSE detection scheme. Section 3 gives
the preconditioned SD-based soft-output detection and its
convergence proof. Hardware design for the proposed
detection is presented in Section 5. FPGA implementation
results and comparison with the SOA designs are given in
Section 6. Finally, Section 7 concludes the entire paper.

1.4 Notations

In this paper, lowercase and upper bold face letters stand for
column vectors and matrices, respectively. The operations

(�)T , (�), (�)H , and E{�} denote the operations of transpose,
complex conjugate, conjugate transpose, and expectation,
respectively. The entry in the i-th row and j -th column of
A is A(i,j). The vector a in each iteration j is aj . The A-
norm of a vector ν with respect to the matrix A is defined as
‖ν‖A � (Aν · ν)1/2.

2 Linear DetectionModel for Massive
MU-MIMOUplink

In this paper, to fully illustrate the advantages of the
proposed scheme, its performance has been carefully
evaluated for different channel scenarios of massive MU-
MIMO uplink system. In this paper, a system with loading
factor α = U

B
is assumed, where a BS equipped wtih B

antennas serves U single-antenna users simultaneously via
a flat-fading channel. Therefore, the received symbol vector
y ∈ C

B×1 at the BS can be modeled as:

y = Hs + n, (1)

where s ∈ C
U×1 denotes the collection of transmitted

symbols at the users side and n ∈ C
B×1 denotes the

independent identically distributed (i.i.d.) additive white
Gaussian noise (AWGN) with zero mean and variance N0.
H ∈ C

B×U is the B × U i.i.d. flat-fading channel response
matrix with zero mean and unit variance. Details of H will
be discussed below.

2.1 Correlated Channel Model

For better evaluation, the antenna correlation has been taken
into account in this paper. More specifically, we adopt the
Kronecker model in [50], and H can therefore be expressed
as H = R1/2

r TR1/2
t , where T ∈ C

B×U is the B × U

i.i.d. channel matrix with zero mean and unit variance. β

represents the power attenuation caused by the large-scale
fading (path-loss and shadowing). Rr ∈ C

B×B and Rt ∈
C

U×U are the spatial correlation matrices at BS and user
side, respectively. Their entries are given as follows:

Rr (i, k) =
⎧
⎨

⎩

(
ζre

jθ
)k−i

, i ≤ k,

R∗
r (k, i), i > k;

(2)

Rt (i, k) =
⎧
⎨

⎩

(
ζt e

jθ
)k−i

, i ≤ k,

R∗
t (k, i), i > k.

(3)

R(i, k) denotes the entry in the i-th row and k-th column.
R∗

r and R∗
t are the conjugate matrices of Rr and Rt ,

respectively. Furthermore, we assume each cell with a free
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space reference distance d0 covers an area with a radius
of r , in which the users are randomly distributed. The
distance between the i-th specific transmitter-receiver pair
is di . The large-scale fading effect is jointly determined by

the average path-loss
(

d0
di

)γ

and the log-normal shadowing

10log10ψ ∼ N (0, σ 2
ψ) in a form of power attenuation

F(i, i) =
(

d0
di

)γ

ψ . To fully evaluate different massive

MIMO detectors, we consider four common scenarios:

1. Uncorrelated: When correlations at BS and user side
are eliminated (i.e. both ζr and ζt are zero), R1/2

r and
R1/2

t degrade to IB and IU , respectively. And for fair
comparison with the benchmarks, the large-scale fading
is ignored. In this case, matrix H is actually the ideal
i.i.d. Rayleigh fading channel matrix.

2. BS Correlated: For single-antenna users, the correla-
tion among users is negligible. But for BS, correlation
may exist due to the large-scale antenna array. Thus,
the channel matrix H = R1/2

r TF1/2
t , where Ft =

diag (Ft (1, 1), Ft (2, 2), . . . , Ft (U, U)). Ft(i, i) is the
power attenuation factor between the i-th transmission
stream and the BS.

