
Improving Deep Neural Network Based Speech Synthesis
through Contextual Feature Parametrization
and Multi-Task Learning

Zhengqi Wen1
& Kehuang Li2 & Zhen Huang2 & Chin-Hui Lee2 & Jianhua Tao1,3,4

Received: 4 February 2017 /Revised: 28 July 2017 /Accepted: 19 September 2017 /Published online: 2 October 2017
# Springer Science+Business Media, LLC 2017

Abstract We propose three techniques to improve speech
synthesis based on deep neural network (DNN). First, at the
DNN input we use real-valued contextual feature vector to
represent phoneme identity, part of speech and pause informa-
tion instead of the conventional binary vector. Second, at the
DNN output layer, parameters for pitch-scaled spectrum and
aperiodicity measures are estimated for constructing the exci-
tation signal used in our baseline synthesis vocoder. Third, the
bidirectional recurrent neural network architecture with long
short term memory (BLSTM) units is adopted and trained
with multi-task learning for DNN-based speech synthesis.

Experimental results demonstrate that the quality of synthe-
sized speech has been improved by adopting the new input
vector and output parameters. The proposed BLSTM architec-
ture for DNN is also beneficial to learning the mapping func-
tion from the input contextual feature to the speech parameters
and to improve speech quality.

Keywords DNN-based speech synthesis . Vocoder . Speech
parametrization . BLSTM . Phoneme embedded vector .

Multi-task learning . Pitch-scaled spectrum

1 Introduction

Deep neural network (DNN) based technologies [1–6] have
been used with promising results in a wide collection of re-
search areas, such as speech processing [7–9], computer vi-
sion [10, 11] and natural language processing [12–14]. Its
great ability in classification and regression has been explored
not only in the research areas, but also in the real-life applica-
tions. For example, speech synthesis is a widely used technol-
ogy in our real life and also catches a lot of researchers’ atten-
tion. There are two typical synthesis methods in literature.
One is synthesis by unit selection [15–17] and the generated
waveform is concatenated from selected segments in a large
speech corpus. The other is parametric speech synthesis
[18–20] which estimate the related speech parameters directly
from contextual features through some statistical models. In
this paper, DNN is adopted as the model to predict speech
parameters and called DNN-based speech synthesis [21].

There are three main components in a DNN-based speech
synthesis system: input contextual features, network architec-
ture and vocoder. New research is often focused on one or
more of these three main components.

The initial work of this study was done while the first author was visiting
Georgia Institute of Technology in 2014–2015.
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In the input layer of the DNN-based speech synthesis sys-
tem, the contextual features include the main phoneme iden-
tity feature and other auxiliary information, such as part of
speech, positional and prosodic features. Most of these con-
textual features are binary features suitable to construct the
decision trees in the hidden Markov model (HMM)-based
speech synthesis system [19], however they may be insuffi-
cient to represent the DNN’s input. For the phoneme identity
feature, the consequence is that the relationship between two
similar phonemes might not be effectively conveyed if the
phoneme identity feature is hardcoded as a binary-valued vec-
tor with a one-hot representation in the input to the neural
networks. It is much more critical in natural language process-
ing (NLP) where the dimension for one word is about tens of
thousands. This problem has been alleviated with word em-
bedding [22–26]. This model encodes a word as a real-valued
low-dimensional vector based on the assumption that the se-
mantic meanings of a word can be predicted from the external
contexts with large-scale corpora. It also works for the pho-
nemes with their pronunciation often influenced by the neigh-
boring words and phonemes. In this paper we adopt a real-
valued vector to parameterize the phoneme pronunciation. In
addition to the phoneme identify feature, part of speech (POS)
and pause information are also encoded as a real-valued vector
from the bottleneck layer of a prediction network. After these
two substitutions, all DNN inputs of DNN based speech syn-
thesis will be real-valued vectors.

As for the network architecture, DNN here is used to con-
struct a mapping function from the input contextual features to
the output speech parameters. For example, Kang et al. used a
deep belief network (DBN) to model a joint distribution of
contextual and speech features in [27]. In [28], Ling et al.
replaced the Gaussian mixture model (GMM) with DBN in
HMM-based speech synthesis [19]. Nonetheless Zen et al.
[19] proposed a deep neural network (DNN) based speech
synthesis framework by mapping from the contextual features
to the speech features directly and Fan et al. [29] further
employed a recurrent neural network (RNN) with bi-
directional long short term memory (BLSTM-RNN) [5, 6]
units to model the direct mapping relationship. When com-
pared with HMM-based speech synthesis, the DNNs are
learned with little discriminative information in the output
layer because the decision trees [20] used in HMM-based
speech synthesis for categorizing different classes of the
speech parameters have been removed from DNN-based
speech synthesis. Leveraging upon recent successes in
DNN-based automatic speech recognition (ASR) [7] and
DNN-based automatic speech attribute transcription (ASAT)
[30, 31], a key motivation in this study is to facilitate an in-
corporation of some categorical information in decision trees
into training DNN-based speech synthesis systems. It is real-
ized by an auxiliary categorization framework with an extra
classification layer on top of the hidden layers of the

regression DNNs. This classification layer is trained together
with the affine-transform layer in multi-task learning (MTL)
[32] which has already been used in speech synthesis in [33].
When compared with [33], this paper explored several sec-
ondary tasks in training the DNN to determine the tasks that
are beneficial to improving speech quality and also applied the
MTL in incorporating the vocoder.

