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Abstract As today’s state-of-the-art signal processing sys-
tems often require heterogeneous computing and special-
purpose accelerators to offer highly efficient performance
for mixed application workloads, including not only tradi-
tional signal processing algorithms, but also the demands
to enable smart applications with data analytics, machine
learning, as well as the capability interacting with both
physical and cyber worlds via sensors and networks. Thus,
the complexity of such systems has been increasing, and the
focus of designing has been shifting to exploring the design
space with a mixture of processing cores/accelerators and
the interconnection networks between the components to
optimize the performance and efficiency at the system level.
Traditional simulation tools may offer accurate performance
estimation at micro architectural level, but it is highly com-
plicated to combine the simulators for various components
to perform complex applications, and they fall in short in
terms of their capabilities to profiling application work-
load. Furthermore, the speed of such complex simulation
would be unacceptably slow with traditional system-level
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simulation framework such as SystemC. To solve the prob-
lem, we develop a rapid hybrid emulation/simulation frame-
work that allows the user to execute full-blown system and
application software and plug in emulators, simulators, and
timing models for various components in the prototype sys-
tem, switching the timing models dynamically with our
just-in-time model selection mechanism, and connect the
emulated/simulated components with scalable communica-
tion channels, so that the framework can be accelerated
effectively by a multicore host. Our just-in-time model
selection mechanism is capable of detecting and skipping
regular program patterns to save the simulation time dramat-
ically. In addition, our framework is capable of estimating
the performance of different system configurations with
concurrent multiple timing models, which further saves the
time needed for traversing the design space. Our experimen-
tal results have shown that our dynamic model selection and
multi-model approach collectively can speed up the design
space exploration by 13.4 times on a quad-core host for
cache simulation.

Keywords Embedded system · Efficient data transfer ·
Simulation · Approximate timing model · Acceleration ·
Design space exploration

1 Introduction

Multicore systems are widely used in image processing
and signal processing areas for various complex tasks such
as recognizing human faces and voice dictations. With
the emergence of smart Internet of Things (IoT) appli-
cations, today’s signal processing systems demands addi-
tional capabilities such as data mining, deep learning and
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collaboration with other computing devices on the Internet,
which pose new challenges as it requires tightly coupled het-
erogeneous processors and application-specific accelerators
for more computing power while keeping low power [35,
40]. Furthermore, as the complexity of such systems has
been increasing, the focus of designing systems has been
shifting to exploring the design space with a mixture of
heterogeneous processor cores/accelerators and the inter-
connection networks between the components to optimize
the performance and efficiency at the system level. For each
targeted application domain, the designer needs to combine
different types of processor cores and makes design trade-
offs on caches, memories, and the interconnections between
heterogeneous cores and accelerators.

However, the question is, how to co-design the applica-
tion and the system? First, such a work would need a tool
that enables the designer to write/execute a complex appli-
cation on a system that is still being developed. Secondly,
the tool should provide abundant and fairly accurate infor-
mation to reveal hardware-software interactions by showing
relevant software and hardware events. Thirdly, the tool
should better support design space exploration (DSE) by
allowing the user to control and vary parameters in the
system configuration manually or automatically. Finally, in
practical, the tool must be fast enough to finish the work in
time since design varies often at early stage development.

Exploring different design parameters, architects rely on
this understanding to perform cost-benefit analysis among
alternative design options. However, especially in a het-
erogeneous computing environment, a large system has
millions or billions of possibilities, and so enumerating
every point in the design space is prohibitive. Several DSE
algorithms [12, 13, 28, 39] are proposed to systematically
explore the design space in a cost-effective manner, but the
DSE process is still bound by the speed of simulating a
single system configuration.

In the past, simulation tools are widely used for cir-
cuits, processor chips and electronic system design. Cycle-
accurate simulators are capable of evaluating the perfor-
mance impact of hardware changes, however, as the com-
plexity of hardware increases, the complexity of cycle-
accurate simulation also increases and becomes unaccept-
ably slow. A general practice is to divide a system into
components and design each component with individual
simulators. Unfortunately, it is very difficult, if not impos-
sible, for the user to evaluate the application performance
on the entire system unless there is a framework to put
together all the hardware component simulators and exe-
cute the application. Without such system-level evaluation
capability, the interactions between components would not
be analyzed and the designers are often limited to work on
incremental design changes.

For processor design, traditional simulation tools may
offer accurate performance estimation at micro architectural
level, but it is highly complicated to combine the simulators
for various components to perform complex applications
due to the lack of a simulation framework to effectively
support such works. While one could use traditional system-
level simulation framework such as SystemC, the speed of
such complex simulation would be unacceptably slow. Fur-
thermore, they fall in short in terms of their capabilities
to profiling application workload and reveal relevant hard-
ware and software events. For instance, it would take a
very long time for a cycle-accurate processor simulator to
boot the Linux operating system), one of the most widely
used operating systems for smartphones and intelligent IoT
devices.

