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Abstract This paper introduces a novel approach to im-
prove bee tracking. For this research, 50 Hz 2D videos
have been recorded. The first part of the model tracks
bees using a method combining colour thresholding and
foreground detection, and then produces the bees’ shapes
as blobs on a binary image. These blobs are analysed to
estimate the positions and directions of motion of the
bees. However, when bees cross over one another in
the image, they are hard to track. This paper tackles this
problem by using the standard Hough transform applied
to bee research. Then a Kalman filter is used to track the
bees using their estimated position information. Because
of the 50 Hz frame rate, the trajectories of the bee move-
ments are too variable to track reliably. The Kalman fil-
ter is modified to fit this situation. Multiple bees are
being tracked, so the Hungarian assignment algorithm
is used to assign predictions and measurements to indi-
vidual bees. The experiment shows the bees are reliably
tracked in the close view 50 Hz 2D video.

Keywords Bee detection . Bee tracking . Hough
transformation . Kalman filter . Object tracking

1 Introduction

Honey bees are traditional pollination insects, and they also
produce honey. In particular, Manuka honey is an export prod-
uct exclusive to New Zealand. Many scientists and bee
keepers are concerned about the health of bees, and they ob-
serve and analyse bees’ behaviour. The use of an observation
platform inside the beehive is popular, but there is little mon-
itoring of bees outside the beehive, especially using a close up
view. Campbell et al. [1] tracked bees outside the hive, but the
shadows of the bees affected the outcome. Kimura et al. [2]
tracked honey bees on a flat surface, but it did not mention
whether their method could be used in the natural environ-
ment. This paper tracks the flight of bees outside the beehive.
As the camera is close to the beehive entrance, the video can
display the bees’ bodies clearly.

In multiple object tracking, the common method is filtered
tracking. Dearden et al. [3] introduced the particle filter to track
soccer players on the field. Weng and Shantaiya et al. [4, 5]
used the Kalman filter to track human beings moving on a
video. All of the above [3–5] used filtered tracking. The filters
predict the position assuming the velocity is constant and then
combine the prediction and detection to track the object.

In this paper, the frame rate of the camera is 50 Hz, but the
bees are flying fast. Therefore the situation is different from
the people tracking in [3–5].

The approach of bee detection is implemented by the com-
bination of foreground detection [6, 7] and colour base seg-
mentation [8]. Detection produces bee blobs from the video
image and displays them as a binary image. These blobs can
be analysed to obtain the bee positions, and then bounding
boxes can be drawn around the bees. Lu et al. [9] and Thou-
Ho et al. [10] used blob analysis to get the same information.

Position information is used for bee tracking using the
Kalman filter. Normally, the Kalman filter is used to track
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human beings and traffic vehicles, because their velocity is
almost constant. The filter relies on the steady value of the
velocity. However, in this research, there is no such steady
value available for tracking. The Kalman filter predicts the
bee positions for the next frame, and then combines the pre-
dictions and measurements (detections) to calculate the
Kalman result for the next prediction.

The research in this paper is also concerned with multiple
bee tracking. The Hungarian assignment method [11, 12] is
used to assign predictions and detections.

If bees appear individually in the video frame, they can
easily be tracked. However, because the video is only 2D,
when two bees cross over each other, the detection only pro-
duces one blob of these bees. Therefore, there are two predict-
ed positions corresponding to one merged blob in the frame.
In this case, the Hough transform is used to calculate the
positions of these two bees. Ballard [13] introduced the
Hough transform to detect arbitrary shapes. Prasad and
Leung [14] detected ellipse from edge information. Maji and
Malik [15] used the Hough transform to detect objects. Their
voting space could find the possible location of objects. In this
paper, the Hough transform is applied to the detection of
merged bees using information about the edges and orienta-
tions of their blobs in the immediately previous frames. This is
a new application of Hough transform. Then the Kalman filter
uses those positions as measurements (detections) to track the
bees. This technique solves the problem of bees merging. The
experiment is performed using MATLAB.

