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Abstract In this paper, we first present an enhancement of
the well-known Karatsuba 2-way and 3-way algorithms for
characteristic three fields, denoted by F3n where n ≥ 1.
We then derive a 3-way polynomial multiplication algorithm
with five 1/3 sized multiplications that use interpolation
in F9. Following the computation of the arithmetic and
delay complexity of the proposed algorithm, we provide
the results of our hardware implementation of polynomial
multiplications over F3 and F9. The final proposal is a
new 3-way polynomial multiplication algorithm over F3 that
uses three polynomial multiplications of 1/3 of the original
size over F3 and one polynomial multiplication of 1/3 of the
original size over F9. We show that this algorithm represents
about 15% reduction of the complexity over previous algo-
rithms for the polynomial multiplications whose sizes are of
practical interest.
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1 Introduction

Multiplication in characteristic three fields, denoted by F3n ,
where n ≥ 1, is employed in curve-based cryptography. The
use of these fields in elliptic curve cryptography has been
discussed in [11, 14, 16, 17, 19, 21]. Examples of work
related to efficient arithmetic in characteristic three fields
can be found in [1–3, 20]. A common method for multipli-
cation in F3n is to use polynomial basis representation, in
which the elements of F3n are represented by polynomials
of degree up to (n − 1) over F3, the finite field with three
elements. To perform multiplication in F3n , the polynomials
are first multiplied, and the result is then reduced modulo
an irreducible polynomial of degree n over F3. The arith-
metic cost of the reduction step is linear in input size; on
the other hand, the polynomial multiplication step requires
a sub-quadratic complexity. The multiplication step is thus
more costly than the reduction step. As a result, reducing the
cost of polynomial multiplication over F3 directly affects
the cost of multiplication in F3n .

Our Contributions For practical cryptographic applica-
tions, polynomial multiplication schemes with low arith-
metic complexity are essentially Karatsuba-like algorithms.
For example, recursive uses of 2-way and 3-way algorithms
have a total arithmetic complexity of 7n1.58 − 8n + 2 and
6.8n1.63−8n+2.2, respectively. In this paper, after introduc-
ing an improved version of the 2-way and 3-way algorithms,
we propose a 3-way polynomial multiplication algorithm
with five multiplications using interpolation in F9. In con-
trast to the formula presented in [13], we show that the
recursive use of the algorithm yields an arithmetic com-
plexity of 15n1.46 − 4.85n log3 n − 14n. In addition, the
time delay complexity that are useful when the algorithm
is mapped on to bit parallel hardware are also derived. The
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final proposal is a new 3-way algorithm for multiplication
of polynomials over F3 which uses three multiplications
of polynomials of 1/3 of the input size over F3 and one
multiplication of polynomial of 1/3 of the input size over
F9 with a total complexity less than 15n1.46 which is, to
our knowledge, superior arithmetic complexity than that
available with previously known algorithms.

Organization of the Paper The remainder of the paper
is organized as follows. Notations and preliminaries used
in the rest of the paper are provided in Section 2. Rele-
vant known algorithms along with our suggestions for their
improvements are presented in Section 3. The next section
introduces the proposed 3-way algorithm with five 1/3
sized polynomial multiplications over F3 and F9. Section 5
reports the results of our hardware implementation. Further
improvements are discussed in Section 6 and concluding
remarks are made in the final section.

2 Notations and Preliminaries

This section explains the notations used in the remainder of
the paper and describes a few basic algorithms. Unless oth-
erwise stated, the fields employed in the work are assumed
to be of characteristic three. The following notations are
used:

• M3,⊕(n): number of F3 additions (or subtractions)
required for the multiplication of two degree n − 1
polynomials over F3.

• M3,⊗(n): number of F3 multiplications required for the
multiplication of two degree n−1 polynomials over F3.

• M3(n): number of total F3 operations required for the
multiplication of two degree n−1 polynomials over F3,
i.e., M3(n) = M3,⊕(n) + M3,⊗(n).

• M9,⊕(n): number of F3 additions (or subtractions)
required for the multiplication of two degree n − 1
polynomials over F9.

• M9,⊗(n): number of F3 multiplications required for the
multiplication of two degree n−1 polynomials over F9.

• M9(n): number of total F3 operations required for the
multiplication of two degree n−1 polynomials over F9,
i.e., M9(n) = M9,⊕(n) + M9,⊗(n).

• D3(n): delay complexity associated with the multipli-
cation of two degree n − 1 polynomials over F3.

• D9(n): delay complexity associated with the multipli-
cation of two degree n − 1 polynomials over F9.

• D⊕: latency of an F3 addition (or subtraction).
• D⊗: latency of an F3 multiplication.

We represent the elements of F3n as polynomials over
F3 with a degree less than n. Moreover, we construct F9 ∼=
F3[X]/(X2+1) and assume that ω2+1 = 0, where ω ∈ F9.