In the vocoder, the final speech waveform is generated by
the predicted speech parameters from the estimation models.
In HMM-based and DNN-based speech synthesis with feed-
forward network [19], the predicted speech parameters in-
clude the first and second derivatives which used in the max-
imum likelihood parameter generation (MLPG) algorithm
[34]. While in [29], the MLPG algorithm can be removed in
the BLSTM-RNN-based speech synthesis system. So in this
paper we only predict the speech parameters directly. There
are also other models recently proposed for vocoder. For ex-
ample, Song et al. proposed an improved time-frequency tra-
jectory excitation model in [35]. Fan et al. proposed a phase-
embedded waveform representation in [36]. Hu et al. pro-
posed to model the results of the frequency analysis in the
complex domain directly in [37]. Here we propose to adopt
our pitch scaled analysis (PSA) based vocoder [38] in
BLSTM-RNN based speech synthesis and train an excitation
model at the phonemic level. Because LF0 and the pitch
scaled spectrum (PSS) [39] only exist in the voiced regions,
two BLSTM-RNNs were trained in the proposed system. The
first equipped with the multi-task learning in last paragraph is
used to predict the line spectrum pair (LSP) [40] and the UV
decision from the contextual features. The second is construct-
ed to predict the log fundamental frequency (LF0), PSS and
aperiodicity for the voiced phonemes with the input of the
generated LSPs and contextual features. Speech is synthesized
from the generated LSPs, LF0, PSS and aperiodicity parame-
ters with the PSA-based vocoder.

The remainder of this paper is organized as follows. In
Section 3, we introduce real-valued parameterization of the
input contextual. In Section 4, the multi-task learning frame-
work in DNN-based speech synthesis is described with four
secondary classification tasks. In Section 5, we integrate the
PSA-based vocoder into DNN-based speech synthesis with
two BLSTM-RNNs. We describe our experiments in
Section 6. Finally, we summarize our conclusions and propose
some future work in Section 6.

2 Contextual Feature Parameterization

In conventional DNN-based speech synthesis systems, the
phonemic feature is represented by a binary vector with a
one-hot representation [19]. This is inefficient because the
co-occurrence of phonemes is represented by a long vector
with the neighboring phonemes. Vector space model (VSM)
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was proposed to parameterize the phonemic information as
continuous values in [41, 42]. It is trained from the matrix of
co-occurrence statistics and further decomposed by singular
values. Our previous paper proposed to train phonemic em-
bedded vectors (PEV) [43] in a neural network based lan-
guage model (NNLM) and represent the phonemes together
with word embedded vector (WEV). In this paper we enhance
this representation by introducing the syllable embedded vec-
tor (SEV). The rest of this section includes two parts: one is
how to train the embedded vector and the other is how to
combine these embedded vectors to describe the phonemic
features.

2.1 Joint Training with Embedded Vectors

There are a number of methods proposed to train the word
embedded vector (WEV), such as Global C&W [44], contin-
uous bag-of-words model (CBOW) [26] and Skip-Gram [26].
We will take CBOW in Fig. 1 as an example to describe the
joint training structure.

Given a sentence with N training words, S = {x1, x2, ⋯ ,
xN}, an objective function of training CBOW is to maximize
the average log probability in Eq. (1).

L Sð Þ ¼ 1

N−2K
∑N−K

i−Kþ1logP xi xi−K ;⋯; xiþKjð Þ ð1Þ

where K is the size of the sliding window for the neighboring
words. The probability P(xi| xi − K, ⋯ , xi + K) is a softmax
function described in Eq. (2).

P xijxi−K ;⋯; xiþKð Þ ¼ exp X T
0 ⋅X i

� �

∑X j∈Wexp XT
0 ⋅X j

� � ð2Þ

where W is the word vocabulary, Xi is the WEVof the target
word xi, and X0 is the average of all neighboring context words
in Eq. (3).

X 0 ¼ 1

2K
∑ j¼i‐K;⋯;iþK; j≠iX j: ð3Þ

It is difficult to train the syllable embedded vector (SEV) or
phonemic embedded vector (PEV) directly from the large cor-
pus because the SEVor PEV takes a non-semantic meaning of
a word. But it could be learned simultaneously with the WEV
in a joint training structure described in [42, 45]. In this struc-
ture, the embedded vector for the context word xi is changed
from Xi to X new

i in Eq. (4).

X new
i ¼ X i þ 1

N i
∑N i

m¼1Pm ð4Þ

where X new
i is the composed embedded vector, Xi is the

word embedded vector (WEV), Pm is the phoneme em-
bedded vector (PEV) or syllable embedded vector

(SEV), Ni is the number of syllable initials and finals
or syllable for the ith word.

2.2 Combination of Embedded Vectors

The PEV and SEV are the byproducts of training the WEV
and are generated in the word level. But in DNN-based
speech synthesis systems, the synthesis unit is at the
frame level. So the PEV, SEV and WEV should be con-
verted into the frame level firstly. It is not easy to directly
encode and a substitution is to encode these embedded
vectors at the phonemic level and then to combine with
positions’ parameters at the frame level.