2 Bee Detection

2.1 Bee Detection with Image Segmentation

The image segmentation model uses a combination of fore-
ground detection and colour base segmentation to detect bees.

Foreground detection uses the Gaussian Mixture Model
(GMM) [7] to detect moving bees and ignores the unchanging
background. This produces the binary image that is called the
foreground mask image (FMI) in this paper. However, this also
detects bee shadows and vegetationmovement, which affects the
result. The colour global thresholding using the Hue-Saturation-
Value (HSV) colour space [16], detects the orange and black
colour of bees. This removes the shadow and vegetation move-
ment. This colour segmentation method produces two binary
images we call the orange mask image (OMI) and black mask
image (BMI). These three binary mask images are combined to
detect the bee blobs. The logic is displayed in Fig. 1.More details
are provided in [17].

Each blob can be analysed to estimate the position of the
blob centre and to draw rectangular bounding boxes (bbox)
around each blob.

2.2 Hough Transform for Merged Bee Detection

A difficulty occurs when two bees pass across each other in
the image. Because we use 2D video, when the crossing hap-
pens, bee detection produces one big blob rather than two
separate bee blobs.

After the merging has been identified (a procedure
discussed in section 3), the next step is to detect bees in the
merged blob. This is a new application of the Hough
transform method, because the shapes of the merged
bees are arbitrary.

It is a challenge to detect and separate two bees when they
are merged together, because the bees have the same colour
and patterns. Figure 2 displays the situation. In Fig. 2a the
segmentation detects two bee blobs. In Fig. 2b the result of
segmentation is only one merged blob in the following frame.
The solution is to use the two individual bee shapes in Fig. 2b,
to detect each bee in the merged blob in Fig. 2d.

Although the bee shapes appear different in the merged
detection, the single bee shapes in the Fig. 2b frame are partly
observable in the merged shape of the Fig. 2d frame.
Therefore, the shape parameters from the Fig. 2b frame can
be used to detect the individual bees in the merged frame of
Fig. 2d. However, this method can only find an approximate
area of pixels for each bee’s position, because of the changes
in the shapes.

In Fig. 2b, the blob of each single bee can be cropped out.
This blob image can be used to produce the edge image. Using
the bee blob near the bottom right corner in Fig. 2b as an
example, Fig. 3 displays the edge of this blob.

It is assumed that the edge image (Is) has width I and height
J. The image pixel at i, j has the value:

I s i; jð Þ ¼ 1; on the edge
0; not on the edge

�
; ð1Þ

where 1 ≤ i ≤ I and 1 ≤ j ≤ J.
The centre of the image is at (ic, jc). The pixels with value

B1^ define the edge curve on the image Is. The set of pixels (S)
on the edge of the single bee blob is:

Orange_Mask_
Image(OMI)

Foreground_
Mask_Image

(FMI)

Colour_Mask
_Image(CMI)

Dilated_Image
(DI)

Mask_Bee_
Image 
(MBI)

Black_Mask_I
mage(BMI)

DI ^ CMI

BMI V OMI

Dilate(OMI ̂  FMI)

Figure 1 The combination logic.
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S ¼ i; jð ÞjI s i; jð Þ ¼ 1f g: ð2Þ

It is assumed that the set of edge pixels has N members.
Each member of the set S is denoted by sn = (in, jn)
representing the coordinates of edge pixel number (n ∈ [1,N]).

In the edge image, the origin is at the top left corner.
To detect a single bee in the merged blob, it is conve-
nient to shift the origin to the centre of the edge image.
The transformation is:

cn ¼ un; vn½ � ¼ in−ic; jn− jc½ �; ð3Þ

then the transformed edge pixel set (C) is:

C ¼ cnjnϵ 1;N½ �f g: ð4Þ

Figure 4 shows the merged blob edge of the two bees in
Fig. 2c. This blob can also be cropped. The edge image of the
merged blob (Im) has width X and height Y, and it pixels are:

Im x; yð Þ ¼ 1; on the edge
0; not on the edge

�
; ð5Þ

where 1 ≤ x ≤ X and 1 ≤ y ≤ Y.
The pixels with value B1^ are on the edge of the blob

on the image Im. The set of pixels (M) on the edge of
the merged blob is:

M ¼ x; yð ÞjIm x; yð Þ ¼ 1f g: ð6Þ

This set of pixels has Kmembers. Each member is denoted
by mk = (xk, yk) representing the coordinates of pixel number
(k ∈ [1,K]).