A further assumption is that multiplication by −1 of a
polynomial is cost free and that addition and subtraction
have identical complexity. It should also be noted that the
cost of the multiplication in F9 can be assumed to be equiv-
alent to four multiplications and two additions in F3, based
on the following formula:

(a + bω)(c + dω) = ac − bd + (bc + ad)ω.

In addition, no cost is incurred for the multiplication of an
element in F9 by ω since (a + bω)ω = −b + aω.

Throughout the paper we make use of the solution to the
following recurrence equation.

Lemma 1 Let a, b, � be positive integers, n = b�, a �= 1,
and

M(n) = aM(n/b) + cn + d + f nδ, M(1) = e

(i) If a �= b and f = 0 then the solution of M(n) is

M(n) =
(

e + bc

a − b
+ d

a − 1

)
nlogb a− bc

a − b
n+ d

a − 1
.

(ii) If a = b then the solution of M(n) is

M(n) = f bδ

bδ − a
nδ +

(
e − f bδ

bδ − a
+ d

a − 1

)
n+cn logb n− d

a − 1
.

(iii) If a �= b then the solution of M(n) is

M(n) = f bδ

bδ − a
nδ +

(
e + bc

a − b
− f bδ

bδ − a
+ d

a − 1

)
nlogb a

−
(

bc

a − b

)
n − d

a − 1
.

Proof Proofs of (i) and (ii) are in [10] and [7]. For (iii), we
substitute the value of M(n/b) into M(n). Then, we have

M(n) = a(aM(n/b2)+cn/b+d+f nδ/bδ)+cn+d+f nδ.

This equation yields

M(n) = a2M(n/b2) + (cn + acn/b) + (d + ad) + (f nδ + af nδ/bδ).

When we substitute the value of M(n/b2) into the last
equation and continue this process, we obtain

M(n) = a�M(1) + cn(1 + a/b + . . . + (a/b)�−1)

+d(1 + a + . . . + a�−1) + f nδ(1 + (a/bδ) + . . .

+(a/bδ)�−1).

After computing the expressions in the parenthesis and
using a� = alogb n = nlogb a , we get

M(n) = f bδ

bδ − a
nδ+

(
e+ bc

a − b
− f bδ

bδ − a
+ d

a − 1

)
nlogb a

−
(

bc

a − b

)
n − d

a − 1
.
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3 Known Algorithms and their Improvements

This section presents Karatsuba 2-way and 3-way algo-
rithms for characteristic three fields. Following the work
in [4] and [23] for improving the corresponding algo-
rithms in characteristic two, we introduce improvements for
characteristic three.

Remark 1 To apply recursive 2-way and 3-way algorithms,
the polynomials are split in two and three parts, respectively.
If n is not divisible by two or three, we pad the polynomial
with one or two zeros so that the sizes become divisible by
two or three. This adjustment has a negligible effect on the
complexity.

3.1 Karatsuba 2-Way Algorithm

Let A = ∑n−1
i=0 aiX

i and B = ∑n−1
i=0 biX

i . We can divide A

and B into two parts as follows: A(X) = A0 + A1X
n/2 and

B(X) = B0 + B1X
n/2 where Ai and Bi are polynomials of

degree less than n/2. Let C = ∑2
i=0 CiX

ni/2 be the product
of A and B. The Karatsuba 2-way algorithm [12, 15] is the
following:

{
P0 = A0B0, P1 = (A0 + A1)(B0 + B1), P2 = A1B1,

C = P0 + (P1 − P0 − P2)X
n/2 + P2X

n.

(1)

The algorithm given in Eq. 1 requires three multiplications
of two degree n/2 − 1 polynomials plus 4n − 4 additions.
On the other hand, the delay complexity of the algorithm is
D3(n/2) + 3D⊕. The recursive use of this algorithm is thus
associated with the following complexities:
⎧⎪⎪⎨
⎪⎪⎩

M3,⊗(n) ≤ 3M3,⊗(n/2), M3,⊗(1) = 1,
M3,⊕(n) ≤ 3M3,⊕(n/2) + 4n − 4, M3,⊕(1) = 0,
M3(n) ≤ 3M3(n/2) + 4n − 4, M3(1) = 1,
D3(n) ≤ D3(n/2) + 3D⊕, D3(1) = D⊗.

(2)

Using Lemma 1, we obtain the following bounds:
⎧⎪⎪⎨
⎪⎪⎩

M3,⊗(n) ≤ nlog2 3,

M3,⊕(n) ≤ 6nlog2 3 − 8n + 2,
M3(n) ≤ 7nlog2 3 − 8n + 2,
D3(n) ≤ 3(log2 n)D⊕ + D⊗.