There are several ways to encode these embedded vectors
into the phonemic level. This paper will adapt two ways: one
is to calculate the mean of these vectors and the other is to
concatenate them into one vector directly. In the first way
described in Eq. (5), these three types of embedded vectors
should be trained in the same dimension. In the second way
described in Eq. (6), these three types of embedded vectors
can be trained in the different dimension but should be in a
low dimension to avoid the curse of dimensionality.
Comparing experiments are conducted in Section 6 for eval-
uating these two combination methods.

X P new ¼ 1

3
X P þ XS þ XWð Þ ð5Þ

or

X P new ¼ X P;X S;XW½ � ð6Þ
where XP_new is the encoded PEV, XP is the PEV, XS is the
SEV, XW is the WEV.

3 Multi-Task Learning

3.1 Classical DNN-Based Speech Synthesis

A typical DNN based speech synthesis system shown in the
left of Fig. 2 is constituted with a few hidden layers and an
output layer. The hidden layers can be considered as a nonlin-
ear feature extractor from the input contextual features. The

Output 

Layer 

Input 

Layer

Raw 

Text 

Figure 1 A block diagram of CBOW.
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output layer stacked on the top of the hidden layers is an
affine-transform layer for generating speech parameters from
the nonlinearly transformed features. To train the DNN, the
hidden layers are constituted by the pre-trained RBMs [1] with
the contrastive convergence (CD) criterion [46]. The input of
the first input layer is normalized as a Gaussian with zero
mean and unity variance so the pre-trained hidden layers are
stacked as the first Gaussian-Bernoulli RBM and the rest
Bernoulli-Bernoulli RBMs.

This topology is also used in RNN based speech synthesis.
In addition the hidden layers will be stacked by at least one
recurrent layer, for example bidirectional recurrent neural net-
work with long short term memory (BLSTM-RNN) units
shown in the right of Fig. 2.

3.2 Proposed Classification Layer

DNN-based parameter learning for speech synthesis is of-
ten cast as a regression problem and DNN is used to
construct a mapping function directly from the contextual
features to the speech parameters. Thus this regression
function is usually learned with little discriminative infor-
mation in the output layer. To alleviate this problem, de-
cision trees is adopted in HMM-based speech synthesis to
classify the input contextual features and learn parame-
ters. Besides this, the function will also introduce an
over-smoothing problem because the generated speech pa-
rameters in the output layer are only decided by the input
contextual features. To overcome this problem, Zen et al.
adopted the maximum likelihood parametric generation

(MLPG) algorithm [34] to get additional speech parame-
ters, including the first and second order derivatives.

The two issues listed above could also be addressed by
adding another output layer for categorization which is
learned together with the affine-transform layer. The error
signal of the categorization tasks will be back-propagated
to update the hidden-layer parameters. Thus, the hidden
layers will be learned with discriminative attributes.
Moreover, this additional classification layer will also
help overcoming the over-smoothing problem in discrim-
inative learning. The proposed framework for the DNN-
based speech synthesis is demonstrated in Fig. 3. A de-
tailed description about how to learn the additional clas-
sification layer is given in the followings.

For regression, the mean square error (MSE) in Eq. (7) is
minimized to fine-tune the DNN parameters:

DMSE y ̂; yð Þ ¼ 1

T
∑T

t¼1 y ‐̂yð Þ2 ð7Þ

where T is the total number of frames, y is the target speech
feature vector and ŷ is the predicted speech feature vector as
follow:

y ̂ ¼ ~g WA; bA; hð Þ ð8Þ
where ~g is a linear function,WA , bA are the weight matrix and
bias vector for the affine-transform layer, h is the output of the
hidden layers.

As for classification, a soft-max layer is trained with the
cross entropy (CE) criterion [47] in Eq. (9) as follow:

DCE s ̂; sð Þ ¼ ∑N
n¼1∑

T
t¼1slogs ̂ ð9Þ

where N is the sentence number, T is the total number of
frames, s is the target label for the categorization tasks, and ŝ
is the generated label as follow:

s ̂ ¼
exp ~g WS; bS; hð Þ

� �

∑exp ~g WS; bS; hð Þ
� � ð10Þ
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Figure 2 DNN based speech synthesis. Left: restricted Boltzmann
Machine (RBM); right: long short term memory (LSTM) and
bidirectional recurrent neural network (BRNN).
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Figure 3 The framework of the output layers. Left: an affine-transform
layer for generating speech parameters; right: a soft-max layer together
with an affine-transform for classification.
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A stochastic gradient descent (SGD) algorithm [48] is used
in mini-batches to update the parameters in Eq. (11).

W ; bð Þ← W ; bð Þ þ λ
∂D

∂ W ; bð Þ ð11Þ

where λ is the learning rate.
The outputs of back-propagation [49] in Eq. (7) and (8) are

added together with an error ratio in Eq. (12) as the input for
back-propagating to the hidden layers.

D y ̂; y; s ̂; sÞ ¼ DMSE y ̂; yÞ þ α � DCE s ̂; sÞððð ð12Þ
where α is an error ratio.

3.3 Categorization Tasks

Decision trees facilitate a sharable structure for every state in
the HMM-based speech synthesis system. It splits the set of
categorical information into several nodes by asking a number
of questions, such as phonemes identity, left or right contex-
tual information and voiced/unvoiced labels. These questions
help the decision trees to split the space of the speech param-
eters into small groups in order to learn more accurate param-
eters. Due to differences between the HMM and DNN, it is
very hard to directly incorporate all the related questions into
DNN training. Here we only consider four types of questions
for constructing the classification layer.