Previously, we developed a cycle-approximate hybrid
emulation/simulation approach [24] to estimate the per-
formance of Linux-based Android smartphones with per-
formance models which can be selectively and dynam-
ically switched on and off to speed up simulation by
fast-forwarding through the boot sequence.

With the fine-grain control, the speed of our cycle-
approximate simulator can be several orders of magnitude
higher than traditional cycle-accurate simulators.

In conjunction with parallel DSE algorithms, our ADSET
work successfully reduces the duration of DSE from 35 days
to 12 hours [23].

In addition, our Virtual Performance Analyzer (VPA)
framework [24] enables tracing and profiling of hardware
and software events. Recently, we added the capability
of emulating/simulating graphics processing unit (GPU)
to support the Heterogeneous System Architecture (HSA)
specifications [16, 22].

From our past experiences, we found that the com-
munications and synchronizations between the component
simulators cause great overheads and slow down the entire
system level simulation.

In this paper, we propose several methods with its
performance evaluations to further speed up our cycle-
approximate hybrid emulation/simulation framework. First,
we developed a scheme to reduce the communication over-
head between component simulators. Then, we extended a
new communication scheme to support multi-model simula-
tion, allowing concurrent simulation of multiple component
simulators in one shot, which further saves the duration of
DSE.

Finally, we develop a just-in-time model (JIT) selec-
tion technique that enables the system level simulation to
automatically adjust the level of simulation for a compo-
nent by shifting between faster cycle-approximate models
and slower cycle-accurate simulation models based on the
statistics that are collected on-the-fly.
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In our case study, with our MMRB, concurrent simula-
tion of eight cache configurations was improved by 3 times
comparing to using eight previous VPAs. With JIT model
selection, the simulation speed was further increased by 2.6
times with negligible errors on the simulation results.

Combining the proposed schemes, our new framework
provided 7.8 times of speedup which can improve the speed
of DSE process dramatically. 1

The rest of the paper further introduces related works in
Section 2, describes the proposed framework and its imple-
mentation in Section 3, discusses our experimental results in
Section 4, and finally concludes with remarks on potential
future works in Section 5.

2 Background and Related Work

To assist the development of signal processing systems in
the early stage, simulation and DSE tools are widely used
for evaluating design alternatives and finding the optimal
design. In this section, we describe existing simulation/DSE
tools and compare our work to them.

2.1 Simulator Tools for System Design

A variety of simulation tools exist for evaluating processors
or system designs by modeling the hardware details at the
micro-architectural or the system level. For evaluating pro-
cessor performance, SimpleScalar [10], PTLsim [43] and
SESC [36] are popular examples of cycle-accurate microar-
chitecture simulators in the public domain, which is capable
of modeling microarchitecture details, including processor
pipelines, branch predictors, and caches to give accurate
performance estimates.

More recently, ZSim [38] is developed to simulate the
performance of x86-based multicore processors.

For non-mainstream or application-specific processor
design, such as digital signal processors, designers often
create their own simulation tools. Lin et al. [29] devel-
oped the cycle-accurate simulator for modeling the perfor-
mance and power of the PAC DSP to evaluate the perfor-
mance and power consumption of signal processing applica-
tions. As GPU becomes increasingly popular, various GPU
simulators have surfaced, including GPGPUSim [34] and
Multi2Sim [42], but are limited to specific vendors, such as
NVIDIA and AMD.

In addition to the whole processor simulators, tools exist
for simulating specific parts in a processor or other compo-
nents in a computing system. Taking examples from popular

1We have shared this work as an open source project on https://bitbuc-
ket.org/paslab/qemu vpmu opensource, https://github.com/snippits/
qemu vpmu.

public-domain tools, Dinero IV is a cache simulator [20],
DRAMSim2 [37] can be used for simulating DRAM, and
NS2 [27] simulates for networks.

Unlike the whole processor simulators, which often take
the application executable as input, the aforementioned
component simulators are usually fed with the event traces,
which could be generated from physical machines or whole
processor simulators.

For simulating a full system, one may have to combine
processor simulators with component simulators to perform
the target application/system software as close as an actual
system does, which has been a challenging task for design-
ers. Now with the addition of heterogeneous multicores
and application-specific accelerators, the task becomes even
harder.