(3)

3.2 Improved Karatsuba 2-Way Algorithm

Using the algorithm given in [4] enables us to reconstruct
part of the algorithm given in Eq. 1 as follows:

{
P0 = A0B0, P1 = (A0 + A1)(B0 + B1), P2 = A2B2,

C = (Xn/2 − 1)(Xn/2P2 − P0) + P1X
n/2.

(4)

The algorithm given in Eq. 4 requires three multiplications
of two degree n/2 − 1 polynomials plus 7n/2 − 3 addi-
tions. The delay complexity of the algorithm is D3(n/2) +
3D⊕. Therefore, using this algorithm recursively yields the
following complexity:⎧⎪⎪⎨
⎪⎪⎩

M3,⊗(n) ≤ 3M3,⊗(n/2), M3,⊗(1) = 1,
M3,⊕(n) ≤ 3M3,⊕(n/2) + 7n/2 − 3, M3,⊕(1) = 0,
M3(n) ≤ 3M3(n/2) + 7n/2 − 3, M3(n) = 1,
D3(n) ≤ D3(n/2) + 3D⊕, D3(1) = D⊗.

(5)

Using Lemma 1 gives the following bounds:⎧⎪⎪⎨
⎪⎪⎩

M3,⊗(n) ≤ nlog2 3,

M3,⊕(n) ≤ 5.5nlog2 3 − 7n + 1.5,
M3(n) ≤ 6.5nlog2 3 − 7n + 1.5,
D3(n) ≤ 3(log2 n)D⊕ + D⊗.

(6)

Compared to Eq. 3, using Eq. 6 results in about 7% reduc-
tion in the number of arithmetic operations. The delay
complexities of Eqs. 3 and 6 are the same.

3.3 Karatsuba Like 3-Way Algorithm

As before, let A = ∑n−1
i=0 aiX

i and B = ∑n−1
i=0 biX

i .
This time we divide A and B into three parts as follows:
A(X) = A0 + A1X

n/3 + A2X
2n/3 and B(X) = B0 +

B1X
n/3 + B2X

2n/3 where Ai and Bi are polynomials of
degree less than n/3. To compute the product C = AB,
a Karatsuba-like 3-way algorithm, which can be obtained
using the Chinese remainder theorem [22] and from [18],
can be expressed as follows:

⎧⎪⎨
⎪⎩

P0 = A0B0, P1=A1B1, P2=A2B2, P3=(A0 +A1)(B0 + B1),
P4 = (A0 + A2)(B0 + B2), P5 = (A1 + A2)(B1 + B2).

C = P0 + (P3 − P0 − P1)X
n/3 + (P4 + P1 − P0 − P2)X

2n/3+
(P5 − P1 − P2)X

3n/3 + P2X
4n/3.

(7)

The algorithm given in Eq. 7 requires six multiplications
of two degree n/3 − 1 polynomials plus 2n additions for
Pi’s, 14n/3 − 7 additions for the coefficients of C and
4n/3−4 additions for overlaps. On the other hand, the delay
complexity of the algorithm is D3(n/3) + 4D⊕. The recur-
sive use of this algorithm is therefore associated with the
following complexity:⎧⎪⎪⎨
⎪⎪⎩

M3,⊗(n) ≤ 6M3,⊗(n/3), M3,⊗(1) = 1,
M3,⊕(n) ≤ 6M3,⊕(n/3) + 8n − 11, M3,⊕(1) = 0,
M3(n) ≤ 6M3(n/3) + 8n − 11, M3(1) = 1,
D3(n) ≤ D3(n/3) + 4D⊕, D3(1) = D⊗.

(8)

Applying Lemma 1 gives the following bounds:⎧⎪⎪⎨
⎪⎪⎩

M3,⊗(n) ≤ nlog3 6,

M3,⊕(n) ≤ 5.8nlog3 6 − 8n + 2.2,
M3(n) ≤ 6.8nlog3 6 − 8n + 2.2,
D3(n) ≤ 4(log3)nD⊕ + D⊗.

(9)
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3.4 Improved Karatsuba Like 3-Way Algorithm

This section presents our redesign of the reconstruction part
of the algorithm in Eq. 7 with the use of a technique similar
to that reported in [6, 23]. It should be noted that the degree
of Pi products for 0 ≤ i ≤ 5 is 2n/3− 2. We divide each Pi

into two parts as Pi = PiL +xn/3PiH where PiL is a degree
n/3−1 polynomial and PiH is a degree n/3−2 polynomial.
Substituting those representations of the products into the
reconstruction part of Eq. 7 gives the following:

C = P0L + Xn/3(P0H − P0L − P1L + P3L) + X2n/3

×(−P0L − P0H + P1L − P1H − P2L + P3H + P4L)

+X3n/3(−P0H + P1H − P2L − P2H + P4H + P5L − P1L)