In the Hough transform technique, the edge pixels of the
single bee blob are drawn on the merged blob edge image,
with the centre of the single bee blob positioned on each pixel
on the edge of the merged blob. Therefore, if the merged blob
edge hasK pixels, the single blob edge is drawnK times on the
merged blob edge image. The coordinates of the resulting
pixels drawn on the image are

tnk ¼ un þ xk ; vn þ yk½ �: ð7Þ

This transform set is known as T, where:

T ¼ tnkjnϵ 1;N½ �; k ϵ 1;K½ �f g: ð8Þ

These are the Hough Transform pixels. Some of the pixels
tnk are in the same position as each other. Figure 5 is an ex-
ample of the single bee blob edge drawn four times on the
merged blob edge image, with each drawing shown as a dif-
ferent colour. The centre of each drawing is at a different
position on the edge of the merged blob. All of the pixels on
these single bee edge drawings belong to T.

Each pixel in the merged blob edge image (Im) may match
none, one or several of the Hough Transform pixels (T). This

(a) (b)

(c) (d)

Figure 2 The segmentation of bees blob. a The first frame of two bees
(b) The blob segmentation of (a). c The next frame of the two bees. d The
merged blob segmentation of (c).
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Figure 3 The edge image of a single bee blob.
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Figure 4 The edge image of merged bee blob.
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creates a voting map (V(x, y)), whose size is the same as the
size of merged blob edge image. Each element of the voting
map array corresponds to a pixel of merged edge image. These
elements are bins that record the number of Hough Transform
pixels located at position (x, y).

For (x, y) inside the merged blob, V(x, y) is the number of
tnk values equal to (x, y). These points are x ϵ [1, X], y ϵ [1, Y].
V(x, y) is also called the voting value.

The voting map indicates the possible positions of the sin-
gle bee on the merged image. If the single bee blob edge fits
part of the merged blob edge, there is expected to be a corre-
sponding element of voting map that has a peak value. This
peak point is a candidate for the single bee’s position in the
merged blob.

However, it was observed that the motion of the bee can
change its orientation by up to ±10° between successive video
frames. If the bee changes orientation, the voting map may
produce a lower valued peak point. Conversely, the fitting
orientation leads the votingmap to get a sharp high peak point.
The rotation of the bee’s blob is described as:

α ¼ αlj l ϵ 1; 2;…; Lð Þf g; ð9Þ
where the L = 21 and the

α1;…α21½ � ¼ −10°;−9°;…; 0°;…; 9°;…; 10°
� �

are the angles which are used to rotate the single bee blob edge
from its original orientation. The plus sign indicates an anti-
clockwise rotation and the minus sign indicates a clock-
wise rotation. If the single bee blob edge is rotated to
αl the edge pixel coordinates relative to the centre of
the single bee blob are:

cnαl ¼
h
un � cosαl þ vn � sinαl;

vn � cosαl−un � sinαl

i
:

ð10Þ

Each rotated single bee blob edge curve can be drawn on
the merged edge image to generate the voting map for an αl

rotation. In this case, there are 21 different voting maps cor-
responding to the 21 different rotations. The different voting
maps display different valued peak points. If a rotation makes

the single bee edge fit the merged edge, a peak point in the
voting map is high and sharp, with other peak points being
much lower. If the rotation does not fit the merged edge, there
may be two or three peak points with a similar, but lower,
value. Figure 6 shows an example. In this figure, the X and
Yvalues are the coordinates of the peak point, and the Z value
is the voting value of the point. The rotation of 0 degreemeans
no change in the orientation of the single bee blob edge
(Fig. 6a–c). In this case, there are three peak points having
the same level. The rotation of 10 degree in Fig. 6d–f does not
fit the merged edge. The three peak points have a similar level
35, 36 and 37. Figure 6g–i is the fitting rotation in which the
peak point in the voting map is sharply 53, while the second
high peak level is only 39. It can be seen that the fitting rota-
tion produces the correct detection and usually has the highest
peak value.