3. User Correlated: For multi-antenna users, if the dis-
tance between two BS antennas is large enough (lager
than half-wavelength), correlation between BS anten-
nas can be omitted. Then R1/2

t becomes diagonal
matrix Fr , and H = F1/2

r TR1/2
t , where Fr =

diag (Fr(1, 1), Fr(2, 2), . . . , Fr(B, B)). Fr(i, i) repre-
sents the power attenuation between the i-th receiving
antenna at the BS and the users.

4. Fully Correlated: In this case, correlations take place
at both sides. The matrix H = R1/2

r TR1/2
t , where R1/2

r

and R1/2
t are given by Eqs. 2 and 3, respectively.

2.2 MMSE Equalization Scheme

At the BS side, to minimize the mean squared error (MSE)
of s, the MMSE equalizer [51] is employed:

ŝ =
(
HHH + N0E

−1
s I

)−1
HHy, (4)

where I is the identity matrix with dimension U and Es =
E[‖sn‖2] is the average transmission power. For conve-
nience, we denote
{
ỹ = HHy,
A = (

HHH + N0E
−1
s I

)
.

(5)

Then Eq. 4 can be simplified as

ŝ = A−1ỹ. (6)

To exactly calculate ŝ , we have to deal with the matrix
inversion with complexity of O(U3). As U grows, the
complexity may become prohibitive.

2.3 Basic Assumptions

The following assumptions are made throughout the rest of
this paper. First, we assume the channel fading matrix H as
well as the correlation coefficients ζr and ζt are perfectly
known at the receiver. Second, half-rate convolutional code
is employed to mitigate the channel fading. Last but not
least, the per-bit LLR is directly computed after the channel
equalization and the results are passed to the standard
Viterbi decoder [52].

3 Adaptive Preconditional Iterative Linear
Detection

In this section, we start with the convergence theory of
canonical iterative methods regarding different channel
conditions. Based on the theoretical analysis, an adaptive
preconditioned method to improve the convergence is
proposed. Then, a more efficient LLR computation method
is introduced for further complexity reduction.

3.1 Convergence Analysis for Different Channel
Conditions

The MMSE equalization in Eq. 6 can be rewritten as Aŝ =
ỹ, which is a typical linear system equation with a Hermitian
positive definite (HPD) coefficient matrixA. Here, we focus
on the convergence issue of iterative linear solvers. Specific
concerns have been put on cases when the system loading
factor α approaching 1 and the correlation is inevitable.

Definition 1 The SCN of a normal matrix A (with the
respect to 
2 norm) is denoted by:

κ(A) � λmax(A)

λmin(A)
, (7)

where λmax(A) and λmin(A) are the greatest and least
eigenvalues of A, respectively.

Indicated by [53], the mathematical principle behind is that,
for HPD problems the convergence rate of iterative linear algo-
rithms is highly related to the SCN of matrix A. Usually,
higher SCN leads to lower convergence rate. Take the com-
monly used steepest descent (SD) algorithm as an example,
in its i-th iteration, the upper bound of estimation error is:

‖ŝ − ŝ(j)‖A ≤ κ − 1

κ + 1
‖ŝ − ŝ(j−1)‖A. (8)

Without loss of generality, SD algorithm is employed as
a running example in the following1. Therefore, we aim

1In fact, convergence rate of many canonical iterative linear methods,
such as Jacobi, GS, SOR, and CG, heavily relies on the SCN [54].
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to identify efficient approach to reduce the SCN of A for
convergence consideration. The analysis in [55] implies two
points:

1. [α issue]: For an uncorrelated Rayleigh fading environ-
ment, increasing the antenna number at the BS reduces
the probability of experiencing an ill-conditioned chan-
nel (system with large SCN).

2. [ζ issue]: The presence of spatial correlation tends
to increase the probability of system’s experiencing a
highly ill-conditioned channel.

According to the aforementioned observations, we have
the following conclusion:

Corollary 1 For massive MIMO channel H with loading
factor α(H) and correlation degree ζ(H), the SCN of
the regularized Gram matrix A, κ(A) is bounded by the
relations: κ(A) ∝ α(H) and κ(A) ∝ ζ(H).

Proof See Appendix A.

Since the minimum SCN of a normal matrix is one,
iterative linear algorithms can achieve a high convergence
rate if A is an identity matrix. This observation inspires us
to explore adaptive precondition to lower the range of A’s
SCN within the given boundaries.