For example, gem5-gpu [7] incorporates the CPU simu-
lator (gem5 [7]) with the GPU simulator (GPGPUSim [34])
and M5 simulator [8] modeling the performance of both
processors. Our earlier work, MCEmu [41], provides a sim-
ulation framework that is capable of modeling both the
ARM-based application processor and the digital signal
processing cores in the PAC Duo system-on-chip.

While cycle-accurate simulators offer detailed timing
information, they are several orders of magnitude slower
than the functional simulators, a.k.a. emulators, which do
not model the hardware details at all. For a complex sys-
tem design, cycle-accurate simulators are generally too
slow and are inadequate for running the complex software
systems that involve timing constrains or interactive I/O
events. In recent years, the cycle-approximate simulators are
developed to tackle the issue by adding the timing mod-
els to full system functional simulators [15, 24, 31]. Both
FAST [15] and our VPA [24] employ the QEMU emula-
tor to execute the system/application software and feed the
executed instruction stream to timing models to estimate
the execution time. FAST implements its timing model with
field programmable gated array (FPGA) to model microar-
chitecture details and resulted an emulation speed of 1.2
MIPS (Million Instructions per Second), roughly an order of
magnitude faster than cycle-accurate simulators. Our VPA
full-system simulation framework allows the user to plug-
in needed component simulators and activates some of them
selectively to increase the execution speed.

VPA leverages QEMU’s dynamic binary translation
scheme to accelerate the execution of instructions. By plug-
ging in cycle-accurate cache simulators and simple pipeline
timing models, we had demonstrated that VPA was useful in
finding performance bottlenecks in system and application
activities for Android smartphones at about 10 MIPS. Even
powerconsumptioncan be estimatedwith good accuracies [25].

We use VPA as an example to illustrate the key con-
cept of the cycle-approximate simulators. As illustrated in
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Figure 1 An architectural
comparison of our previous VPA
design and the new features
proposed in this paper.

Fig. 1a, QEMU emulates the virtual hardware platform,
including the CPU, Memory and I/O devices, so that the
Linux-based, full-blown software stack is able to run on
the virtualized platform (i.e., guest system). During the soft-
ware execution, the executed instruction stream is fed to the
external architecture models so as to account for the per-
formance events and deriving the timing information, with
regard to the configuration of the guest hardware platform.
The generated performance data are consolidated by the
virtual performance monitoring unit (VPMU), which acts
as the performance monitoring units available on the real
machines. For example, the estimated cycles done by the
CPU, the cache misses rate simulated by the cache simula-
tor, and the branch miss count are all available in the VPMU.
Since then, we had developed several techniques to acceler-
ate the simulation framework by parallelizing the simulation
of coherence protocols in distributed caches [14] and the
works described in this paper.

2.2 Design Space Exploration Tools

Given the user-defined objective(s) for the target system,
DSE mainly involves the algorithms/methodologies for
rapid search of good design points in a very large design
space. Mathematical models or simulation tools are utilized
for estimating the performance of certain design points.
Many studies have been done in the literature to reduce
the time for DSE with rapid design space searching algo-
rithms, mathematical models to project the performance,
and/or parallelized DSE process executed on multiple com-
puters. The following paragraphs describe the related works
and point out how our framework facilitates and accelerate
the DSE process.

Mohanty et al. [32] proposed the hierarchical DSE
methodology, which is commonly used in the recent DSE
tools. Unnecessary design points are filtered out based on
user-defined constraints for the target system, and detailed
simulation runs are performed to pinpoint desired design
points. Angiolini et al. [5] emphasized on the integration
of existing tools to facilitate system-level DSE. Schatz et
al. [39] proposed a constraint-based model-transformation
scheme, which helps reduce the search time by conducting
the search in the transformed parameter space to avoid the
detailed simulations as much as possible.

Several learning-based methods have been developed to
predict the performance of the given design point [6, 17,
30, 33]. Beltrame et al. [6] adopted the Markov Decision
Process to help DSE. Yu et al. introduced the transduc-
tive experimental design (TED) method [44] that judi-
ciously sampled representative and hard-to-predict micro-
architecture choices for training the learning models .

Still, the above learning based methods are tightly cou-
pled with the applications that are used to train the model,
which means that the models need to be re-trained for new
applications or when application behavior changes.

Dubach et al. [17] developed an architecture-specific
approach that allows the prediction of any new program
across the entire microarchitecture configuration space.

Chen et al. [13] proposed the ArchRanker framework to
improve the accuracy of learning-based DSE tools by using
a pair-wise performance prediction method and achieving
29.68% to 54.43% fewer incorrect predictions, compared to
a traditional approach [26]. While the use of well-trained
machine learning models could shorten the space search-
ing process, detailed simulation results are still required
for training the machine learning models. Typically, more
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data would result in better models, which also leads to the
demand of faster simulation tools.

