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Abstract The Harmonized Parabolic Synthesis methodology
is a further development of the Parabolic Synthesis methodol-
ogy for approximation of unary functions such as trigonomet-
ric functions, logarithms and the square root with moderate
accuracy for ASIC implementation. These functions are ex-
tensively used in computer graphics, communication systems
and many other application areas. For these high-speed appli-
cations, software solutions are not sufficient, and a hardware
implementation is therefore needed. The Harmonized
Parabolic Synthesis methodology has two outstanding advan-
tages: it is parallel, thus reducing the execution time, and it is
based on low complexity operations, thus being simple to
implement in hardware. A difference compared to other ap-
proximation methodologies is that it is a multiplicative, and
not additive, methodology. Compared to the Parabolic
Synthesis methodologies it is possible to significantly enhance
the performance in terms of reducing chip area, computation
delay and power consumption. Furthermore, it increases the
possibility to tailor the characteristics of the error, improving
conditions for subsequent calculations. To evaluate the meth-
odology, the fractional part of the logarithm is implemented
and its performance is compared to the Parabolic Synthesis
methodology. The comparison is made with 15-bit resolution.
The design implemented using the proposed methodology
performs 3× better than the Parabolic Synthesis implementa-
tion in terms of throughput, while consuming 90% less

energy. The chip area is 70% smaller than for the Parabolic
Synthesis methodology. In summary, the new technology fur-
ther increases the advantages of Parabolic Synthesis.

Keywords Approximation . Parabolic synthesis . Unary
functions . Elementary functions . Second-degree
interpolation .Arithmetic computation . Look-up table .VLSI

1 Introduction

Computation of elementary functions, such as trigonometric
functions, logarithms and the square root, as well as binary
functions, such as division, are numerous in a multitude of
applications. A trend in wireless communication systems is
handheld applications with very high data rates and moderate
accuracy in the computations for ASIC implementation. With
such applications follows also requirements on small chip area
and low power consumption. Such an emerging application is
wireless communication systems with multiple antennas on the
transmitter and receiver, known as Multiple-Input Multiple-
Output (MIMO). The great interest in MIMO falls back on its
ability to cost-effectively improve transmission performance.
To accomplish the high data rates these systems are performing
an extensive amount of computation. An essential part of the
computation is spent on matrix inversions, which are often
executed as QR decompositions in which very high throughput
is needed. An example of the required levels of performance for
a QR decomposition is described in [1] for an Ordered
Successive Interference Cancellation (OSIC) detector. The
computation performance needed in the OSIC detector is 1.56
million inversions of complex-valued 4 × 4 channel matrices
per second. Since each inversion uses 12 computations of trig-
onometric functions, 12 × 1,560,000 = 18.72 million compu-
tations per second of the trigonometric functions sine and
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cosine have to be executed. For these numerically intensive
real-time applications, software routines - although they are
capable of providing extremely accurate results - are too slow.
Therefore, for the future of high-speed wireless communica-
tion, there is a significant interest for new development regard-
ing hardware implementations of function generators.

In ASIC implementations of function generators, the con-
trol of the error (i.e., of its distribution and characteristics) is a
neglected area. Full control of these parameters is indeed nec-
essary in order to reach optimal performance in terms of small
chip area, short critical path delay and low power consump-
tion. Optimizing the word lengths and achieving a normally
distributed error in the result from an approximation will en-
able reduced chip area, critical path delay and power con-
sumption – not only in the circuitry of the approximation itself
but, even more so, in the rest of the algorithm, which uses the
approximation as input. The main reason for this is that it will
reduce the effects of the accumulated error in the following
parts, which otherwise would have led to a necessary increase
in word lengths in the computations to handle this effect.

Hardware computation of elementary functions can be per-
formed by employing many different algorithms [2, 3], such as
table-based methods, polynomial and rational approximations
and functional iteration methods. Table-based methods remain
manageable for low precision computations as long as the input
operand is up to 12–16 bits, corresponding to table sizes of
4 K–64 K words. The size of the table grows exponentially
with the word length and becomes unacceptably large when
operating with higher precision on an ASIC. An alternative
way of making approximations is based on polynomials.
Since polynomials only involve additions, subtractions and
multiplications, using them is a natural way to approximate
elementary functions. There are a number of polynomial
schemes available for polynomial approximations, such as
Taylor, Maclaurin, Legendre, Chebyshev, Jacobi, and
Laguerre. For a given precision, the chosen polynomial scheme
affects the number of terms included and thus the computation-
al complexity. Two strategies are available in developing an
approximation, one to minimize the average error, called least
squares approximation, and one to minimize the worst case
error, called least maximum approximation [2]. An example
of when least squares approximation is favorable is when the
approximation is used in a series of computations. On the other
hand, least maximum approximation is favorable when it is
important that the maximum error to the function to be approx-
imated is kept small. An example of when least maximum
approximation is favorable is when the error from the approx-
imation has to be within a limit from the true function value. An
advantage of polynomials is that they are table-less, but their
drawback is that they impose large computational complexities
and delays [2]. A reduction in computational complexity - and
to some extent also in delay - can be accomplished by combin-
ing table-based methods with polynomial based ones [2].

For implementation of elementary functions in hardware,
the approximationmethodology of sum of bit-products [4] can
be beneficial since it can give an area efficient implementation
with a high throughput at a reasonable accuracy.

The commonly used COordinate Rotation DIgital
Computer (CORDIC) algorithm [5, 6] is an iterative algo-
rithm. The benefit of the algorithm is that approximations of
basic elementary functions only require small look-up tables,
simple shifts and addition operations. However, since it is an
iterative method, it is inherently slow and therefore insuffi-
cient for very high performance applications. As shown in [
[7], p. 125], CORDIC requires several extra bits of accuracy in
order to cope with the error in the approximation.