In summary, the 21 voting maps produce 21 candidate
positions since each voting map produces exactly one
candidate position, corresponding to its peak value.
However, the fitting rotation may not be the highest
peak value. This is because the single bee shape some-
times fits another part of the merged shape rather than
the correct part, so that the wrong position also includes
the high peak point. If the peak point is near the correct
position, the region around this point includes many
higher voting value points. This is described as the cor-
rect region. Conversely, the region around the wrong
position has some low value points, and this is known
as the incorrect region, so that this peak point is sharp
and isolated.

Figure 7 indicates the situation. It can be seen that the top
point of wrong rotation (Fig. 7a–b) has a similar level (94) to
the top point of the fitting rotation (level 95 in Fig. 7c–d).
However, the top point in Fig. 7a–b) is more isolated than
the top point in Fig. 7c–d). The problem is solved by using
the sum of the region values around the top points. In each of
the 21 voting maps, all the values at voting points within ±5
pixels of the top point are added together. It is assumed the top
point in the voting map for orientation index l is Vl(xp, yp), and
the total value of the region around this top point is:

rl ¼ ∑xpþ5
x¼xp−5∑

ypþ5
y¼yp−5Vl x; yð Þ; ð11Þ

where l ∈ [1, 21]. The top value of the 21 region total values
produces the correct region which includes the actual position
of the bee. In addition, l gives the orientation of the bee. Take
Fig. 7 as an example. After the calculation, the region around
top point of Fig. 7b has a value of 3950; but the value
of the region around the top point of Fig. 7d is 5501.
Therefore, the correct region is from Fig. 7c–d in which
the fitting rotation is 10˚.

The top point in the correct region might be expected to be
the candidate position. However, this point is only near the

x

y

0

1st edge 
center

2nd edge 
center

3rd edge 
center

4th edge 
center

nkt

Figure 5 An example of drawing the single bee blob edge on the merged
blob edge image.

1642 J Sign Process Syst (2018) 90:1639–1650



actual position, because of the shape noise. The shape noise
comes from the segmentation. It is difficult to get accurate
shape detail when performing segmentation, but the detection
can be improved by a weighted average calculation near the
correct region. The correct region itself is too small to
be used to modify the position calculation. The correct
region is extended to an area of ±20 pixels from the
peak point, and a weighted average of the voting map is
calculated as below:

wx ¼
∑xpþ20

x¼xp−20∑
ypþ20
y¼yp−20

xV x; yð Þ
∑xpþ20

x¼xp−20∑
ypþ20
y¼yp−20V x; yð Þ

; ð12Þ

wy ¼
∑xpþ20

x¼xp−20∑
ypþ20
y¼yp−20yV x; yð Þ

∑xpþ20
x¼xp−20∑

ypþ20
y¼yp−20V x; yð Þ

: ð13Þ

In formula (12) and (13), the point at (wx, wy) replaces the
peak point as the candidate position of the bee.

This is the final detection of the bee on the merged image.
The other merged bee is detected in the same way.

In the following merged frame, the fitting rotation still uses
the original orientation, and the single bee detection which is
just before the first merged frame is still used to detect the
merged bee. This method works until the two bees separate.