3.2 Adaptive Precondition to Accelerate
Convergence

As illustrated above, higher loading factor α and channel
correlation ζ introduce an ill-conditioned MMSE detection
problem. To improve the convergence rate of iterative
detection for this problem, an efficient precondition based
on incomplete LDLT (ILDLT ) decomposition is proposed
to lower the SCN for the linear equation Aŝ = ỹ. Details
of this precondition algorithm are given in Algorithm 1 as
follows:

It should be noted that if i · j = 0, (�)(i,j) = 0. Here, η

is a function of ζr , ζt , and α. The explicit expression of η in

this work is obtained from the analysis in Section 3.1 with a
heuristic perspective:

η = (1 − ζr)(1 − ζt )(1 − α)A(i,i). (9)

With L and D obtained from Algorithm 1, we modify the
original linear equation Aŝ = ỹ into

MAŝ = Mȳ. (10)

The new coefficient matrix MA is defined by Eq. 11. It is
an approximation of identity matrix (i.e. its SCN is close to
one).

MA = L−1D−1(LH )−1A. (11)

Numerical results in Fig. 1 show consistency with
Corollary 1 and the efficiency of proposed adaptive
precondition.

3.3 Adaptive Preconditioned Iterative Linear
Detection

Now, we combine the adaptive precondition approach with
SD detection. The proposed APSD detection is shown in
Algorithm 2 as follows.

Here, J is the maximum iteration number. Usually for
J = 2 or 3, the estimated result will converge to the final
result ŝ. Readers can refer to Appendix B for derivation of
Algorithm 2.

3.4 Efficient Approximated LLR Calculation

For finite length and robustness considerations, the soft
messages in the above algorithms are in the form of
logarithm likelihood ratio (LLR). In this subsection,
the efficient and hardware-friendly LLR calculation is
proposed. In general, LLR for the b-th bit in the n-th symbol
is given by:

δŝn,b � log

(
f (y|qn,b = 1)

f (y|qn,b = 1)

)

. (12)



1458 J Sign Process Syst (2018) 90:1453–1467

Figure 1 An illustrative SCN
comparison for the matrices A
and MA. Here, SNR = 10 dB
and B = 128. Thanks to the
proposed adaptive precondition
approach, comparing the circle
markers to the triangle markers,
it is evident that the SCN can be
reduced by roughly 50% when
the matrix A is preconditioned
intoMA in the linear equation
as in Eq. 10 to improve
convergence as will be discussed
in Section 4.
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According to [56], we have

C = A−1(HHH). (13)

Substitute (4) into (13), we have

C = I − N0E
−1
s A−1, (14)

and

C(n,n) = 1 − N0E
−1
s A−1

(n,n). (15)

It has been shown that, M in Eq. 10 is the coarse
approximation of A−1 and only the diagonal entries of
A−1 are needed. With the diagonal matrix D obtained by
Algorithm 1, we simplify (15) as:

C(n,n) = 1 − γ
1

Dn

, (16)

where γ = N0E
−1
s . Assume code bits are equally likely

and independently Gaussian distributed. The approximated
expression for δŝn,b is further derived in Eq. 17, where | · | is
the absolute value and Qb=0,1 stands for the collections of
constellations when the b-th bit equals 0 or 1, respectively.
The LLR values are finally passed to the Viterbi decoder to
recover s without inverting A.

δŝn,b = 1

(1 − γ 1
Dn

)γ 1
Dn

[

min
q0∈Qb=0

∣
∣
∣
∣ŝn−(1−γ

1

Dn

)q0
∣
∣
∣
∣

2

− min
q1∈Qb=1

∣
∣
∣
∣ŝn − (1 − γ

1

Dn

)q1
∣
∣
∣
∣

2
]

. (17)