The Parabolic Synthesis methodology [8–11] is founded on
a multiplicative synthesis of factors, each of them a second-
order function. The more factors that are used, the higher the
accuracy of the approximation is. In fact, the most fundamen-
tal difference in the Parabolic Synthesis methodology com-
pared to many other approximation methodologies, like poly-
nomial and CORDIC, is that it is a multiplicative and not an
additive methodology. With the introduction of the Parabolic
Synthesis methodology, the following improvements were ac-
complished compared to CORDIC. First, due to a highly par-
allel architecture, a significant reduction of the propagation
delay was achieved, which also led to a significant reduction
of the power consumption. Second, the Parabolic Synthesis
methodology allows full control of the characteristics and dis-
tribution of the error, which opens an opportunity to design
with shorter word lengths and thereby gain in area, speed and
power. As reported in [12], a further improvement of the
Parabolic Synthesis methodology was developed by combin-
ing it with second-degree interpolation [3, 13, 14].

When developing a multiplicative approximation based on
such a combination of the methodologies, the first factor is
computed using the Parabolic Synthesis methodology. It is a
rough approximation of the target function. The second factor
is computed using a Second-Degree Interpolation methodol-
ogy where the number of intervals in the interpolation decides
the accuracy of the approximation. The approximation can be
looked upon as a synthesis of two second-degree polynomials
with a different variable in each polynomial. In the first factor,
the variable is over the total interval, whereas in the second
factor the variable is over a sub interval. As a summary, the
approximation is computed as a polynomial with two vari-
ables and with the total degree of 2 + 2 = 4. An attractive
feature with the Parabolic Synthesis methodology combined
with Second-Degree Interpolation [12] is that it enables a
rough internal error adjustment as part of the approximation.
The error compensation can be performed in order to improve
the distribution of the error to suit the properties required of
the approximation. Compared to the Parabolic Synthesis
methodology the Parabolic Synthesis methodology
Combined with Second-Degree Interpolation accomplishes
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the following [12]: A reduction in chip area because the num-
ber of second-order functions is reduced to two; a reduction of
the critical path delays because the number of second-order
functions is reduced to two; a reduction in power consumption
because of reduced chip area and critical path delay. And last,
the improved possibilities to tailor the distribution of the error.

This paper proposes an extension of the Parabolic
Synthesis methodology Combined with Second-Degree
Interpolation. This extension is named the Harmonized
Parabolic Synthesis methodology because the two parts in this
newmethodology are developed as a unity in order to improve
and optimize performance such as chip area, critical path de-
lay and power consumption. The newmethodology allows the
exclusion of up to two additions and twomultiplications in the
algorithm, which is a considerable improvement. Another ad-
vantage with the Harmonized Parabolic Synthesis methodol-
ogy is that it does not have the limitations of the Parabolic
Synthesis methodology Combined with Second-Degree
Interpolation when it comes to implementing roots, division
and inverse roots.

The feasibility of Parabolic Synthesis has been verified by
implementing a vast range of unary functions, as shown in [10].
With the Harmonized Parabolic Synthesis the boundary condi-
tions for the functions to be approximated are relaxed, which
implies that more extreme functions also can be carried out.

A dilemma that appears when comparing different approxi-
mationmethods is that such comparisons need to be done in the
same context in order to be conclusive. The Parabolic Synthesis
methodologies allow full control of the characteristics and dis-
tribution of the error, something that is very seldom the case in
traditional approximation methods. Using accuracy as the only
comparison criterion is not enough; other characteristics of the
error, most notably its distribution, are equally important. An
illustrative example is the comparison in [12] between an im-
plementation based on one of the Parabolic Synthesis method-
ologies and an implementation performed with the CORDIC
method (which, by far, is the most commonly used approxima-
tion method today). It is shown that the implementation per-
formed using Parabolic Synthesis combined with second-
degree interpolation outperforms the CORDIC implementation
in all aspects. In addition, as shown in [7, p. 125], CORDIC
requires several extra bits of accuracy in order to cope with the
error in the approximation; this will further degrade the perfor-
mance of the CORDIC implementation.

The remaining part of this paper is organized as follows:
Section 2 describes the Harmonized Parabolic Synthesis
methodology; Section 3 describes the general structure of
the hardware architecture resulting from the methodology;
Section 4 proposes a general strategy for truncation as well
as optimization, which, if combined, can have a positive im-
pact on the characteristic of the error; Section 5 presents the
implementation of the logarithm in Harmonized Parabolic
Synthesis and the distribution of its error; Section 6 gives a

comparison of implementations performed in the methodolo-
gies Parabolic Synthesis and Harmonized Parabolic Synthesis.
The comparison is made with respect to chip area, critical path
delay and power consumption; and Section 7 closes the paper
with conclusions.

2 Harmonized Parabolic Synthesis

The Harmonized Parabolic Synthesis methodology is founded
on two factors, both in the form of second-order parabolic
functions, called the first sub-function, s1(x), and the second
sub-function, s2(x). When recombined, as shown in (1), they
equal the original function forg(x).

f org xð Þ ¼ s1 xð Þ⋅s2 xð Þ ð1Þ

In (1) the first sub-function, s1(x), is a second-order para-
bolic function, which in conjunction with the second sub-
function, s2(x), develops an approximation of the original
function, forg(x). The second sub-function is a second-degree
interpolation [3, 13, 14] specifically shown in [12], where the
number of intervals in the interpolation decides the final ac-
curacy of the approximation and allows the distribution of the
error to be tailored. When developing an approximation with
the proposed methodology, an empirical design methodology
is the only feasible approach since the sub-functions are de-
signed as a complete unity to fulfill the design criteria.