With abundant computing resources, parallelized and dis-
tributed DSE may effectively shorten the search time [11,
12, 19, 23]. For example, Calborean et al. proposed a frame-
work [12] that utilizes multi-objective search algorithms to
perform the DSE on multiple computers. Our ADSET [23]
framework leverages the jMetal [18] as the DSE engine
to guide parallel search with multiple system-level simu-
lators, which was able to shorten the DSE time from 128
days (using the cycle-accurate simulator) to 2 days (using
the cycle-approximate simulator).2 In this paper, we further
propose a fine-grain parallel DSE scheme, which uses our
multi-model scheme to take advantage of today’s multicore
computers to obtain multiple results in one simulation run.

3 The Multi-Model and JIT Approach

As shown in Fig. 1a, our original VPA leverages QEMU
to achieve cycle-approximate simulation and analysis by
plugging in external architecture models (hardware compo-
nent simulators) and a virtual performance monitoring unit
(VPMU). To further speed up DSE, we extend VPA to (1)
obtain the results of multiple simulation configurations with
different hardware design parameters and (2) speed up the
simulation of repeated regular patterns.

We have developed three key features in our newly pro-
posed framework, as illustrated in Fig. 1b. The new features
are:

– Packet Wrapper is a module for handling communi-
cations and synchronizations between the instruction
emulation engine in QEMU and the external architec-
tural models (component simulators or simple timing
models) through a pre-defined unified interfaces.

– Multi-Model Ring Buffer (MMRB) is responsible for
configuring component simulators, i.e.Dinero IV cache
simulator, and serves as a scalable, efficient commu-
nication channels for multiple component simulators
to obtain input events from QEMU with reduced data
transfer overheads.

– Just-in-Time (JIT) Model Selection is dedicated for
speeding up the architectural simulation by detecting
repeating patterns and converting them into faster tim-
ing models.

With Packet Wrapper, the user can attach multiple
hardware component simulators with a simple registration
function and selectively route the event packets generated

2In this case study, we explored the cache designs for ARM-based
smartphone systems by considering the execution time, die area and
power consumption.

by the instruction emulation engine of QEMU via the
MMRB. Moreover, one can use multiple hardware models
to simulate processor pipelines, caches, TLB, I/O devices,
etc. in parallel, or to simulate components in different
design parameters. Each simulator receives packets from
MMRB and stores its results in a set of event counters in
the enhanced VPMU’s, which is why multiple simulation
results can be obtained in one run. The JIT model selection
method can be included in some of the external component
simulators, e.g. cache simulation, to simplify the simula-
tion of repeated patterns. The following subsections further
discuss the details for each component we designed for
scalability and efficiency.

3.1 Packet Wrapper

In our previous work, we have instrumented the instruc-
tion emulation engine and virtual devices in the QEMU
to extract events such as memory references, branch refer-
ences, I/O requests, etc. Packet Wrapper further defines two
types of packets, data packet and control packet, to connect
the QEMU and the external component simulators.

– A specific type of data packets is used to transfer the
events required by each component simulator in a pre-
defined format. With a set of predefined data packets,
we can improve the efficiency of data transfer in the
MMRB.

– A predefined set of control packet are used for the VPA
to send commands to the external architecture models
for maintaining, synchronizing, and displaying the state
of the architecture models.

As the simulation starts, Packet Wrapper issues the ini-
tialization packet, i.e. the control packet which passes the
configuration to timing simulators. During the simulation,
it sends hardware events to the component simulators via
various types of data packets. From time to time, barrier
packets and synchronization packets are needed for syn-
chronizing the execution states of the architecture models
to derive or receive cycle counts data in VPMU. When
a simulator receives a dump packet, it displays the sta-
tus/statistics of the simulation on the console to enable
performance analysis and debugging. Notice that we use a
token-based mechanism to prevent multiple simulators from
dumping information to the console at the same time. Thus,
to handle the aforementioned control packets, each simu-
lator needs a Packet Processor to handle the semaphore,
pass the token, and synchronize performance data. We have
provided several templates in our open source release.

An external architecture model often comes with its own
input data format, so the packet processor needs to convert
our predefined data format for the architecture model, which
incurs some overhead. However, Packet Wrapper and the
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predefined packet formats provide a standardized interface
and make it easier for the users to attach existing simula-
tors even without the source codes. Through the ring buffers
described in the next subsection, the packets of events are
broadcasted to all the packet processors attached to Packet
Wrapper with reduced communication overheads.