The first is the voiced/unvoiced label. Due to the different
vibrating state of glottis, the speech frames’ spectra can be
easily split into two groups: non-zero fundamental frequency
with a harmonic structure and zero fundamental frequency
with a noisy structure. This additional classification layer
therefore enhances the hidden layers to describe the differ-
ences between voiced and unvoiced frames.

The second is the phone identity. In the HMM-based
speech synthesis system, decision trees are constructed for
every HMM state and the phone identity questions are asked
in parallel with other contextual information. It means that the
constructed decision trees are shared across all the phones. It is
a cause of the over-smoothing problem existing in the HMM-
based speech synthesis system. To alleviate this problem in
DNN-based speech synthesis, we stack a phone identity clas-
sification layer on top of the hidden layers to re-enforce the
phone identity’s discrimination in the hidden layers.

The third is the phonation position. Every phone phonates
in different positions of the vocal tract. So the phones can also
be categorized into small groups. According to the knowledge
in phonetics, the syllable initials and finals inMandarin can be
split into 15 groups as listed in Table 1. This layer will group
the phones and learn the groups in a discriminative manner.

The fourth is the HMM state. In HMM-based speech syn-
thesis, HMM states occupied by a number of speech frames
represent a short-time stationary part of speech. So every

speech frame can be categorized into a HMM state. This in-
formation can be obtained from the decision tree of the HMM-
based speech synthesis system directly.

4 PSA-Based Vocoder in DNN-Based Speech
Synthesis System

4.1 PSA-Based Vocoder

A pitch scaled analysis (PSA)-based vocoder [38] was used to
model the residual signal as a pitch scaled spectrum (PSS) [39]
and compensates the linear prediction (LP) spectrum by the
detailed harmonic structure of the residual signal. It is realized
by pitch scaled analysis [39] in the frequency domain.

In the analysis stage of PSA-based vocoder, the linear spec-
trum pairs (LSPs) [40] are first extracted for every speech
frame. Then the inverse filter is constructed by LSPs to gen-
erate the residual signal. To reconstruct the residual signal in
the frequency domain, PSS is defined by concatenating the
peak points in the harmonic frequencies of the spectrum. An
easy way to extract this envelope is by pitch-scaled analysis.
Let s(k) , k = 1⋯N be a residual frame of two-pitch periods
length and the corresponding discrete Fourier transform
(DFT) of two-pitch periods length is S(n) , n = 1⋯ N. The
even line of S(n) , n = 1⋯N in Eq. 14 which takes multiple
fundamental frequencies can be indicated as PSS.

N ¼ 2� f s � f 0 ð13Þ
f k ¼ f s � k � N ¼ f s � k � 2� f s � f 0ð Þ

¼ f 0 � k � 2 ð14Þ

where f0, fsand fkare the fundamental frequency, the sampling
frequency and the frequency of the kth sample.

Table 1 Mandarin initials and finals based on phonation position.

labial bilabial p b m

labiodental f

coronal dental t d n l

alveolar z c s ii

velar k g h

retroflex zh ch sh r iii

alveolo-palatal j q x

low front ai an

central a

back ang ao

middle front ei en

central eng er

back e o ong ou

high front i ia ian iang iao ie in ing iong iou v van ve vn

back u ua uai uan uang uei uen ueng uo
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In the synthesis stage of the PSA-based vocoder technique,
the inverse discrete Fourier transform (IDFT) with zero-phase
criterion is adopted to synthesize the one pitch-cycle excita-
tion signal. Then the periodic excitation is concatenated from
these one pitch-cycle excitation signals by the overlap add
(OLA) method. After mixing with the aperiodic excitation,
the excitation signal is passed through a LSP vocoder to gen-
erate the speech.

A detailed workflow of PSA-based vocoder is shown in
Fig. 4. The input speech is encoded by LSPs, LF0, PSS and
aperiodicity for every frame. Output speech is decoded by
these coefficients.

4.2 Integration into DNN-Based Speech Synthesis

The BLSTM-RNN based speech synthesis system predicts the
speech parameters, unvoiced/voiced (UV) decision and LF0
directly from the input of contextual features [6]. The LF0 in
the unvoiced regions is interpolated by the neighboring voiced
regions. So the BLSTM-RNN is trained with the assumption
that the unvoiced regions also take the continuous LF0 value.
This assumption is in conflict with the input of the contextual
features which takes unvoiced information, such as unvoiced

phonemes. So this paper proposes to train two BLSTM-RNNs
for the speech synthesis system and one of them is used to
model the excitation at the phonemic level.

The framework of the proposed BLSTM-RNN based
speech synthesis system is shown in Fig. 5. This system takes
the contextual features as the input and generates the LSPs,
LF0, PSS and aperiodicity where LSPs are generated by the
first BLSTM-RNN and LF0, PSS and aperiodicity are gener-
ated by the second BLSTM-RNN. A detailed description is
given below.

In the first BLSTM-RNN, the LSPs and UV decisions are
predicted directly from the input contextual features. This is
reasonable because the LSPs take the continuous value in the
voiced and unvoiced regions and the UV decision can be
made correctly based on the input phonemic information.
After training the first BLSTM-RNN, the phonemes in the
input can be classified into voiced or unvoiced. The phonemes
with the voiced label are collected to train the second
BLSTM-RNN at the phonemic level.