2.1 Requirements on the Original Function

To facilitate the development it is required that the function to
be approximated is being normalized. When normalized the
function has to satisfy the requirement that the values are in
the interval 0 ≤ x < 1.0 on the x-axis and 0 ≤ y < 1.0 on the y-
axis as well as have the starting point at (0,0), as illustrated in
Fig. 1. The normalization of the function to be approximated
creates the original function, forg(x).

Finally, the original function, forg(x), divided by the first
sub-function, s1(x), must have a limit value when x goes to-
wards 0. Otherwise the function to be developed, the second
sub-function, s2(x), has no starting point when x = 0 and there-
fore cannot be developed.

Compared to Parabolic Synthesis, the number of criteria on
the function to perform an approximation on has decreased
from three to one. The two criteria that have been excluded
have instead been transformed into recommendations.
Thereby, the number of functions that can be approximated
with the methodology is increased. The third criterion which
restricts the limit of forg(x) divided by s1(x) when x goes to-
wards 0 is eliminated because the Harmonized Parabolic
Synthesis methodology can handle these limits.
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2.2 The First Sub-Function

The first sub-function, s1(x), is a second-order parabolic func-
tion as shown in (2).

s1 xð Þ ¼ l1 þ k1⋅xþ c1⋅ x−x2
� � ð2Þ

It can be seen that the two leftmost terms form a linear
function with a constant l1 and a gradient k1, while the right-
most term is the nonlinear part. As described above, the
starting point for the first sub-function, s1(x), is in (0,0). This
gives the start value, l1, to be 0. Furthermore, the gradient, k1,
is 1 since the function starts in (0,0) and ends in (1,1). The first
sub-function, s1(x), can therefore be rewritten according to (3).

s1 xð Þ ¼ xþ c1⋅ x−x2
� � ð3Þ

2.3 The Second Sub-Function

The second sub-function, s2(x), is based on splitting the func-
tion in intervals to perform an interpolation in each of them.
The procedure when developing the second sub-function is to
perform a division of the original function, forg(x), with the
first sub-function, s1(x). This division generates the help func-
tion, fhelp(x), as shown in (4).

f help xð Þ ¼ f org xð Þ
s1 xð Þ ð4Þ

From the help function, fhelp(x), the second sub-function,
s2(x), is developed as a second-degree interpolation, as shown
in (5) and Fig. 2, where the number of intervals in the inter-
polation decides the order of the accuracy of the
approximation.

s2 xð Þ ¼ l2;i þ k2;i⋅xw þ c2;i⋅ xw−x2w
� � ð5Þ

To simplify the hardware representation of the interval, i, in
hardware, the number of equal-range intervals in the second
sub-function, I, is chosen as 2 to the power of w, where w is a
natural number, as shown in (6).

I ¼ 2w ð6Þ

To simplify the normalization of the interval of xw, it is
selected as an exponential scaling by 2 of x where the integer
part is removed. The normalization of x is therefore made by
multiplying x with 2w. Furthermore, the integer part is
dropped, which gives xw as a fractional part of x, as shown
in (7).

xw ¼ frac 2w⋅xð Þ ð7Þ

In hardware the normalization, xw, is simply performed as a
truncation of the w most significant bits of x. This truncation
performs normalization to the interval, as shown in Fig. 2. The
dropped integer part from the normalization is used to decode
the interval in which the second sub-function is performed and
is therefore synonymous with the index i in the sub-function,
as shown in Fig. 2.

The index i is defined as the number of the interval of the
interpolation, starting with 0 and ending with I − 1. In (5), l2,i
is the starting point of an interval of the interpolation. This is
computed by inserting the value of x for the starting point of
the interval, xstart,i, of the help function, fhelp(x), (4) as shown
in (8) and Fig. 2.

l2;i ¼ f help xstart;i
� � ð8Þ

Figure 1 The conditions for the original function.

Figure 2 Description of the development of the second-degree interpolation.
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Eq. (8) does not apply on the start value of the first
interval, which has to be calculated as the limit according
to (9). Since the x2 term in (9) goes faster towards 0 than
the x term, it can be excluded when calculating the limit, as
shown in (9).

l2;0 ¼ lim
x→0

f org xð Þ
xþ c1⋅ x−x2ð Þ ¼ lim

x→0

f org xð Þ
1þ c1ð Þ⋅x ð9Þ

In (5), k2,i is the gradient for an interpolation interval
i. The gradient k2,i for an interval is computed as the end
point value of the help function, fhelp(xend,i), subtracted
with the start point value of the help function, fhelp(x-
start.i). Since the interval is normalized to 1 the denomi-
nator when computing the gradient, k2,i, is set to 1, and
therefore no division is needed, as shown in (10) and
Fig. 2.

k2;i ¼ f help xend;i
� �

− f help xstart;i
� � ð10Þ

In (5) the coefficient, c2,i, in an interval, i, of the second
sub-function, s2(x), is pre-computed so that the second sub-
function in an interval, s2,i(xw), cuts the help function, fhelp(x),
in the middle of the interval when xw = 0.5. This satisfies the
point xmiddle,i for the help function, fhelp(x), as shown in (11)
and Fig. 2.

c2;i ¼ 4⋅ f help xmiddle;i
� �

−l2;i−k2;i⋅0:5
� �

ð11Þ

The sub-function in (5) can be simplified according to (12).

s2 xð Þ ¼ l2;i þ j2;i⋅xw−c2;i⋅x
2
w ð12Þ

In (12), j2,i is pre-determined according to (13).

j2;i ¼ k2;i þ c2;i ð13Þ

In Eq. (14), it is shown how the sub-function, s2,i(x), is
divided into partial functions.

s2 xð Þ ¼

s2;0 xwð Þ ; 0 ≤ x <
1

2w

s2;1 xwð Þ ; 1

2w
≤x <

2

2w⋯
s2;I−1 xwð Þ; I−1

2w
≤x < 1

8>>>>><
>>>>>:

ð14Þ

Note that, in (14), x has been changed to xw. The change is
because the intervals for the partial sub-functions, s2,i(x), in
(14) have equal ranges.