3.2 Multi-Model Ring Buffer (MMRB)

Our framework uses the shared memory to construct a
Multi-Model Ring Buffer (MMRB) for configuring com-
ponent simulators and broadcasting events to the hardware
component simulators, as illustrated in Fig. 2. The MMRB
is partitioned into following segments:

– The Config segment specifies the configurations for the
component simulators in json-format [9]. For example,
this can be used by the user to configure the size and
associativity for the cache simulator(s). Each compo-
nent simulator is required to find its configuration by
parsing the Config segment.

– The Data segment provides an array of data communi-
cation channels for individual component simulator to
update/report the results of simulation. Through these
channels, VPA stores the performance-related results
in the virtual performance monitoring unit (VPMU)
and use these data to estimate the execution time and
analyze the performance.

– The Token segment is used to serialize the reports of
simulators by having the component simulators dump the
results to the console one by one for debugging purposes.

– The Ring Buffer scheme reduces the communication
overheads and improve the scalability as the number of
component simulators increases. The data packets are
stored in the local buffer within QEMU before push-
ing into the ring buffer in the shared memory. Then

Figure 2 The architecture of Multi-Model Ring Buffer (MMRB).

each component simulator acquires an identical block
of data packets and stores the acquired packets in its
local buffer. The redesign and implementation is due to
the characteristics of our application which requires a
huge bandwidth of broadcasting packets while synchro-
nizing from time to time, but overall concept is the same
as every ring buffer designs.

Note that each component simulator runs as a separate
process to enable the attachment of an existing simulator
without its source code. In addition, we did not use CPU
affinity to bind the process of a component simulator to a
dedicated CPU core because we found it would sometimes
cause slowdown when running on our environment. We use
the Linux shared memory scheme to implement the ring
buffer, which improves the efficiency of broadcasting traced
events to multiple component simulators, but we also need
to pay attention to the cache pollution issues in the buffering
scheme. As illustrated in Fig. 2, QEMU and the component
simulators have their own local buffers, instead of access-
ing the ring buffer directly, a local buffer is created for each
component simulator to improve the scalability for running
multiple configurations/models. Section 4 further explores
the alternative buffering designs and presents experimental
results to show the benefits of our MMRB design.

3.3 Just-In-Time (JIT) Model Selection

As QEMU can execute applications at hundreds of millions
of instructions per second, adding component simulators
to QEMU often slows down the execution speed signifi-
cantly. For example, a typical cache simulator is capable
of consuming 20∼50 millions memory references per sec-
ond in our experiences. Especially for a multicore system,
in addition to simulating the distributed caches, modeling
the cache coherence protocol between the distributed caches
and simulating the shared cache can further slowdown the
execution speed. Thus, we proposed the JIT Model Selection
mechanism to accelerate the cycle-approximate simulation
by switching a timing accurate model to a approximated
model, when the execution speed is favored for performance
estimation.

Figure 3 illustrates the workflow of the JIT model selec-
tion mechanism that is integrated into the dynamic binary
translation (DBT) engine within the QEMU.When the DBT
engine executes a basic block (BB) initially, the JIT model
selection mechanism marks the BB as cold. This is done by
adding a field in the code cache of QEMU. When a BB is
executed the second time within a specific period of time
(e.g. 0.5K instructions), the BB is marked as hot and trig-
gers the selection of arithmetic timing model over the cache
simulation to speed up the execution. For example, BB 1
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Figure 3 Ademonstration of working flow of proposed JITmodel selec-
tion. In a period of time, repeatedly executed basic blocks are hot BBs.

and BB 3 are hot BB’s in the figure, and the other BB’s are
cold. A BB becomes cold if it has not been executed within
another period.

To be more specific, the approximated model we demon-
strated in this paper is a simple mathematical model of L1
cache models. The time period is set according to the size
of the instruction cache, thus, for a hot BB, it is obvious that
the instructions in the BB should remain in the instruction
cache. In this case, we can naively assume the instruction
fetches are all hits and bypass the simulation of the instruc-
tion cache. For the data memory accesses generated by a hot
BB, we implement a high-speed data access tracking model
which detects if any data memory access is hit within the
same cache block as its previous four memory accesses. If
a data memory access is not hit, it is marked as miss tem-
porarily and is sent to the cache simulator to verify if it is
actually a cache miss. Since only a small portion of memory
accesses would require such a verification step in a typi-
cal memory access pattern, it has a minor impact on the
simulation speed.