(a) 0° rotation (d) 10° rotation (g)− 10° rotation (fitting)

x

y

x

y

x

y

(b) 0° rotation (e) 10° rotation (h)− 10° rotation (fitting)

y

level
gnitoV

y

level
gnitoV

level
gnitoV

(c) rotation (f) rotation (i) rotation (fitting)

Figure 6 The final detection of results with different rotation of the single bee edge. The −10° rotation fit the detection, and voting map have top peak
point.
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3 Tracked Bees with Kalman Filter

The video has a 50 Hz frame rate and its view is very close to
the bees. Therefore, a difficulty is that the bees can quickly fly
anywhere from one frame to the next. In this case, the normal
Kalman filter for object tracking [5] may not work well, be-
cause the bees are changing positions, velocities and acceler-
ations. There is no steady variable for the normal Kalman
filter. However, taking another view, the Kalman filter can
combine the prediction and measurement to produce a correc-
tion for the prediction of next frame. Therefore, if the position
of a bee is the state of Kalman filter, the reasonable correction
is close to the actual position of the bee. In this research, the
measurement of bee detection is more reliable than the predic-
tion when tracking a single bee, so the correction is close to
the detection. Conversely, in the merged bee situation, the
detection is not as reliable as single bee tracking, so the cor-
rection depends on both the prediction and detection. This

method requires the estimation of the covariance matrices of
the noises.

3.1 The Kalman Filter Principle for Tracking

In object tracking, the Kalman filter is discrete at frame num-
ber k. The Kalman filter estimation is:

Prediction :

pk ¼ Ask−1 ;
ð14Þ

Pk ¼ AQk−1A
T þ Q0 : ð15Þ

Measurement :

mk ¼ HSk :
ð16Þ

Correction :

Kk ¼ Pk Pk þ Rkð Þ−1 ;
ð17Þ

(a) rotation (c) rotation

(b) rotation (d) rotation

Figure 7 The peak point problem with different rotation. The fitting rotation is 10˚.
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sk ¼ pk þ Kk mk−pkð Þ ; ð18Þ

Qk ¼ I−Kkð ÞPk : ð19Þ

From Eq. (14) to (19), the matrix Pk is the covariance ma-
trix of the prediction noise. The matrix Rk is the covariance
matrix of the measurement noise. The matrix Sk is the actual
state from the detection measurement. The matrix Qk is the
covariance matrix of the estimated state sk. The matrixH is the
measurement model matrix, which is identity matrix in this
case. The correction is controlled by Pk and Rk. If the predic-
tion (pk) is unreliable, but the measurement from the bee de-
tection is accurate, the noise of Pk is greater than Rk, so
that the Kalman gain Kk is nearer to one. Then the
estimate state sk is closer to the measurement than to
the prediction. If the situation is opposite, the state sk is
closer to the prediction than the measurement.

In this research, Q0 is the variance due to the fact that the
bee velocity is not constant. It adds to the noise of the predic-
tion. Q0 is not only added once at the beginning of tracking, it
is added in each Kalman filter calculation.

To apply the Kalman filter formulas, the state of a bee is its
position (xk, yk), and the tracking model in frame k is:

xk ¼ 2xk−1−xk−2; ð20Þ

yk ¼ 2yk−1−yk−2: ð21Þ

If the prediction of the Kalman filter is:

pk ¼ Ak−1sk−1; ð22Þ
then the predicted state vector is:

pk ¼ xk ; yk½ �T : ð23Þ

The state vector in the frame k is:

sk ¼ xk ; yk ; xk−1; yk−1½ �T : ð24Þ

The transition matrix is defined as:

Ak−1 ¼ 2 0 −1 0
0 2 0 −1

� �
¼ A: ð25Þ

The measurement model of the Kalman filter is:

mk ¼ Hk−1Sk : ð26Þ

The measurement state vector is:

Sk ¼ xk ; yk½ �T : ð27Þ

The measurement vector is:

mk ¼ xk ; yk½ �T : ð28Þ

The measurement transition matrix is:

Hk−1 ¼ 1 0
0 1

� �
¼ H : ð29Þ

The covariance matrix of corrected noise is:

Qk ¼
q11k 0 0 0
0 q22k 0 0
0 0 q11k−1 0
0 0 0 q22k−1

2
664

3
775: ð30Þ

3.2 Estimation of the Covariance Matrices

The covariance values are estimated from the differences be-
tween the system calculation of the bee positions in the model
and the actual bee positions as calculated manually. The error
is calculated by:

em ¼ xd−xa; yd−ya½ �; ð31Þ

where em is the measurement error, [xd, yd] is the detected
position and [xa, ya] is the actual position. In the similar way,
the prediction error is calculated from the difference between
the system prediction and the actual position.

ep ¼ xp−xa; yp−ya
h i

; ð32Þ

where ep is the prediction error and [xp, yp] is the predicted
position.