2.4 Simultaneous Development of the two Sub-Functions

The foundation of the Harmonized Parabolic Synthesis meth-
odology is to approach the development with a more holistic
view. This is expressed in that the development of the two sub-
functions is made simultaneously. When developing an ap-
proximation of an original function, forg(x), the first and sec-
ond sub-function are looked upon as one device. While, in the
Parabolic Synthesis methodology, the first sub-function, s1(x),
was developed to have as good conformity as possible with
forg(x), the objective of the Harmonized Parabolic Synthesis
methodology is rather to develop the first sub-function in such
a way that the product of the two sub-functions gives a good
conformity to the original function. This includes that the
distribution of the error is to be favorable and the hardware
implementation as simple as possible. The approach when
developing the first sub-function, s1(x), can, in contrast to
the Parabolic Synthesis methodology, not be based on inde-
pendent analytical calculations since it is dependent on the
performance of the second sub-function, s2(x). Therefore, the
coefficient c1 in the first sub-function, s1(x), has to be deter-
mined by, for different values of the coefficients, calculating
the maximum absolute error, ferror(x), between the approxima-
tion and the original function according to (15).

f error xð Þ ¼ s1 xð Þ⋅s2 xð Þ− f org xð Þ�� �� ð15Þ

When developing the second sub-function it is dependent
on the first sub-function as shown in (4), since the second sub-
function is developed from the help function, fhelp(x). As
shown in (3), only the coefficient c1 has to be determined
when developing the first sub-function. To perform the calcu-
lation of the absolute error, ferror(x), the second sub-function,
s2(x), has therefore to be made dependent on the coefficient c1
in the first sub-function, s1(x), as shown in (3) to (5) and (8) to
(11). The calculation is interesting only as an indication of
how the absolute error, ferror(x), depends on the coefficient
c1. When choosing the coefficient c1 it has to be made with
regard to both the behavior of the error of the approximation
and the efficiency of the hardware implementation. The num-
ber of intervals in the second sub-function, s2(x), needs to be
increased to achieve the intended accuracy; this has also to be
taken into account when performing the calculation of the
error. As an example, Fig. 3 shows the bit accuracy for the
sine function, shown when using 1, 2, 4 and 8 intervals in the
second sub-function, s2(x), with different values of the coeffi-
cient, c1. In our example implementation of the fractional part
of the logarithm later in this paper, further details of how these
calculations are done are given.

Based on Fig. 3, values of the coefficient c1 are chosen to
allow an efficient implementation of the hardware. As shown
in (3), c1 is fed into a multiplier, why choosing a value that is a
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power of two is desirable. As an example, shown in Fig. 3, the
desired accuracy is 15 bit. To accomplish this, at least four
intervals are necessary. As shown in Fig. 3, only c1 = 1.0 for
four intervals is interesting since it is a power of two. If in-
creasing the number of intervals to eight, the coefficient c1 can
be chosen to zero. This is interesting since this will exclude the
multiplication in (3). The behavior of the bit accuracy in Fig. 3
results from the approximation using different values of the
coefficient c1. From this, the number of intervals and the value
on the coefficient c1 used in the design can be selected.

3 Hardware Architecture

The hardware architecture resulting from the methodology can
be divided into three parts as shown in Fig. 4, following a
principle described by Tang [15]. In the preprocessing part,
the incoming operand is transformed to fit the processing part,

in which the approximation is performed. In the postprocessing
part, the result is transformed to the desired output format.

In most cases, preprocessing of the operand means normal-
ization, but the transformation of the operand can also be more
comprehensive such as converting a fixed-point number into a
floating-point number. If the approximation is implemented as
a block in a larger system, the preprocessing part can be inte-
grated in the previous blocks, in which case the preprocessing
part can be reduced or even excluded. For the postprocessing,
similar conditions apply.

In the processing part, the approximation of the original
function, forg(x), is directly computed in the way now
described.

The architecture synthesized using Harmonized Parabolic
Synthesis implements two sub-functions computed in parallel.
The first sub-function is implemented as a second-order para-
bolic function and the second sub-function is implemented
using the Second-Degree Interpolation methodology.
Figure 5 shows the architecture, where the two sub-functions
are implemented by the upper and lower half, respectively,
and then combined via a multiplication.

It is worth noting that this, in fact, is a generic architecture,
which can be used for approximating several different func-
tions. The set of parameters defines the function.

In the first sub-function, the result of the (x−x2) part is mul-
tiplied with c1 and then added to x. In the proposed methodol-
ogy, the coefficient c1 is chosen as described in conjunction
with Fig. 3, to reduce the hardware consumption. This implies
that the algorithm of the first sub-function, s1(x), can be simpli-
fied, which also reduces the complexity of the implementation.
The second sub-function is implemented as a second-degree

Figure 4 The three parts of the hardware architecture.

Figure 3 The bit accuracy depending on c1 for 1, 2, 4 and 8 intervals in
the second sub-function, s2(x).