4 Evaluation

Designing an efficient implementation of the ring buffer for
modern processors is not a trivial task due to the complex
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Figure 4 Comparison of running multiple VMs simultaneously (with
the proposed ring buffer) and VPA (with direct pass ring buffer) and
the proposed MMRB.

hardware micro-architectures. In our previous VPA frame-
work, as the number of simulators increased from one to
eight, the simulation speed dropped from 18.5 MIPS to 6.1
MIPS, which was much slower than logging down traces
and running it on cache simulator separately. Even with the
proposed ring buffer implementation, running eight VMs
concurrently with a single cache model in each VM, marked
as distributed simulation in Fig. 4, was still 1.7x slower than
running with our MMRB. The best way of running multiple
configurations and component simulators is running multi-
ple component simulators concurrently in parallel with the
communication channel designed for broadcasting as we
did in the proposed MMRB. With profiling information, the
implementation details and benefits would be introduced in
the later subsections.

The following experiments were mostly done on Intel i7-
4790k CPU which has 32 KB L1 data cache and 256 KB
L2 cache equipped with 32GB DDR3 Memory running on
Linux kernel version 4.4, except Fig. 5 was done on AMD
Opteron 6174 server platform which has 64 KB L1 data
cache and 512 KB L2 cache. We used Buildroot [4] to com-
pile the root file system for both real and simulated systems,
in order to control the software running on the systems and
size of the system image. As for the cache configuration,
we repeated the same configuration when running multi-
ple cache simulators in parallel. Finally, the compiler of gcc
was version 6.3.1 and icc was 2016.3.210 and the compiler
options were the default configurations of QEMU which
used -O2. In the following experiments, the size of local
buffer was 3 KB (256 entries) and the size of ring buffer was
64 MB for MMRB. The benchmark suit was MiBench [21],
a representative embedded benchmark suit, and we further
used matrix multiply to demonstrate the memory intensive
signal processing applications. For a fare comparison, we
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used MIPS as the basic unit instead of execution time since
the emulation speed varies with application behaviors.

4.1 The Bottleneck Shifts

In most timing approximate simulators, communication
channel is not a critical issue since the bottleneck usually
lies on timing models and functional simulations. However,
whenwe looked into the overhead of VPA, we found that VPA
spends 91% of time on communicating with cache simulator
when we force all the timing models skip every traces and
do nothing. This attracted our interests to further diagnose
the cause and optimize it, in order to enable the fast perfor-
mance evaluation for embedded multi-core processors.

In our case study of collecting memory access traces of
a matrix multiply program, 0.22 billion of memory access
traces were generated which was around 2.3GB/s of mem-
ory accesses on sending the traces. We implemented the
proposed MMRB design with its Direct Pass implementa-
tion of ring buffer in our VPA design. Marked as VPA in
Fig. 4, the simulation speed was 18.5 MIPS which is faster
than logging down traces and running cache simulation sep-
arately. However, running eight forked Dinero simulators
in parallel was around 6.12 MIPS which was a little bit
slower than logging traces and simulates it concurrently. We
look into the performance of the naive approach and found
that the communications between QEMU and Dinero was
the bottleneck and had a really high CPI of 3.58, as listed

in Table 1. When collecting the performance counters, the
CPI of main thread only counted functions of our frame-
work which excludes other QEMU functions in order to
understand the effects of implementations.

4.1.1 Direct Pass

The first naive design of broadcasting cache references is
direct pass which puts data into ring buffer directly and
wakes Dinero simulator when the amount of data exceeds
a threshold. On the receiver side, Dinero cache simulator
gets data as long as the buffer is not empty. If the buffer
is empty, the receiver will then sleep until QEMU sends
a signal waking up this process. The direct pass design
was very simple in code and minimizes the number of sig-
nals, however, the speed of direct pass dropped to a third
when simulating 8 Dinero simulators which shows the bad
scalability of this naive approach. The first possible bottle-
neck was the overhead of system calls caused by semaphore
which wakes the child Dinero processes up. But, in the mod-
ern Linux versions, semaphores are built upon futex (fast
user-level mutex) which does not involve a system call when
the semaphore number is bigger than 1. With the design of
futex, we noticed the slowdown was not from involving sys-
tem call frequently. After profiling the program, we found a
high CPI resulting in sending/receiving data to/from the ring
buffer in the direct pass implementation. The cause of CPI
might be the inefficient use of shared memory and cache

Table 1 The counter
information reported from Intel
Vtune of running matrix with
eight cache simulators.

Cycles per Instruction

Implementation Main Thread Cache Thread Retired Instructions MIPS

Direct 3.583 1.516 44.5 G 6.13

Sectioning 2.448 1.520 32.3 G 7.67

Buffering 2.691 0.932 32.7 G 10.54

Buffering + memcpy 0.582 0.839 31.6 G 18.35

icc on VPMU and DineroIV 0.619 0.626 31.7 G 26.90
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Figure 6 MIPS trend of different implementation of ring buffer mechanism on i7-4790k. We run 1,2,4,6,8 cache configurations concurrently in
parallel for each benchmark.

coherence, but it was not clear from the profiling results we
had. In the following sections, we will introduce different
implementations to understand the cause of bottleneck and
improve the performance of MMRB.