4 Numerical Verification of Performance

Here, numerical results for different massive MU-MIMO
scenarios are given to verify the advantages of the APSD
detection with approximated LLRs over the SOA baselines.
The free space reference distance d0 = 1 covers an area with
a radius of d, in which the users are randomly distributed.
The overall large-scale fading effect is jointly determined by

the average path-loss
(

d0
d

)γ

and the log-normal shadowing

10log10ψ ∼ N (0, σ 2
ψ) in a form of power attenuation

� =
(

d0
d

)γ

ψ . Furthermore, the antenna correlation has

been taken into account in this paper. “Cholesky” is the
traditional Cholesky decomposition scheme. “CG Exact”
and “CG Approx” are the recently proposed CG-based
approaches [28–31] with the exact coefficient C(n,n)

and approximate C(n,n), respectively. “APSD Exact” and
“APSD Approx” are the proposed APSD detection with
exact coefficient C(n,n) and approximate C(n,n). The DVB
[171oct, 133oct] rate-1/2 convolutional code, 64 quadrature
amplitude modulation (QAM), andB = 128 are considered.

Figure 2 shows the BER performance of proposed
APSD detection against aforementioned baselines: i) Fig. 2a
focuses on the impact of correlation factor ζ , and ii) Fig. 2b
considers the effect of loading factor α. iii) Fig. 2c compares
the convergence rates of different schemes.

In Fig. 2a, BER performances under different correlation
conditions are compared. Specifically, we have: i) User
Correlated case (ζt = 0.2, ζr = 0), ii) BS Correlated
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Figure 2 BER performance comparison.

case (ζt = 0, ζr = 0.4), and iii) Fully correlated case
(ζt = 0.2, ζr = 0.4). Here we assume d0 = 1, γ =
3.5, σ 2

ψ = 5 and di is a random number in [1, 100].
Though the Cholesky decomposition scheme (Cholesky)
offers the best performance, its performance gain over the
proposed scheme is negligible. Furthermore, Cholesky’s
complexity is quite huge as shown later. Also, the proposed
scheme easily outperforms the recently proposed CG-based
algorithm (“APSD Exact”) in all cases with gain varying
from 0.5 dB to 1 dB at BER = 10−3. Now it is concluded
that performance degradation resulting from the efficient
LLR computation in Section 3.4 is marginal (e.g. less
than 0.2 dB than Cholesky scheme). Finally, it is also
obsereved that the proposed scheme is quite robust when the
correlation factor ζ varies.

In Fig. 2b, uncorrelated scenarios with different loading
factors α are considered. When α is small (i.e. α ∈ [0, 0.1]),
the performances of all the schemes are similar. On the other
side of this plot, when α reaches its maximum value 1, both
the CG-based algorithms (“CG Exact” and “CG Approx”)
and the APSD ones (“APSD Exact” and “APSD Approx”)
become worse. However, when α ∈ [0.2, 0.7] the proposed
scheme outperforms CG-based algorithms. It is concluded
that compared with the SOA approaches the proposed
scheme is more suitable for scenarios when the loading
factor changes in a wide range.

In Fig. 2c, the convergence property of the proposed
scheme are compared with baselines by changing the
number of iterations J in uncorrelated scenario. Both
“APSD Approx” and the proposed scheme achieve satisfac-
tory performance, and the gaps from the optimal approach
(“Cholesky”) are less than 0.1 dB when J = 2 and 3 at
BER = 10−3. This convergence advantage is important for
practical applications, which cannot afford too many itera-
tions due to the latency and complexity considerations. On
the other hand, the CG-based algorithms (“CG Exact” and
“CG Approx”) still suffer a obvious degradation compared
to “Cholesky” at BER = 10−3 even when J = 3.

To sum up, the proposed APSD detection with approxi-
mate LLR computation shows good robustness against vary-
ing channel correlation and loading factor. Its convergence
rate is also superior over the SOA approaches. For prac-
tical massive MU-MIMO scenarios, the proposed APSD
detection offers a good option balancing performance and
complexity.

5 Hardware Architecture Design

In this section, implementation methodology for adaptive
preconditioned iterative linear MIMO detection is proposed.
The hardware architecture is given with iteration bound
analysis and resource optimization. FPGA implementation
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has also been done to demonstrated the feasibility of the
proposed method. Comparison with the SOA design has
shown its advantages and indicated its possible adoption by
practical systems.