Figure 5 The hardware architecture of the design based on the Harmonized
Parabolic Synthesis containing two sub-functions and with pipeline stages.
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interpolation, consisting of a look-up table containing, for each
interval i, the coefficients j2,i from (13). The coefficient j2,i is
multiplied with xw, which is the remaining part of x when the
index part i is removed. The value of xw is also the normalized
value of x for the interval. After the multiplication, the start
value of the interval l2,i is added. The third branch of the second
sub-function consists of a look-up table containing the coeffi-
cients c2,i from (11) for each interval i. The coefficient c2,i for
interval i is multiplied with xw

2, which is the partial products of
x2 for interval i. To simplify this computation, a special squaring
unit to compute x2 has been developed; this unit is described in
[8, 10]. The benefit of the squarer is that it computes all the
partial products to x2 in the same hardware and that it halves the
chip area and computation time compared to a multiplier. The
result of the multiplication between c2,i and xw

2 is subtracted
from the result of the previous addition. After the values of the
first and second sub-functions are computed, they are multi-
plied with each other.

The architecture is suitable for pipelining in order to in-
crease the throughput. An example of where pipeline stages
can be introduced is shown in Fig. 5. Introduction of pipeline
stages in this case is decided by the computation time of the
rightmost multiplication, since this is the largest multiplier. To
decrease the computation time further the next step will be to
also insert pipeline stages in the multipliers. The introduction
of data pipelining stages in the architectures will only have
little effect on the size of the hardware, since the data paths are
few. However, registers consume power, thus power con-
sumption will increase.

4 Optimizing

The purpose with the optimization of the design is to reduce
the chip area, the critical path delay and the power consump-
tion, but also to gain full control over the error in the result of
an approximation. The main factor that affects the parameters
(chip area, critical path delay, and power consumption) is the
data word lengths used in the computations. The main factor
behind the need to increase the word lengths is that the errors
accumulate through the computations. The characteristics and
distribution of the error of the result of the approximation
affect the word lengths in the computations in the remaining
design. Thus it is important in the approximation to keep the
word length of the result as short as possible – but not shorter –
and see to that the error distribution is favorable for the re-
maining part of the algorithm. This can only be achieved if the
designer gains full control over the error in the approximation
and is able to tailor the characteristics of the error so that they
improve the conditions for the subsequent calculations.
Unlike many other approximation methodologies, the
Parabolic Synthesis methodologies support such tailoring of
the characteristics and distribution of the error. In other

approximation methodologies, such as CORDIC, the tailoring
of the characteristics and distribution of the error is not sup-
ported to any significant extent. The effects of the disadvan-
tageous error performance of the CORDIC algorithm are com-
monly mitigated by increasing the accuracy, as shown in the
analysis of error and datapath precision of CORDIC that is
presented in [7, p. 125]. Of course, increasing the accuracy is
synonymous with longer word lengths in the design, which
has devastating effects on the hardware efficiency of the
implementation.

Finding the optimal set of coefficients and word lengths is,
in this stage of the development of the methodologies, an em-
pirical, iterative procedure that is performed manually using
MatLab. After deciding the initial coefficients in the first and
second sub-functions, the next step is to start the optimization
of the architecture. Themethod for the optimization is to decide
the word lengths used in the architecture and then optimize the
coefficients. This optimization is performed in an iterative trial
and error manner and the evaluation of different coefficient
values should be performed in parallel with the evaluation of
the word lengths, since the truncation error effects influence the
performance of calculations in the design. The strategy is to
adjust coefficients and word lengths in the design for best ac-
curacy and distribution of the error. The procedure, when done
manually, takes roughly two hours; it can certainly be automat-
ed in the future – or at least supported by appropriate tools. In
the text below, the optimization strategy will be illustrated
using the sine function, since this function is commonly used
and has a simple implementation, thus making the steps of the
optimization easy to follow. The target accuracy for the
implementations is chosen to be around 15 bit.

In practice, the simulation of the approximation is per-
formed with a bit-accurate C model and the performance of
the approximation is analyzed in MatLab.

4.1 Truncation and Optimization

Truncation always results in a negative offset of the error
compared to the non-truncated value, as illustrated in Fig. 6.
In the figure, the gray curve shows the error before the trun-
cation and the black is the error after truncation.

Figure 6 shows the errors in both curves winding through
the eight intervals. The winding of the curves is caused by the
rightmost term in (5), which is the nonlinear part. This term in
each interval in the second sub-function, s2(x), causes a single
winding of the curve. To counteract the negative offset of the
error caused by truncation, the coefficients in the second sub-
function, s2(x), can be adjusted. A favorable way to do this is
to seek a solution in which the error has a distribution that is
asymptotically normal. An advantage of an asymptotically
normal error distribution is that it is centered around zero
and the most error values are close to zero. This distribution
implies that the number range is optimally utilized which has
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positive effects on the architecture, in reduced size of hard-
ware and in the subsequent calculations to reduce their error.
In Fig. 7 the gray curve shows the error before the truncation
of the word lengths and the optimization of the coefficients,
and the black is the error after truncation and optimization of
the coefficients.

When comparing the two figures it can be seen that the
error after truncation and optimization, i.e., the one in Fig. 7,
is more evenly distributed around zero than the error in the one
without optimization. This shows that it is mainly by adjusting
the coefficients that the distribution of the error is determined.

4.2 The Characteristic Metrics

The error resulting from an approximation can be character-
ized in several ways [16], the most important being the
following:

– The maximum absolute error denotes the largest error
possible using the approximation.

– Themean error denotes the average error over the approx-
imation’s sample space.

– The median error denotes the skewness in the error dis-
tribution, if there is any.

– The standard deviation is a measure of the variation from
the mean error.

– The Root Mean Square (RMS) error is a measure of the
magnitude of a continuously varying quantity of the error.

Furthermore, the evenness of the error distribution is deter-
mined by comparing the standard deviation with the RMS
error. If the standard deviation and the RMS error are equal,
it indicates that the error distribution is symmetric around
zero. This is a preferred error distribution. An advantage of
the methodology presented in this paper is that it obtains a
very good possibility for developing a symmetrically distrib-
uted error around zero. To illustrate the distribution of the error
a histogram is used, as shown in Fig. 8. Figure 8 shows the
distribution of the error after truncation and optimization that
was shown in Fig. 7. As shown, the error distribution is as-
ymptotically normal and with a mean value near zero.