In the second BLSTM-RNN, the excitation parameters for
the voiced phonemes are predicted which include the LF0,
PSS and aperiodicity. They are all existed only in the voiced
regions. The input for this network is a combination of the
input contextual features and the generated LSPs. This is be-
cause the effectiveness of LSPs in predicting the LF0 has
already been proved in our previous paper [50] and other
researchers’ work [51].

It can be concluded that the first BLSTM-RNN is used to
predict the spectral parameters with continuous value and the
second BLSTM-RNN is an extension of the first BLSTM-
RNN and predicts the excitation parameters only in the voiced
regions. It is much more reasonable than only one BLSTM-
RNN predicting the spectral and excitation parameters togeth-
er at any one time.

BLSTM

-RNN 

Input 

Contextual 

Features 

LSPs 

UV

BLSTM

-RNN

LF0 

PSS 

Aperiodic

Spectral 

Parameter 

Excitation 

Parameter

Figure 5 The framework of BLSTM-RNN based speech synthesis with
the phonemic excitation.

LSP Analysis 

Analysis 

Stage  

Input Speech 

Output Speech

Synthesis 

Stage

Inverse Filter

Pitch Scaled Spectrum

LF0 Analysis

IDFT Aperiodic

Excitation Signal

LSP Vocoder

Figure 4 The workflow of a pitch scaled analysis (PSA)-based vocoder.

Table 2 The LSD, LF0’s RMSE and LSP’s RMSE for different
combination ways for PEV, SEV and WEV in DNN-based speech syn-
thesis system.

LSD LF0 LSP

Meaning 3.707 0.195 1.132

Cancatenation 3.493 0.181 1.086

Table 3 The LSD, LF0’s RMSE and LSP’s RMSE for comparison
between binary vector and real-valued vector of phonemes in BLSTM-
RNN based speech synthesis.

LSD LF0 LSP

Binary-valued Vector 3.517 0.183 1.089

Real-valued Vector 3.493 0.181 1.086
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5 Experiments and Discussion

In this section, we first describe the experimental configura-
tion in Section 5.1. Then the proposed three techniques are
evaluated in Sections 5.2, 5.3 and 5.4, respectively.

5.1 Experiment Setup

There are two female Mandarin corpora used in the following
experiments. One is used in Section 5.2 and 5.4 for about
fifteen hours. The other is used in Section 5.3 for about seven
hours. This is because the experiments constructed in two
separately time with two different corpora. The contextual
features include phoneme identity feature, part of speech,
pause types, tone flags and other positional information. The
speech parameters used in these experiments are line spectral
pair (LSP) [40] extracted from the STRAIGHTspectrum [52],
log fundamental frequency (LF0), and pitch-scaled spectrum
for the PSA-based vocoder. The KALDI toolkit [53] was used
for DNN training. The topology of the DNN used in the fol-
lowing experiments contains four hidden layers with
3072 units at each hidden layer and the RNN contains two
BLSTM-RNN layers with 512 units.

The quality of the synthesized speech was verified in two
ways. The first was through two objective measures, namely
the root mean square error (RMSE) between the generated and
the original speech parameters and log spectral distance (LSD)
[54] between the generated and the original waveforms. The
other was a subjective measure in terms of the ABX prefer-
ence scores [55] in naturalness. In the preference tests, sub-
jects were asked to listen to two versions of synthesized
speech and choose one which sounds much better than the
other. The better one will get a preference score of B1^ or no
preference (N/P) score of B1^. The final scores were calculat-
ed by the mean value of the scores given by the 15 listeners
who are working in some speech technology areas.

5.2 Parameterization of Contextual Features

5.2.1 Replacing Binary Features of Phonemes

There are about 60 pronunciation initials and finals in the
Mandarin language. Directly using the one-hot representation
for five phonemes in the contextual features will cause the
curse of dimensionality with low efficiency. But the embed-
ded vector can be easily controlled in a low dimension. In our
experiment, there are two combination ways described in
Section 2.2 for these three types of embedded vector: PEV,
SEVand WEV. When training the PEV, the dimension is kept
as 60 as the number of pronunciation initials and finals. To
simplify the representation, the SEVandWEVare also trained
in the dimension of 60. So in the meaning method described in
Eq. (5), the dimension for the phonemic vector is about 60; in
the concatenating method described in Eq. (6), the dimension
for the phonemic vector is about 180. Comparing experiment
was carried out for these two combination method in DNN-
based speech synthesis systems. The objective measures for
the comparing results are shown in Table 2. The concatenating
method gets a low objective measure than the meaning meth-
od. So in the following experiments, the concatenating meth-
od is adopted.

The difference between the binary and real-valued vector
for phonemic features in DNN-based speech synthesis is com-
pared in BLSTM-RNN based speech synthesis in Tables 3.
The objective measures listed in Table 3 demonstrate that the
real-valued vector is much more powerful than binary vector
in describing the phonemic features.

5.2.2 Comparing with Binary Features in DNN-Based Speech
Synthesis Systems

Besides phonemic feature, POS tag and pause label were used
usually as binary vector in the input of the DNN-based speech

Table 4 Comparing LSD, LF0’s RMSE and LSP’s RMSE for binary-
valued and real-valued vectors in BLSTM-RNN based speech synthesis.