5.1 Data-Flow Graph Analysis

The straightforward hardware block diagram of Algorithm
2 is illustrated in Fig. 3. It is shown that there are a total of
three units involved: i) Initialization Unit, ii) Iteration Unit,
and iii) Output Unit.

For iteration bound analysis, the data-flow graph (DFG)
is given in Fig. 4. The mapping relationship between DFG
nodes and modules in Fig. 3 is in the legend part. According
to Fig. 3, we have:

Remark 1 The iteration bound of equals (T7+T5+T6). The
critical path equals (T1 + T2 + T3 + T5 + T8 + T9). Here, Ti

is the processing time of Node i.

Proof In Fig. 4, there are 3 loops, namely l1, l2 and l3:
⎧
⎨

⎩

l1 = Node 7 → Node 7,
l2 = Node 7 → Node 6 → Node 7,
l3 = Node 7 → Node 5 → Node 6 → Node 7.

(18)

Therefore, the iteration bound is:

T∞ = max{T7, T7+T6, T7+T5+T6} = T7+T5+T6. (19)

Also, the critical path is p:

p = Node 1 → Node 2 → Node 3
→ Node 5 → Node 8 → Node 9.

(20)

It should also be noted that p is also constrained by l2 and
l3 due to the dependencies shown in Fig. 4.

Figure 3 Block diagram of the proposed APSD detector.

Figure 4 DFG for the proposed APSD detector.

According to Remark 1, the optimized hardware archi-
tecture is derived in Fig. 5, where special attentions have
been paid to both l3 and p.

5.2 Initialization Unit

In Initialization Unit, GRAM MATRIX module employs a
triangular systolic array of (1+U)U/2 processing elements
(PEs) to compute the lower triangular part of A, namely
TA. MATCHED FILTER module computes ỹ = HHy
with a similar PE. (See [34] for details.) GRAM MATRIX
module’s results are pipelined column-by-column to CCS
(compressed column storage) module below.

5.2.1 CCS Module

Having the i-th column of TA (TA(:,i)), U CCS modules
are triggered in a pipelined sequence. To be more specific,
the CCS module associated with the i-th column receives
data with 2 × (U − i + 1) input ports (every (U − i + 1)
ports are for the real part and imaginary part, respectively).
It performs one port shift due to the fact that the output of
GRAMMATRIX module is produced by each PE, clock after
clock. Then the original data will be output to a comparator
and finally stored by RAM in a standard CCS format [57].
This procedure performs the outer for loop of Algorithm 1
(Line 2). The blue box in Fig. 5 gives the architecture.

5.2.2 ILDLT PROCModule

With CCS-formatted TAC, ILDLT PROC module performs
Algorithm 1 by a co ntrol unit. The other blocks are: a
multiplication accumulator (MAC), a reciprocal unit, and an
adder. Its operation flow is in Algorithm 3. The architecture
is in the yellow box of Fig. 5.
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Figure 5 Detailed hardware
architecture of the proposed
APSD detector.

5.3 Iteration Unit

Iteration Unit takes care of all the iterative computations.
According to Section 5.1, the iteration bound is (T7 + T5 +
T6), which is the sum of the processing time of Node 7
(complex adder in Fig. 3), Node 5 (TRI-L SOLVERmodule),
and Node 6 (ITERATION module). Therefore, the core task
of this part lies in the design of TRI-L SOLVER module and
ITERATION module.

5.3.1 TRI-L SOLVER Module

To solve z(j) = (LDLH )−1ỹ(j) in Algorithm 2, we split this
equation into three equations:

u(j) = L−1ỹ(j), v(j) = D−1u(j), z(j) = L−Hv(j). (21)

Since L and LH are both triangular matrices with all-
one diagonal entries and D is a diagonal matrix, the
computation consisting of complex multiplication, addition
(subtraction), and scalar division can be implemented in the
similar manner as in ILDLT PROC module. Since there is
no schedule overlap between TRI-L SOLVER module and
ILDLT PROCmodule (Fig. 5), folding technique can be also
considered.