5 Implementation of the Fractional Part
of the Logarithm

As an illustration of the Harmonized Parabolic Synthesis
methodology, an implementation is presented of an algorithm
that performs an approximation of the logarithm function. It is
performed on a simple, nonstandard floating-point number
format where the mantissa is in the range from 1.0 to 2.0.
The approximation is only performed on the mantissa, since
the exponential part of the input value is directly used as the
integer part of the result and scaling the mantissa, [17, 18].

The implementation is in hardware using a 14 bit input.
The target accuracy is 15 bits and the target distribution of
the error is the normal distribution.

The performance of the approximation is analyzed as de-
scribed in Section 4.

Figure 7 The error before and after truncation and optimization.

Figure 6 The error before and after truncation of the approximated value.

Figure 8 The error distribution after truncation and optimization of the
approximation shown in Fig. 7.
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5.1 Preprocessing

As described in Section 2.1, to facilitate the hardware imple-
mentation of the approximation, a normalization to satisfy that
the values are in the interval 0 ≤ x < 1.0 on the x-axis and
0 ≤ y < 1.0 on the y-axis has to be performed. The result of the
binary logarithm satisfies that the values are in the interval
0 ≤ y < 1.0. As shown in Fig. 9, the operand v is within
1 ≤ v < 2. To satisfy that the incoming operand x is within
the interval 0 ≤ x < 1, a 1 has to be added to the operand as
shown in Fig. 9 and (16).

v ¼ 1þ x ð16Þ

To normalize the f(v) = log2(v) function, v is substituted
according to (17), which gives the original function, forg(x),
shown in (17).

f org xð Þ ¼ log2 1þ xð Þ ð17Þ

Figure 9 shows the function, f(v), together with the normal-
ized function, forg(x).

5.2 Processing

For the processing part, the sub-functions are developed ac-
cording to the description in Section 2.4. Developing the co-
efficient c1 is made with two aspects in mind: the error distri-
bution of the approximation, and the simplicity of the hard-
ware implementation. The number of intervals that the second
sub-function, s2(x), needs to be divided into, to achieve the
intended accuracy, has also to be taken into account when
performing the calculation of the error. Figure 10 shows the
resulting minimum number of bits of accuracy for the loga-
rithm function when using 1, 2, 4 and 8 intervals in the second
sub-function, s2(x).

The needed accuracy for the implementation was set to 15
bits and the distribution of the error shall be similar to a normal
distribution. Figure 10 shows that using 4 or 8 intervals will
fulfill the accuracy demand with some specific ranges of co-
efficient, c1. The requirement to have a distribution of the error
that is similar to the normal distribution implies that using 8
intervals would be advantageous since this will give greater
margin when developing the second sub-function, s2(x).
Figure 10 shows that using 8 intervals in the second sub-
function will allow the coefficient c1 to be 0, which in turn
will imply that the hardware in the first sub-function, s1(x), is
reduced, as shown in (18).

s1 xð Þ ¼ xþ c1⋅ x−x2
� � ¼ xþ 0⋅ x−x2

� � ¼ x ð18Þ

Choosing the coefficient c1 to be 0 will always be benefi-
cial in terms of reduced chip area. With increasing number of
intervals, the chip area and the length of the critical path will
decrease to a certain point. First, chip area and later the critical
path. A disadvantage with increasing the interval is that the
distribution of the error will go towards the rectangular distri-
bution since the second sub-function will end up as one look-
up table. The choice of 8 intervals is made to illustrate the
methodology, not to demonstrate the optimal solution.

The help function, fhelp(x), is computed as shown in (19).

f help xð Þ ¼ f org xð Þ
s1 xð Þ ¼ log2 1þ xð Þ

x
ð19Þ

Figure 11 shows the help function, fhelp(x).
From the help function, fhelp(x), an initial second sub-func-

tion, s2(x), is developed according to the description in
Section 2.3 using 8 intervals.

When the initial second sub-function, s2(x), is developed, the
next task is to achieve a distribution of the error similar to the
normal distribution, which is performed as described in Section 4.

Figure 10 The bit accuracy depending on c1 for 1, 2, 4 and 8 intervals in
the second sub-function, s2(x), of the logarithm.

Figure 9 The function f(v) before normalization and the normalized
function, forg(x).
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Tables 1, 2 and 3 show the developed coefficients in (12)
for 8 intervals.

It can be seen from Table 2 that the three most significant
bits after the binary point in the binary representation of the
coefficients are zeros. As a result of this, the word length of the
coefficients can be reduced from 15 bits to 12 bits.

It can be seen from Table 3 that the seven most significant
bits after the binary point in the binary representation of the
coefficients are zeros. As a result of this, the word length of the
coefficients can be reduced from 16 bits to 9 bits.

When developing the algorithm for the approximation,
there is an interaction between the word lengths and the values
of the coefficients in the architecture. The word lengths of the
coefficients and the data paths in the design are shown in
Fig. 12.

In the process of truncating words in the design and opti-
mizing the coefficients, the size and distribution of the error is

analyzed and adjusted. Figure 13 shows the error of the final
implementation compared to the error before the truncation of
the word lengths in the design and optimization of the
coefficients.

It can be seen that the error is fairly equal over the interval.
Figure 14 shows the absolute error of the implementation.

It shows that the implemented approximation well meets the
requirement of an accuracy of about 15 bits.

When optimizing the coefficients, the intention has been to
achieve a normal distribution of the error. Such a distribution

Table 1 shows the
coefficients for the initial
value, l2,i, for each
interval, i, in (12).