LSD LF0 LSP

Binary-valued Vector 3.517 0.183 1.089

Real-valued Vector 3.473 0.177 1.078

Table 5 Preference scores with a 0.005 confidence interval between the
binary-valued and real-valued vectors in the BLSTM-RNN based speech
synthesis systems.

Binary-Vector Real-Valued Vector N/P

0.194 0.543 0.263

Table 6 Preference scores with a 0.005 confidence interval between
HMM-based and BLSTM-RNN based speech synthesis with binary-
valued or real-valued vector.

HTS Binary-Vector Real-Valued Vector N/P

0.263 0.501 – 0.236

0.183 – 0.602 0.215

Table 7 The RMSE and LSD measures for DNN-based speech syn-
thesis (DNN-SYN) and BLSTM-RNN-based speech synthesis (BLSTM-
RNN-SYN) systems.

LSD LF0 LSP

DNN-SYN 4.932 0.145 1.118

BLSTM-RNN-SYN 4.896 0.138 1.112
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synthesis systems. This paper trained a prediction network and
extracted the real vector from the bottleneck layer as the POS
tag and pause label information. So the all DNN input is
changed to the real-valued vector. The replacement was eval-
uated in BLSTM-RNN-based speech synthesis. The experi-
mental results are listed in Tables 4 and 5.

The objective measures have been improved from the
binary-valued to real-valued vector in BLSTM-RNN based
speech synthesis listed in Table 4. The LSD has been reduced
by about 1.25% from 3.517 to 3.473. The generated RMSEs
of LF0 and LSP have been reduced by about 3.27% and
1.01%, respectively. These gains have also been confirmed
in the listening test results in Table 5. Generated speech with
the real-valued vector is much favored by about 35% (from
0.194 to 0.543) than the binary vector in the preference scores.
These two sets of results demonstrate the effectiveness of the
proposed parametrization method in DNN-based speech
synthesis.

BLSTM-RNN based speech synthesis with binary-valued
or real-valued vector is also compared with HMM-based
speech synthesis (HMM-SSS) in subjective listening tests.
The results listed in Table 6 show again the superiority of
the proposed technique. Synthesized speech with the real-
valued vector is much favored by about 42% than HMM-
based speech synthesis (0.602 vs. 0.183) and the favored score
is much larger than synthesized speech with the binary-valued
vector.

5.3 Multi-Task Learning

We evaluate our proposed network architecture on two base-
line systems, namely DNN-based speech synthesis (DNN-
SYN) and BLSTM-RNN-based speech synthesis (BLSTM-

RNN-SYN). They were trained with the same inputs to pro-
duce the desired outputs. The objective and subjective exper-
imental results are shown in Tables 7 and 8, respectively.

In Table 7, the objective measures were improved from
DNN-based to BLSTM-RNN-based speech synthesis, espe-
cially for the LF0’s RMSE which was reduced by about 4.8%
(from 0.145 in the top row for DNN-SYN to 0.138 in the
bottom row for BLSTM-RNN-SYN). In Table 8, the synthe-
sized speech from BLSTM-RNN-SYN is also much preferred
than from DNN-SYN.

5.3.1 Objective Measures

The error ratioα in the objective function in Eq. (12) is crucial
for a proper incorporation of the classification layer part into
DNN training. A series of preliminary experiments was car-
ried out to decide which ratio is appropriate for different cat-
egorization tasks. In Fig. 6 we plot the LF0’s RMSE changes
with different error ratios for the four different categorization
tasks. It reveals that different error ratios could be used for
various tasks. The error ratios were set to be 0.6, 0.4, 0.4
and 0.8 for classifying voiced/unvoiced attribute, phone iden-
tity, phonation position, and the HMM state, respectively.
These values will be used for the remaining experiments for
both DNN and BLSTM-RNN based speech synthesis
(Table 9).

In [30], the target voiced/unvoiced label is generated direct-
ly from the output of the regression layer. It is different from
our proposed method that a classification layer is added only
for the voiced/unvoiced label’s classification. The objective
measures are shown in Table 10 for DNN-based speech syn-
thesis systems. The Voiced/Unvoiced error is decreased by
about 1.56% from the regression-based (UV-R-DNN) to

Table 8 ABX pairwise preference scores with a 0.005 confidence
interval for DNN-based speech synthesis (DNN-SYN) and BLSTM-
RNN-based speech synthesis (BLSTM-RNN-SYN) systems.

DNN-SYN BLSTM-RNN-SYN N/P

0.1238 0.4667 0.4095

0.13

0.135

0.14

0.145

0.15

0 0.2 0.4 0.6 0.8 1 1.2 5 10

UV Phone Phona�on HMM

Figure 6 LF0’s RMSE values as a function of error ratios for four
different categorization tasks.

Table 9 A comparison of the RMSE, LSD, LSP and V/U (Voiced/
Unvoiced) error for the method in [10] (UV-R-DNN) and our proposed
method (UV-C-DNN) where R indicates BRegression^ and C indicates
BClassification^.

LSD LF0 LSP V/U Error

UV-R-DNN 4.983 0.153 1.120 5.449%

UV-C-DNN 4.899 0.133 1.113 3.888%

Table 10 LSD and RMSE measures for LF0 and LSP for DNN based
speech synthesis for four classification tasks.