5.3.2 ITERATIONModule

ITERATION module in Fig. 3 calculates Lines 5 to
8 in Algorithm 2. Key operations are matrix-vector
multiplication, inner product, scalar-vector multiplication,
and reciprocal, where multiplication and reciprocal can
be implemented by MAC and LUT, respectively. Its
architecture is shown in the green box of Fig. 5

5.4 Output Unit

InOutput Unit, ŝ(J ) is obtained via a MAC, by accumulating
the products of TRI-L SOLVER module’s result and
ITERATION module’s result for J iterations. Then the LLR
is calculated according to [58].



1462 J Sign Process Syst (2018) 90:1453–1467

Figure 6 Overall schedule of the proposed APSD detector.

5.5 Timing Analysis

The overall schedule of the proposed APSD detector is
shown in Fig. 6. Same as [34], GRAMMATRIX module and
MATCH FILTERmodule require (B +2U −1) clock cycles
and (B + U − 1) clock cycles, respectively. CCS module
spends one clock per entry since the first entry of current
column is output by GRAM MATRIX module. Thus, it is
active from the (B + 1)-th cycle to the (B + 2U)-th cycle.

The timing analysis of ILDLT PROC module is more
complicated due to the variety of the sparsity structure
of TAC in different scenarios. According to Algorithm 3,
the maximum processing time of this unit is Ts = (U +
U2)/2 (if no value is dropped from the original matrix).
Then, ρs (
 1) is introduced as an assistant parameter to
specify the exact cycles spent by ILDLT PROC module.
Similar analysis with ρt (
 1) is conducted for TRI-L
SOLVER module. If no value is dropped from the original
matrix, the maximum processing time Tt = (U2 − U)

/2 + (U − 1).

6 FPGA Implementation and Comparison

To demonstrate the advantages of the proposed APSD
detector with the SOA designs, implementation and

comparison have been given for 128 × 8 massive MU-
MIMO system with Xilinx Virtex-7 XC7VX690T FPGA.
16-bit quantization is adopted for both input and output
per complex-dimension. All multipliers are 32-bit. The
LUT of reciprocal module has 256 addresses and 8-bit
outputs. Performance of these quantization schemes has
been verified by the “fixedAPSD approx” curve in Fig. 2c.
The fixed-point simulation result shows negligible loss,
which demonstrates the efficiency of the proposed hardware
design.

In Table 1, the proposed APSD design is compared with
the CG-based method (CGLS) [31] and the approximated
NSE method [25]. Same FPGA and antenna configuration
(128 × 8) are considered. It is shown that the proposed
design achieves higher throughput than the CGLS with
a better performance in various scenarios. Though the
approximated NSE method can achieve higher throughput,
the proposed design has the highest hardware efficiency.

It should be noted that, since all our benchmarks did not
show their power information, power consumption is not
compared in Table 1. More relevant comparison based on
overall power consumption will be given in our future work.
A similar issue is, since all benchmarks only consider the
ideal case, in Table 1 we only list the result of Case 1 in
Section 2.1 for fair comparison. In fact, for trade-offs for
different correlation coefficients, only processing latency

Table 1 FPGA implementation comparison.

Antenna configuration 128 × 8 α = 1/16 ζ = 0

Detection algorithm APSD (J 1 = 2) CGLS [31] (J 1 = 3) NSE [25] (J 2 = 3)

Slices 1,467 (1.35%) 1,094 (1%) 48,244 (44.6%)

LUTs 2,947 (0.68%) 3,324 (0.76%) 148,797 (34.3%)

FFs 3,697 (0.42%) 3,878 (0.44%) 161,934 (18.7%)

DSP48s 50 (1.39%) 33 (0.9%) 1,016 (18.3%)

BRAMs 6 (0.2%) 1 (0.03%) 32 (1.08%)

Latency (clock cycles) 305 951 196

Maximum clock frequency 199.942 MHz 412 MHz 317 MHz

Throughput 31.47 Mb/s 20 Mb/s 621 Mb/s

Hardware efficiency (throughput/LUT) 10.7 kb/s/LUT 6.0 kb/s/LUT 4.2 kb/s/LUT

1 Iteration number; 2 Term number
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will vary in different cases, which will finally affect the
detection throughput.