It is assumed the x and y values are independent to each
other, so both the covariance matrices are diagonal. For single
bee tracking, 172 single bee images were used to estimate
errors and calculate the variances. The measurement covari-
ance matrix was:

Rk ¼ 13 0
0 10

� �
: ð33Þ

The x and y variances could be different because x is par-
allel to the front of the beehive and y is perpendicular to the
front of the beehive. Both x and y are parallel to the ground
surface below the beehive.

In addition, the covariance matrix Q0 was calculated from
bee positions on images.

Q0 ¼ 124 0
0 78

� �
ð34Þ

These two covariance matrices are assumed to be constant
during single bee tracking. However, because bees can merge
with each other in the image, the prediction and measurement
covariance matrices in the merged tracking are different from
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the single tracking. 91 merged bee images were utilised to get
the following matrices for the merged situation:

Rk ¼ 419 0
0 717

� �
; ð35Þ

Q0 ¼ 435 0
0 825

� �
: ð36Þ

These two covariance matrices above are also assumed to
be constant during merged bee tracking.

3.3 The Tracking Model

In the frame where a bee first appears, there is no previous posi-
tion, so the predicted position for the next frame is taken to be the
same as the current measured position. (This applies to all bees in
the first frame of a new video.) Therefore, the first prediction will
not be accurate, but the next prediction should agree with the
detection. In the following frame, bees are tracked using the
Hungarian assignment method [12]. This method assigns predic-
tions to detections in an optimal way, to minimize the sum of the
distances between the assigned predictions and detections. As a
constraint, a prediction will not be assigned to a detection when

the distance is more than 80 pixels. This will usually result in
some unassigned predictions and detections. When a detection is
unassigned, it is probably a bee appearing for the first time. In
addition, unassigned predictions can be caused by a bee
disappearing or bees moving across each other in the video.

Figure 8 shows the whole tracking model process. When a
bee just appears for the first time, aKalman filtermodel is created
for tracking it. After the creation of the tracking Kalman filter,
predictions and detections are assigned to each other for the
correction of the Kalman filter results. The correction produces
the next prediction. If a prediction is unassigned, it has to be
estimated whether it is in the merged situation or not.

In the merged situation, two predicted bounding boxes
(bboxes) overlap one detected bounding box (bbox).
Following the Hungarian assignment method, there is an un-
assigned prediction. The bbox information from the blob anal-
ysis is used to identify the merge occurrence.

For example, Fig. 9 displays a merged situation, where the
two predicted bboxes (red) overlap the merged detected bbox
(blue). In this situation, one prediction is assigned with this
merged detection. The other prediction is unassigned, even
though the unassigned prediction bbox overlaps the merged de-
tected bbox. This is the how the merge situation is recognised.

In Fig. 8, if a merged situation is recognised, the Hough
transform is used to locate each bee (as outlined in section 2).
If it is not a merged situation, the tracking model will be
deleted, because it is assumed the bee has disappeared, so it
does not need to be tracked any more.