Classification Tasks LSD LF0 LSP

Voiced/Unvoiced 4.899 0.133 1.112

Phoneme 4.889 0.132 1.110

Phonetic Feature 4.910 0.132 1.112

HMM State 4.917 0.134 1.113
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classification-based (UV-C-DNN) method. When compared
with Table 7, RMSE and LSD measures are also improved
with the help of the classification layers, especially for RMSE
of LF0 that was reduced by about 6%.

Again, three objective measures were compared with the
additional classification layer for DNN and BLSTM-RNN
based speech synthesis in Tables 10 and 11, respectively. It
can be seen that these values vary little among themselves for
the four different categorization tasks. Clearly the results with
BLSTM-RNN in Table 11 are slightly better than those with
DNN in Table 10, and they are all better than the baseline
speech synthesis systems without the classification layers as
shown in Table 7.

5.3.2 Subjective Preference Scores

Listening tests were also carried out to evaluate the proposed
technique. Table 12 lists the preference scores for the voiced/
unvoiced label used in DNN-based speech synthesis at a re-
gression or a classification output layer. The score of 37.78%
for the classification based method (UV-C-DNN) in the mid-
dle column of the bottom row in Table 12 is preferred to the
score of at 8.89% in the regression based method (UV-R-
DNN) in the left column.

Since the result differences between the four tasks in
Tables 10 and 11 are very small, we only consider the
voiced/unvoiced attribute in Table 13 with the best error ratio
α set at 0.6. The preference scores are compared for DNN
based speech synthesis with (UV-C-DNN and UV-C-RNN)
and without (just plain DNN and BLSTM-RNN) the classifi-
cation layer. The results again confirm that speech generated
with the classification layer is much preferred to speech syn-
thesis without the classification layer by about 24% (from
0.227 to 0.467) for DNN-based speech synthesis at the top
row in Table 13, and by about 15% (from 0.187 to 0.34) for

BLSTM-RNN based speech synthesis in the bottom row of
Table 13.

From these results, it could be concluded that by adding the
classification layer on top of the hidden layers to the regres-
sion DNNs we could strengthen the DNN’s modeling ability
to generate better speech parameters from the contextual fea-
tures. Among these four categorization tasks, there are no
sharp differences between these tasks. But considering the
convenience of extracting voiced/unvoiced attribute, the cate-
gorization task used in the multi-task learning structure in
following experiments are voiced/unvoiced attribute.

5.4 PSA-Based Vocoder in DNN-Based Synthesis

To evaluate the proposed technique in the BLSTM-RNN
based speech synthesis systems, a series of experiments was
carried out. First, the proposed PSA-based vocoder was vali-
dated in DNN-based speech synthesis with one BLSTM-RNN
and with two BLSTM-RNNs. Finally, the combination of
PSA-based vocoder and two BLSTM-RNNs was further val-
idated in speech synthesis.

5.4.1 PSA-Based Vocoder with one BLSTM-RNN

The baseline system constructed in this experiment is a DNN-
based speech synthesis system with one BLSTM-RNN which
was trained with a conventional LSP-based vocoder (Conv-
LSP). There are two additional types of parameters in our pro-

Table 11 LSD and RMSE measures for LF0 and LSP for BLSTM-
RNN based speech synthesis with four classification tasks.

Classification Tasks LSD LF0 LSP

Voiced/Unvoiced 4.891 0.131 1.110

Phoneme 4.885 0.132 1.108

Phonetic Feature 4.875 0.131 1.109

HMM State 4.881 0.132 1.112

Table 12 Preference scores with a 0.05 confidence interval for DNN
based speech synthesis with regression (UV-R-DNN) or classification
(UV-C-RNN) for voiced/unvoiced label.

UV-R-DNN UV-C-RNN N/P

0.0889 0.3778 0.5333

Table 13 Preference scores at a 0.05 confidence interval for DNN and
RNN based synthesis with and without classification.

DNN UV-C-DNN RNN UV-C-RNN N/P

0.227 0.467 – – 0.306

– – 0.187 0.34 0.473

Table 14 The LSD, LF0’s RMSE and LSPs’ RMSE for conventional
LSP-vocoder (Conv-LSP) and PSA-based vocoder (PSA-LSP) in DNN-
based speech synthesis.

LSD LF0 LSP

Conv-LSP 3.517 0.183 1.089

PSA-LSP 3.504 0.192 1.102

Table 15 Preference scores with a 0.005 confidence interval between
conventional LSP-vocoder (Conv-LSP) and PSA-based vocoder (PSA-
LSP) in DNN-based speech synthesis.

Conv-LSP PAS-LSP N/P

0.23 0.35 0.42
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posed PSA-based vocoder (PSA-LSP) when compared with a
traditional LSP-based vocoder. They are the pitch-scaled spec-
trum (PSS) and the aperiodic measure (AP) both of which exist
only in the voiced region. So, firstly, these two features will be
interpolated with a continuous value in the unvoiced region.
After that, the interpolated features will concatenate with
LSPs, UV decisions and LF0s for every frame to construct the
output of BLSTM-RNN. The input of BLSTM-RNN is kept the
same as the baseline system. Finally, two BLSTM-RNN-based
speech synthesis systems are constructed with a different output
layers and two versions of synthesized speech were generated.
The compared results are shown in Tables 14 and 15.