Table 1: Coefficients l2,i

Coefficient Value

l2,0 1.44268798828125000dec
1.01110001010101000bin

l2,1 1.35939788818359375dec
1.01011100000000011bin

l2,2 1.28771209716796875dec
1.01001001101001111bin

l2,3 1.22514343261718750dec
1.00111001101000110bin

l2,4 1.16991424560546875dec
1.00101011011111111bin

l2,5 1.12069702148437500dec
1.00011110111001100bin

l2,6 1.07646942138671875dec
1.00010011100100111bin

l2,7 1.03644561767578125dec
1.00001001010101001bin

Figure 11 The help function, fhelp(x), for the approximation of the logarithm.

Table 2 shows the
coefficients for the
gradient, j2,i, for each
interval, i, in (12).

Table 2 Coefficient j2,i

Coefficients Value

j2,0 −0.089294433593750dec
−0.000101101101110bin

j2,1 −0.076629638671875dec
−0.000100111001111bin

j2,2 −0.066589355468750dec
−0.000100010000110bin

j2,3 −0.058471679687500dec
−0.000011101111100bin

j2,4 −0.051849365234375dec
−0.000011010100011bin

j2,5 −0.046447753906250dec
−0.000010111110010bin

j2,6 −0.041900634765625dec
−0.000010101011101bin

j2,7 −0.038085937500000dec
−0.000010011100000bin

Table 3 shows the
coefficients for the
parabolic part, c2,i, for
each interval, i, in (12).

Table 3 Coefficient c2,i

Coefficient Value

c2,0 −0.0060424804687500dec
−0.0000000110001100bin

c2,1 −0.0049438476562500dec
−0.0000000101000100bin

c2,2 −0.0040435791015625dec
−0.0000000100001001bin

c2,3 −0.0032501220703125dec
−0.0000000011010101bin

c2,4 −0.0026397705078125dec
−0.0000000010101101bin

c2,5 −0.0022277832031250dec
−0.0000000010010010bin

c2,6 −0.0018920898437500dec
−0.0000000001111100bin

c2,7 −0.0016479492187500dec
−0.0000000001101100bin
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is beneficial in the calculations in most algorithms. Figure 15
shows the distribution of the error in the final, optimized
implementation.

The distribution in Fig. 15 shows a very high resemblance
with the normal distribution.

The conclusion from Table 4 is that the maximum absolute
error corresponds to an accuracy of more than 15 bits. The
mean error is very small, less than 25 bits, and the median
confirms that the error distribution is not skewed. When com-
paring the standard deviation value with the root mean square
value, it can be seen that the values are nearly identical, which
confirms that the error of the approximation is symmetrically
distributed.

5.3 Postprocessing

No postprocessing is needed since the result from the process-
ing part is in the right format.

6 Comparing Methodologies

This section compares implementations of the fractional part
of the logarithm using two different methodologies; on the one
hand the Parabolic Synthesis methodology, where the accura-
cy is decided with the number of sub-functions, and on the
other hand, the Harmonized Parabolic Synthesis methodolo-
gy, where the accuracy is decided with the number of inter-
vals. The comparison will be performed in terms of chip area,
critical path delay and power consumption. Both
implementations are performed with the same bit accuracy
and so that the error is asymptotically normally distributed.

The implementations use identical setups of the design
tools and identical cell libraries. The implementations are
made with the purpose of comparison, not to maximize per-
formance; hence, potentially performance-increasing features
like pipelining are not used.

The implementations are realized as ASICs with a 65 nm
Standard-VT (1.2 V) technology. Synopsys Design Compiler
[19], Synopsys Primetime [20] and Mentor Graphics
Modelsim [21] are used for all implementations. The estima-
tion of the power consumption is done with the help of default
switching activity.

Figure 12 The hardware architecture of the implementation of the
logarithm, with the word lengths.

Figure 13 The error of the implementation of the logarithm before and
after truncation and coefficient optimization.

Figure 14 The absolute error in bits of the approximation of the logarithm.

Figure 15 The error distribution of the implemented approximation.
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When comparing different approximation methodologies,
it should be noted that, to enable the same performance of the
algorithm which they are part of, different methodologies may
require different precisions. Approximation methodologies
should therefore always be compared in the same context. In
this case the methodologies have both been designed to have
the same accuracy and an error that has a normal distributed
around zero. Since they both have about the same character-
istic of the error they can be comparedwithout actually putting
them in the same context. In paper [12] two implementations
using the Parabolic Synthesis methodologies are compared
with an implementation using the CORDIC methodology. A
problem with this comparison is that the error distribution for
the CORDIC methodology has major drawbacks compared to
the one of the Parabolic Synthesis methodologies. As shown
in [7, p. 125], CORDIC requires several extra bits of accuracy
in order to cope with the error in the approximation. This
illustrates that, when comparing different implementations, it
is essential to use the same context. A poor error distribution
of an approximation can corrupt the performance of the con-
text that it is a part of.

The comparison is performed for an approximation of the
binary logarithm of a mantissa in the range from 1 through 2.
The required accuracy for the implementation is set to 15 bits.

The results of the implementation carried out with the
Parabolic Synthesis are based on [11] after a redesign without
bonding pads. The results for chip area, path delay, and energy
consumption per sample are shown in the upper entry of
Table 5. In [11], four sub-functions were used in the architec-
ture. Unfortunately, in the implementation performed with
Parabolic Synthesis in [11], no fully performed optimization
of the word lengths in the look-up tables containing the coef-
ficients was performed; therefore slightly longer word lengths
than needed were used in this part of the design. This yields an
impact on the chip area and, to some extent, on the critical path
delay of the design. Hence the parameters such as chip area,
critical path delay and power consumption are somewhat larg-
er than they need to be. For the implementation using
Harmonized Parabolic Synthesis [22], eight intervals are used
in the second sub-function. In this case, optimization of the
word lengths in the design was fully performed. The results of
the implementation are shown in the lower entry of Table 5.