4 Implementation and Results

4.1 Implementation Background

The camera is attached to the front wall of the beehive, facing
down about 30 cm above the entrance. A single white colour
board is placed on the ground in front of the entrance of bee-
hive, to simplify the image background. This is necessary,
because the natural background includes withered grass with
a similar colour to the bees and this interferes with the bee
detection. Figure 10a shows the situation. The video is

Predic�ons of bees Detec�ons of bees

Assign the 
predic�ons and 

detec�ons

Assigned predic�ons 
and detec�ons

Unassigned 
predic�ons

Unassigned 
detec�ons

Merged 
situa�on

Detect bees with 
Hough method

Y

Delete the 
tracking

N

Calculate the 
correc�ons

Create a Kalman 
filter for tracking the 

new bee

Assumed the 
predic�on same as 

the detec�on

Calculate the 
predic�ons for next 

tracking

Figure 8 The tracking model process. Figure 9 The merged bees situation.
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1920*1080 resolution at a rate of 50 frames per second. The
videos are recorded and copied to a computer for MATLAB
processing. The computer is a 64bit Intel Core i7 3.40GHHz
with 32GB RAM. MATLAB with the computer vision tool-
box is used to a run a program following Fig. 8. The program
can track bees automatically in the videos.

A Matlab function performs the blob analysis. It not only
calculates the blob information, but also outputs bounding boxes
around each bee blob. The tracking is indicated by adding index-
es to each bounding box and curves marking each bee’s trajec-
tory with different colours in the video. A tracking boundary is
set up just in front of the hive entrance, which is shown by the red
line in Fig. 10b, so that the system only tracks bees in front of the
white background area. This is because the area below the
boundary line has complex colour information which affects
the bee detection. Figure 10b shows an example of tracking
output over 40 frames. The blue and red bounding boxes mark
the detected and predicted bee positions respectively.

The model implementing tracking in the merged bee situ-
ation is shown in Fig. 11. The green outline shapes show the
detections produced by the Hough transform when the bees
are merged. The blue bounding boxes show the detection of
merged blobs. The images (a) to (d) are successive frames.
These examples demonstrate successful tracking.

(a)

(b)
Figure 10 The camera position (a) and the camera view (b).

(a) (b)

(c) (d)

Figure 11 The result of merged situation tracking. Each image is the
neighbour frame among the frame flow.

(a)

(b)

Figure 12 Example frames from two videos. a The active video. b The
shadow video.
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4.2 Evaluation of the Merged Detection and Tracking
Results

There are two main situations that need to be evaluated: single
bee tracking and merged situation tracking. There are several
factors that affect the tracking accuracy.

First, merged detection failures. In the frames, bees contin-
ually overlap each other when they fly actively. It is common
to see more than two bees merge, sometimes up to five bees
merging in a single blob. Sometimes, bees fly close to the
camera, so that the image has a large bee overlapping many
smaller bees. The merged detection methodmay not be able to
track bees in this situation. In addition, if bees keep merging
over a long period of time, they may change direction and
shape. Therefore, the detection may fail, because it is only
based on the shape information before the merging. This fac-
tor is the main problem of this tracking method.

Second, boundary errors. Most bees come from beyond the
image boundary. Some of them are only partly visible on their
first appearance in a frame. In the single bee situation, tracking
starts with these partly visible bodies. For merged bees on the
boundary, tracking will not start if a bee is merged with an-
other bee when it first becomes visible. In addition, bees may
stay merged as they disappear beyond the frame boundary, so
they are not seen separately. Then it is hard to know whether
the merged tracking is correct or not. Therefore, as mistakes
are unpredictable on the boundary, they will not be included in
the evaluation of merged tracking.

Third, bees flying close to the camera. As the video is
recorded in the natural environment, the video may show
some bees as being very big, because they may fly close to
the camera. These big blobs of bees may lead to unpredictable
mistakes, which are ignored in the evaluation.

Finally, fourth, bee shadows. Although the single colour
(white) board simplifies the background, shadows can still
appear on the video. The shadows do not have an orange
colour, but they may be detected as moving objects. If the
bee detection method (section 2.1) cannot successfully re-
move shadows, the system may recognise them as bees.
Therefore, shadows may affect bee tracking accuracy. One
type of video which includes many shadows has been chosen
to see test whether shadows affect the tracking or not.