The objective measures are shown in Table 14 for these two
speech synthesis systems. The LSD measure has been im-
proved a little by the PSA-based vocoder when comparedwith
the conventional LSP-based vocoder. But the RMSEs of LF0
and LSP were slightly increased. One possible reason is that
more parameters have to be predicted in the output layer. But
the subjective preference listening test has confirmed the ef-
fectiveness of PSA-based vocoder in DNN-based speech syn-
thesis and that generated speech is more favored by about 12%
(from 0.23 to 0.35) than conventional LSP-based vocoder.

5.4.2 Comparison of one and two BLSTM-RNNs

Next, twoDNN-based speech synthesis systems are construct-
ed: one with one BLSTM-RNN and the other with two
BLSTM-RNNs. The vocoder used in both cases is the con-
ventional LSP-based vocoder. The input and output for these
two systems is kept the same. The only difference is to predict
the speech parameters in one or two BLSTM-RNN. Fig. 7
shows an example of pitch contours for the original sentence,
generated by one and two BLSTM-RNNs. It can be found that

the pitch contour generated by two BLSTM-RNNs is much
closer to that of the original sentence than that with one
BLSTM-RNN. For example, in regions 1 and 3 in Fig. 7 the
same slope as the original sentence is kept and in region 2 the
same details of the original sentence is preserved.

The difference of the pitch contour in Fig. 7 has been con-
firmed in the objective measures for generated speech in
Table 16. The RMSE of generated LF0 has reduced by about
14.2% from one (at 0.183) to two BLSTM-RNNs (at 0.157)
especially in DNN-based speech synthesis. This means that
predicting the pitch contour in two steps at the phonemic level
is more effective than in one step at the sentence level. Finally,
the results of the subjective listening test described in Table 17
confirm again the superiority of the proposed structure with
two BLSTM-RNNs.

5.4.3 Combination of PSA-Vocoder and two BLSTM-RNNs
in DNN-Based Speech Synthesis

In the following we evaluate DNN-based speech synthesis by
combining the PSA-vocoder and two BLSTM-RNNs.
Synthesized speech is compared with that generated from
HMM-based speech synthesis (HTS) and DNN-based based
speech synthesis (DNN-SSS) both with the traditional LSP-
based vocoder.

50

150

250

350

1 51 101 151 201 251 301 351 401

Original One BLSTM-RNN Two BLSTM-RNN

1 2 3

Figure 7 The pitch contour for the original sentence, generated by one BLSTM-RNN and generated by two BLSTM-RNNs.

Table 16 The LSD, RMSE for LF0 and RMSE for LSP for DNNbased
speech synthesis with one or two BLSTM-RNNs.

LSD LF0 LSP

One-BLSTM-RNN 3.517 0.183 1.089

Two-BLSTM-RNN 3.502 0.157 1.087

Highlighted data indicates the proposed technique

Table 17 Preference scores with 0.005 confidence interval for DNN-
based speech synthesis with one or two BLSTM-RNNs.

One-BLSTM-RNN Two-BLSTM-RNN N/P

0.213 0.483 0.304

Table 18 The LSD, LF0’s RMSE and LSP’s RMSE for HMM-based,
DNN-based with DNN-SSS and DNN-based speech synthesis with two
BLSTM-RNNs and PSA-vocoder.

LSD LF0 LSP

HTS 3.831 0.176 1.088

DNN-SSS 3.912 0.189 1.098

TWO-BLSTM-RNN 3.470 0.162 1.088

Highlighted data indicates the proposed technique
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The results listed in Table 18 show that the objective
measures have been improved when compared with HTS
and DNN-SSS. For example, the LSD was reduced by
about 9% and the LF0’s RMSE has reduced by about
8% compared with HTS. Meanwhile, the results also
show that HTS takes a lower objective measure than
DNN-SSS. One possible reason for this is that the speech
parameters in DNN-SSS are predicted directly by a local
region of the input space which is different from the de-
cision tree used in HTS. The subjective listening tests in
Table 19 also indicate that generated speech from TWO-
BLSTM-RNNs is much more favored by about 27%
(from 0.183 to 0.453 in the top row) than that from
HTS and by about 31% (from 0.15 to 0.46) than that from
DNN-SSS.

6 Conclusion and Future Work

This paper proposed three techniques to improve the qual-
ity of synthesized speech in DNN-based synthesis. The
first one is to parameterize the contextual features as a
real-valued vector at the input of DNN-based speech syn-
thesis model. We propose to encode the phoneme identity
features as a real-valued vector in training the word em-
bedded vector and to extract the POS and pause from the
bottleneck layer of a prediction network. The second is to
add an auxiliary categorization framework through multi-
task learning for training DNN-based speech synthesis
systems. Four types of secondary tasks have been consid-
ered in constructing the output layer. The third is to im-
prove vocoder based on pitch-scaled analysis (PSA) in
DNN-based speech synthesis. Three corresponding sets
of experiments have been conducted to evaluate the pro-
posed techniques. The experimental results demonstrate
the superiority of the three proposed techniques when
compared with the baseline systems.

With newly emerging DNN modeling techniques DNN-
based speech synthesis still has rooms to improve. For exam-
ple, parameterization directly from the input text for the con-
textual features still has a long way to go. Even though Bi-
directional recurrent neural network with long short term
memory (BLSTM-RNN) units has been verified as a good

architecture for speech synthesis, it is still not easy to apply
it directly into real-time applications for the burden of compu-
tation. So our future work will focus on these two aspects to
improve DNN-based speech synthesis.
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