The conclusion from Table 5 is that the Harmonized
Parabolic Synthesis is clearly superior to Parabolic Synthesis.
The chip area is reduced with 70%, mainly because Parabolic
Synthesis requires four sub-functions whereas Harmonized
Parabolic Synthesis only needs two. To some extent, also the
not fully performed optimization of the Parabolic Synthesis im-
plementation affects its performance.With full optimization, the
chip area for the Parabolic Synthesis is estimated to be reduced
with roughly 10%. In computation speed, the Harmonized
Parabolic Synthesis is 3 times faster. This is primarily due to
that the implementation performed with Parabolic Synthesis in
the critical path has more and larger multipliers. The smaller
chip area and the shorter critical path of the Harmonized
Parabolic Synthesis methodology results in an 11 times lower
energy consumption. Comparison between Paraboloic
Synthesis and the well-spread CORDIC methodology was pre-
sented in [12]. Combining this with Table 5 gives the conclusion
that the Harmonized Parabolic Synthesis provides the following
performance compared to CORDIC: Chip area, 39% of the one
for CORDIC; critical path delay: 8% of the CORDIC delay; and
Energy consumption: 4% of the one for CORDIC. Again it
should be mentioned that the Harmonized Parabolic Synthesis
methodology has a more favorable error distribution.

7 Conclusion

This paper has described the Harmonized Parabolic Synthesis
methodology for developing hardware approximations of
unary functions, such as trigonometric functions, logarithm
functions, exponential functions and square root. The meth-
odology is mainly intended for hardware implementation with
moderate accuracy in computation intensive applications
within, e.g., computer graphics, digital signal processing,
communication systems, robotics, astrophysics and fluid
physics, as well as in many other application areas. An emerg-
ing computation intensive application that serves as a strong
motivating example is wireless communications systems with
multiple antennas on the transmitter and receiver, known as
Multiple-Input Multiple-Output (MIMO). An essential part of
the computation in these systems is performed when

Table 4 shows the error statistics of the implementation.

Table 4: Error statistics

Value

Max absolute error 0.000015897615

Mean error 0.000000019483

Median error −0.000000025005
Standard deviation of error 0.000004737796

Root Mean Square error 0.000004737692

Table 5 Comparison of chip area, critical path delay and energy
consumption per sample.

Methodology Implemented
Function

Chip Area Critical
Path
Delay

Energy
Consumption
per Sample

Parabolic
Synthesis

log2(x) 100% 100% 100%

16,258 μm2 21 ns 0.065 nW

Harmonized
Parabolic
Synthesis

log2(x) 30% 33% 9%

4865 μm2 7 ns 0.0061 nW
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computing matrix inversions, which are often executed as QR
decompositions in which very high throughput is needed. The
QR decomposition algorithm mainly requires approximations
of trigonometric functions, roots and inverses. For these com-
putation demands, the Harmonized Parabolic Synthesis with
its benefits in terms of small chip area, short critical path and
low energy consumption is most favorable.

When going from Parabolic Synthesis to Harmonized
Parabolic Synthesis, the major attractiveness lies in how in-
creasing the accuracy is done. In Parabolic Synthesis the way
to increase accuracy of the approximation is to introduce more
sub-functions. In Harmonized Parabolic Synthesis, which only
uses two sub-functions, it is instead done by increasing the
number of intervals in the second sub-function. The effect of
this is that, with increasing accuracy, the resulting chip area,
critical path delay, and energy consumption will show a much
slower increase than for Parabolic Synthesis. The Harmonized
Parabolic Synthesis has also more extensive opportunities to
handle truncation effects and to achieve a desired distribution
of the error. The use of second-degree interpolation in the sec-
ond sub-function also has the positive effect that, compared, to
Parabolic Synthesis, extraordinary functions such as the third
root and inverse third root also can be approximated.

The architecture based on Harmonized Parabolic Synthesis
is, as the one based on Parabolic Synthesis, very suitable for
pipelining. Further, both architectures can easily be reused for
approximations of other unary functions by simply changing
the set of coefficients.

When analyzing the hardware architecture for implemen-
tation of the logarithm, it was found that Harmonized
Parabolic Synthesis reduced the complexity of the architecture
significantly, compared to Parabolic Synthesis.

When analyzing the characteristics of the error for the im-
plementation of the logarithm, it was found that the
Harmonized Parabolic Synthesis has a mean error that is near
zero and a median error that is zero or near zero. This implies
that only a minimum of skewness is present in the error dis-
tribution and that the difference between the standard devia-
tion and the root mean square value is very small, which in
turn guarantees that the error is evenly distributed.

To get an indication of the implementation performance of
the Harmonized Parabolic Synthesis, it has been compared to
an implementation carried out with the Parabolic Synthesis.
The comparison shows that an approximation based on the
Harmonized Parabolic Synthesis methodology results in a
chip area that is smaller than with Parabolic Synthesis. The
throughput is also higher, and the energy consumption per
sample is almost ten times lower.

As noted in Section 3, the resulting architecture when using
the Harmonized Parabolic Synthesis methodology is in fact ge-
neric. That is, the choice of function is given by the (small) table
of coefficients. In earlier papers, it was shown that Parabolic
Synthesis can be used with good results on several functions

(e.g., the sine function [9] and the exponential function [11]).
Since the Harmonized version of Parabolic Synthesis, presented
in the current paper, can be applied to any functions (even with-
out the limitations of earlier methods) it can be concluded that it
is an efficient method for a wide class of functions.
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