Considering the four factors, two videos have been chosen
to demonstrate the results. All of them were taken in a sunny
environment, when detection is better than on a cloudy day.
The first video is an active video (Fig. 12a). There are about
eight bees in the frame view. This video was taken in the
middle of the day, when the sunlight was clear and bees were
flying actively. This video captures not only single bees, but
also many merged situations, so it is used to estimate results
for the single and merged situation tracking. The second video
is also an active one, but there are many shadows on the board
(Fig. 12b). This is the shadow video. This video also captures
bees flying in single and merged situations. In addition, it tests
the method when there are many shadows in the background.

The evaluation results for single bee tracking are listed in
Table 1. The active and shadow videos were evaluated over
300 frames to capture single tracking situations. In the table,
the single bee tracking columns record the total number of
bees tracked in these frames. If a bee index was assigned to
the same bee between two consecutive frames in the video,
this was counted as one correct tracking; otherwise, it was
incorrect. After processing, the videos were all examined
manually to determine whether each bee had been tracked
correctly. In the active video, single tracking accuracy is over
99%, and in the shadow video accuracy is also over 99%. It
can be seen that the shadows have little effect on tracking.

The merged tracking with the Hough transform is compared
to tracking without it. Both of the tracking models use the
Kalman filter described in chapter 3. In the tracking model with-
out the Hough transform, the merged tracking uses the centre of
the merged blob as the measurement for the Kalman filter.

Table 2 reports the accuracy of merged tracking. The
Correct column records that a bee after merging was identified
correctly as the same bee before merging. For example, if
three bees merged and then separated, and one of them was

Table 1 The evaluation of single bee tracking.

Videos Frames Bees’ images Single bee tracking

Correct Incorrect Accuracy %

Active 300 1744 1740 4 99.77

Shadow 300 1630 1625 5 99.69

Table 2 The tracking evaluation
and comparison. Videos Frames Tracked

bees
Kalman tracking Kalman + Hough tracking

Correct Incorrect Accuracy% Correct Incorrect Accuracy%

Active 1000 190 128 62 67.4 152 38 80.0

Shadow 1000 178 136 42 76.4 156 22 87.6

Total 2000 368 264 104 71.7 308 60 83.7
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correctly identified with itself before merging, but the other
two were incorrectly identified, then one result is Correct and
other two are Incorrect. The Incorrect results do not include
boundary errors.

The table shows that during 1000 frames of active video,
there were a total of 190 bees in merged situations. When
using only Kalman filter tracking, 128 are correctly tracked
and 62 are incorrectly tracked. The accuracy is 67.4%. In the
model of Kalman filter with the Hough transform, 152 bees
were tracked correctly, and 38 incorrectly. The accuracy in-
creased to 80.0%. The merged tracking on the shadow video
was sometimes more accurate because other factors were
causing the errors. The Kalman filter tracked bees with 136
correct and 42 incorrect. The tracking accuracy was 76.4%.
The result of using Hough transform is 156 correct tracking
and 22 incorrect tracking. The accuracy level is increased by
11.2% to 87.6%. Visual inspection of the frames also showed
that shadows have had little effect on the tracking. The varia-
tion between the results for the active and shadow videos
appear to be not related to the presence of shadows.

5 Conclusion

This paper used a combination method for image segmenta-
tion to detect individual bees. In addition, it introduced a new
way to apply the Hough transform to detect merged bees. The
Kalman filter in this paper is utilized in the situation of non-
steady variable tracking. The tracking model with the Kalman
filter correctly tracked over 99% of single flying bees, and
correctly tracked bees in the merged situation 72% of the time.
However, with the Hough transform, merged bee tracking
success increased to 84%. This method helps to solve the
problem of the merged situation on 2D video.

However, there is still some future work required. Firstly,
the Hough transform is too slow to find the bees’ positions in
the merged situation. At present, this takes 8 to 33 s per frame,
depending on size of the blob and number of bees. It is nec-
essary to improve the speed of this procedure to achieve real
time tracking. Secondly, as bee image segmentation relies on
the orange and black colour of bees, there is a problem in
differentiation arising from the natural background containing
black (soil) and orange (withered grass) colours.
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