4.1.2 Sectioning

In order to minimize the CPI, we partitioned the ring buffer
into several sections where the size of each section was 12
KB, which was about a third of L1 data cache size. By
having an ownership concept on each section of the ring
buffer, this approach avoids the cache invalidation, which is
also known as false sharing, when sender and receiver are
accessing concurrently. As listed in Table 1, the profiling
counters showed that this implementation improved the CPI
of main thread and the number of retired instructions. The
design of sectioning, however, had only slightly improve-
ment on the modern desktop CPU as shown in the Fig. 6.
Noting this problem, we analyzed the utilization of buffer
sections and found that the speed of generating memory
accesses was similar to the speed of consuming the traces
in average. Normally, the meaning behind this phenomenon
is that cache timing simulation bounds the main threads,
but we noticed that the CPI on both main thread and cache
simulation thread was way too high.

4.1.3 Local Buffer with Memcpy

According to the result of profiling information, the high
CPI was still an unsolved problem even sectioning helped
false-sharing between the sender and receiver. Tracing the
codes, we noticed another possible problem on the con-
tention of shared memory which might cause low cache

utilization in our design. Though using sectioning to avoid
invalidation was a proper solution, the performance of pass-
ing data was still suffered from cache/memory bandwidth
when using shared memory. To find more evidences of our
thought, we used a local buffer to utilize L1 cache resource
before sending data onto shared memory which might be
the bottleneck of passing data. The local buffer was a small
buffer with 3 KB in size, trying to hold data nearby proces-
sor cores and avoid bus contention when accessing a huge
amount of data. In addition, the concept of sectioning was
embedded in the design of local buffer since the data were
copied chunk by chunk, also called bulk-transfer. Imple-
menting local buffer on both sender and receiver side, we
found a significant improvement of speed reaching 10.54
MIPS when running eight configurations simultaneously,
shown in Table 1. As listed in Table 1, the CPI on cache
thread had a significant improvement, but the main thread
still remained high CPI. Due to the execution of functional
simulation, the local buffer seems to not fit in L1 cache
in main thread well without write-backs. To conquer the
problem of copying data by CPU cores, we used the highly
optimized memcpy from the standard C library to improve
the copy process by utilizing the hardware resources as
well as vector operations. Resulting in both execution time
and CPI, using local buffer with memcpy further boosted
the performance to 18.35 MIPS which was 3x faster than
direct pass approach, shown in Table 1. From the perfor-
mance counter information, the CPI dropped to 0.58 and
0.84 for main thread and cache thread, respectively. The
values of CPI were already promising and acceptable on
a modern computers, but we still found some other issues
from the profiling information, which would be introduced
in Section 4.1.4.

Table 2 The profiling
information of CPU related
bottlenecks reported from Intel
Vtune on buffer+memcpy
implementation.

Compiler Loads Blocked by Store Forwarding 4K Aliasing

Default gcc 0.225 0.207

icc on VPMU and DineroIV 0.068 0.017

The value is the number of percentages CPU stalls from the cause.
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Table 3 The error rate of
using JIT comparing to original
counter values, where negative
value means under-estimated.

Instruction cache counters Data cache counters

Benchmarks Accesses Read Misses Accesses Read Misses Write Misses

basicmath 0.01% −1.76% 0.00% 0.50% −0.12%

bitcnts 0.00% 2.16% 0.03% 1.25% 2.20%

dijkstra 0.00% 1.03% 0.00% 0.00% −2.15%

fft 0.00% 0.36% 0.01% 1.14% 0.03%

patricia 0.00% −0.71% 0.00% 0.25% 0.02%

qsort 0.00% 0.13% 0.01% −0.07% −0.10%

sha −0.01% 3.58% 0.00% 0.05% 0.32%

search 0.08% 9.10% 0.47% 2.21% 0.64%

matrix 0.00% −1.25% 0.00% −0.06% 0.01%

4.1.4 The Last Mile of Performance

With the best implementation of ring buffer we proposed,
the profiler still reported a bottleneck of load blocked
by store forwarding and 4K aliasing on cache simulation
thread. Coincidentally, the size of local buffer was 3KB,
which is not 4K but might be the cause of 4K aliasing.

Here is the explanation of these two bottlenecks extracted
from Intel Developer Zone [1, 3]:

1. Load Blocked by Store Forwarding: A store forward
block describes a situation when a recent store is unable
to forward to a load. If a load follows a store and
reloads data that the store has written to memory, Intel
microarchitectures can in many cases forward the data
directly from the store to the load. The penalty for
store-forwarding is 10-15 cycles [1].