7 Conclusion

In this paper, adaptive preconditioned iterative linear
detection is proposed for correlated massive MU-MIMO
uplink. Convergence rate of the algorithm has been carefully
studied to balance the complexity and performance.
Efficient LLR computation method has also been proposed
for further complexity reduction. Theoretical as well as
numerical results have demonstrated the advantages of the
proposed method over the SOA designs. Implementation
design methodology is proposed with architectural and
timing optimization. FPGA implementation results of
APSD detector have verified its application feasibility for
practical massive MU-MIMO systems.
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Appendix A: Proof of Corollary 1

The SCN of a given matrix A, which is defined as κ(A), is
the ratio of the largest and smallest eigenvalues. Since the
MMSE equalization matrix A can be decomposed as:

A = (
HHH + N0E

−1
s I

)

= U�UH + N0E
−1
s UIUH

= U(� + N0E
−1
s I)UH ,

(22)

where U is the unitary matrix and � is the diagonal matrix
with eigenvalues as its entries.

To obtain the abstract of the distribution of κ(A), the
joint probability density function (PDF) of the ordered
eigenvalues of A is required. Fortunately, for each
eigenvalue of matrix A, we have

λA = λHHH + N0E
−1
s . (23)

Here, HHH is a complex central Wishart distribution with
B degree of freedom and U eigenvalues. The joint PDF of
the ordered eigenvalues of HHH for Cases 1, 2, and 3 in
Section 2.1 is given by [59] and the corresponding analysis
of the SCN distribution is given by [55]. Thus, the joint

PDF of the ordered eigenvalues, λ � [λ1, λ2 . . . λU ] with
λ1 ≥ λ2 ≥ . . . ≥ λU ≥ 0 of A is

fλA(λ) = fλHHH(λ)|d(λHHH)

d(λA)
|. (24)

According to Eq. 23, we have

fλA(λ) = fλHHH(λ − N0E
−1
s ). (25)

This indicates that λA and λHHH have the same distri-
bution when only the influence of system loading factor
α and channel correlation coefficient ζ are considered.
Finally, Corollary 1 can be proved by the result in [55] (See
Statement 1 and 2 in Section 3.1).

Appendix B: Derivation of APSD Detection
Algorithm

In classical SD method, ŝ is iteratively calculated [54] by:

ŝ(j) = ŝ(j−1) + α(j−1)z(j−1). (26)

Since z(j−1) is the iterative residual, −z(j−1) is the iterative
research direction and α(j−1) is the iterative research length
in the (j − 1)-th iteration.

In the proposed APSD algorithm, the system is

preconditioned from Aŝ = ỹ to (LDLH)
−1

Aŝ =
(LDLH)

−1
ỹ. The iterative residual in the j -th iteration

changes from ỹ(j) in

ŝ(j) = ŝ(j−1) +
(
ỹ(j−1) · ỹ(j−1)

)

(
Aỹ(j−1) · ỹ(j−1)

) ỹ(j−1) (27)

to

z(j) = L−1D−1L−HAŝ(j) − L−1D−1L−H ỹ(0)

= L−1D−1L−H ỹ(j),
(28)

where

ỹ(j) = ỹ(0) − As(j). (29)

Substitute s(j) to Eq. 26, then ỹ(j) is calculated by:

ỹ(j) = ỹ(j−1) − α(j−1)Az(j−1). (30)

To derive α(j−1), we consider the basic principle of SD
method that, the set of search direction z should satisfy

z(k)T z(j) = 0(k �= j). (31)

Then α(j−1) is obtained based on Eqs. 28, 30, and 31,

α(j−1) = (z(j−1), y(j−1))

(Az(j−1), z(j−1))
. (32)
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Summarize Eqs. 26, 28, 29, and 32, the proposed
algorithm is obtained

⎧
⎪⎪⎨

⎪⎪⎩

ŝ(j) = ŝ(j−1) +
(
z(j−1)·ỹ(j−1))

(Az(j−1)·z(j−1))
z(j−1),

ỹ(j) = ỹ(j−1) −
(
z(j−1)·ỹ(j−1))

(Az(j−1)·z(j−1))
Az(j−1),

z(j) = (LDLH )−1ỹ(j).

(33)

Combining with Algorith1, we can obtain Algorithm 2.
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