2. 4K Aliasing: When an earlier (in program order) load
issued after a later (in program order) store, a potential
WAR (write-after-read) hazard exists. To detect such
hazards, the memory order buffer (MOB) compares the
low-order 12 bits of the load and store in every potential
WARhazard. If theymatch, the load is reissued, penalizing
performance for about 5 cycles in common cases [2].

Since the problem of load blocked by store forward-
ing and 4K aliasing were not from our implementation of
MMRB, we introduced the optimization from compiler. By
using the Intel C Compiler, icc, compiling the code of our
framework and Dinero IV cache simulator, the proposed
MMRB gained another 1.5x of speed up when simulating 8
cache configurations concurrently in parallel. Furthermore,
incredibly, JIT model selection reached 104 MIPS of simu-
lation speed when simulating one cache model. The speedup
was from having a faster cache timing simulation with bet-
ter compiler on Intel platform. As shown in Table 2, both
bottlenecks got significant improvements with icc compiler
optimizations. This showed that timing simulation was still
a big bottleneck and needs to be take care of.

4.2 JIT Model-Selection

As shown in Fig. 6 and Table 3, the speedup on a memory
intensive program,matrix, achieved 2.6 times faster than the
MMRB with 0.06% relative error on data cache and 1.25%
relative error on instruction cache. Diving into details, as the
results showed in Fig. 7, the ratio of hot BB were 94% and
52% for instruction and data cache, respectively. In other
words, 48% of memory accesses was fed into Dinero IV
cache simulator for simulating data cache that might cause
a miss. Moreover, sha demonstrated an extreme example
which only 17.84% of instruction traces and 9.29% of data
traces were fed into component simulators. Resulting in
super high speed-up, the simulation speed of simulating sin-
gle cache parameter reached 162.6 MIPS while the limit of
pure QEMU was 600MIPS on our intel-i7 platform.

From the results of sha and matrix, we can tell that the
speedup of JIT was mostly from accelerating data cache
simulation since the access counts and hot BB ratios of
instruction cache were similar. In other word, generally, if
the application has heavy data accesses, it would be most
likely benefit from the approximated model of JIT. Even if
an application has low data accesses, like bitcnts, the JIT can
still help when the code are regularly executed in a dense
loop, which signal processing applications usually have.

As shown in Table 3, all of the test cases have negligi-
ble errors on each counter value. Since the cache state is
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Figure 7 Ratio of cold BB and hot BB of each application. Generally,
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Figure 8 The number of loads/stores on instruction cache and data cache.

not always clean in the real system, the error rate of our
results is similar to the error rate of a real system in most
cases. In the search application case, the main cause of 9.1%
error of instruction cache misses was the size of executed
instructions and accessed data which were only about 1 mil-
lion accesses, as shown in Fig. 8. Due to some randomness
of cache pollution and OSs, the range of instruction cache
misses actually varied a lot in our experiments. In other
word, 9.1% error rate was actually within the variance and
negligible in common scenarios.

With the proposed MMRB and its optimized ring buffer
implementation, the emulation speed of simulating eight
cache parameters for matrix multiply was 18.35 MIPS
which was 3 times faster than using the design of previous
VPA. Combined with JIT Model-Selection, which proveded
another 2.6x of speedup, the performance of simulating
eight cache parameters was boosted to 7.8x.

5 Conclusion

Targeting embedded system and application designer in
early stage development, we proposed a framework to accel-
erate the process of timing simulation for both application
profiling and design space exploration. Providing an elastic
framework for customized add-ons with its timing model,
we designed two main algorithms to accelerate the simu-
lation speed while keeping the accuracy. Firstly, scalable
and efficient ring buffer enables exploring multiple design
parameters concurrently with memory efficient ring buffer
design which gives 3 times of speedup. In addition, with the
proposed efficient ring buffer design, our framework was
1.7x faster than our previous work VPA when running sin-
gle cache simulation and 3x faster when running eight cache
models. Secondly, in addition to improving the speed, we
designed a JIT model selection algorithm to further shorten
the timing simulation when data/instruction accesses are
regular with an approximated model. Taking the concept of
JIT compilation, hot/cold basic blocks are adopted into the
design to increase the accuracy on hot codes for best per-
formance gain with minimum loss of micro architectural
states. With both multi-model and JIT model selection, the

proposed framework reaches 7.8x of speedup and provides a
fairly fast simulation for DSE tools comparing to using our
previous VPA framework. We believe the proposed frame-
work would be very useful on design space exploration as
well as timing simulation for application developers.
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