+X4n/3(−P1H + P2L − P2H + P5H ) + X5n/3P2H . (10)

It should be noted that Eq. 10 contains no overlaps so that
we compute only the cost of the coefficients. The algorithm
can be improved through the observation of some common
terms R1 = P0H −P1L and R2 = P1H −P2L in Eq. 10. We
then have,

C = P0L + Xn/3(R1 − P0L + P3L) + X2n/3

×(−R1 − P0L − P1H − P2L + P3H + P4L)

+X3n/3(R2 − P0H − P1L − P2H + P4H + P5L)

+X4n/3(−R2 − P2H + P5H ) + X5n/3P2H . (11)

The number of additions required in Eq. 11 is computed as
follows: Computing (A0+A1), (B0+B1), (A0+A2), (B0+
B2), (A1 + A2) and (B1 + B2) requires 2n additions. Com-
puting R1 and R2 requires n/3 − 1 additions each. On the
other hand, we need 2n/3 additions for (R1 − P0L + P3L),
5n/3−2 additions for−R1−P0L−P1H −P2L+P3H +P4L,
5n/3−3 additions for R2 −P0H −P1L −P2H +P4H +P5L

and 2n/3 − 2 additions for −R2 − P2H + P5H . The delay
complexity of the algorithm is the same as that of the pre-
vious one. The recursive use of this algorithm results in the
following complexity:
⎧⎪⎪⎨
⎪⎪⎩

M3,⊗(n) ≤ 6M3,⊗(n/3), M3,⊗ = 1,
M3,⊕(n) ≤ 6M3,⊕(n/3) + 22n/3 − 9, M3,⊕(1) = 0,
M3(n) ≤ 6M3(n/3) + 22n/3 − 9, M3(n) = 1,
D3(n) ≤ D3(n/3) + 4D⊕, D3(1) = D⊗.

(12)

Applying Lemma 1 gives the following solutions:⎧⎪⎪⎨
⎪⎪⎩

M3,⊗(n) ≤ nlog3 6,

M3,⊕(n) ≤ 5.53nlog3 6 − 7.33n + 1.8,
M3(n) ≤ 6.53nlog3 6 − 7.33n + 1.8,
D3(n) ≤ 4(log3 n)D⊕ + D⊗.

(13)

The results in Eq. 13 represents a reduction of the complex-
ity of Eq. 9 by approximately 4%. The delay complexities
are the same.

4 Proposed 3-Way Algorithm with Five
Multiplications

In this section, we introduce a 3-way algorithm for multi-
plying polynomials of degree n − 1 over F3 with five mul-
tiplications using interpolation in F9. Let A = ∑n−1

i=0 aiX
i

and B = ∑n−1
i=0 biX

i . We can divide A and B into three
parts as follows: A(X) = A0 + A1X

n/3 + A2X
2n/3 and

B(X) = B0+B1X
n/3+B2X

2n/3 where Ai and Bi are poly-
nomials of degree less than n/3. Let C = ∑4

i=0 CiX
in/3 be

the product of A and B. Recall that F9 = F3[X]/(X2 + 1)
and ω is a root of X2 + 1 = 0 in F9.

To obtain an algorithm for the product C = AB with
five multiplications, we use the interpolation method which
yields Toom-Cook like formulas [5, 7–9, 13, 22]. Since F3

has insufficient points for the interpolation method, we use
an element from F9, i.e., we use the points 0, 1, 2, ∞ and ω

as evaluation points. Evaluation of AB = C at those points
then gives us the following system of linear equations in F9:

Evaluation at X = 0 =⇒ P0 = A0B0 = C0

Evaluation at X = 1 =⇒ P1 = (A0 + A1 + A2)

×(B0 + B1 + B2) = C0 + C1 + · · · + C4

Evaluation at X = −1 =⇒ P2 = (A0 − A1 + A2)

×(B0 − B1 + B2) = C0 − C1 + · · · + C4

Evaluation at X = ω =⇒ P3 = (A0 + A1ω − A2)

×(B0 + B1ω − B2) = C0 + C1ω − · · · + C4

Evaluation at X = ∞ =⇒ P4 = A2B2 = C4.

Solving this system of linear equations yields the following
algorithm for computing the product C = AB:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C0 = P0,

C1 = (P1 − P2) − (−P0 + P1 + P2 − P3 − P4)ω,

C2 = −(P0 + P1 + P2 + P4),

C3 = (P1 − P2) + (−P0 + P1 + P2 − P3 − P4)ω,

C4 = P4.

(14)

We now compute the cost of the recursive use of this
algorithm. Assume that A and B are degree n−1 polynomi-
als. A0, A1, A2, B0, B1 and B2 are therefore degree (n/3 −
1) polynomials. The cost associated with the operations are
listed in Table 1.

Remark 2 For the F3 computations indicated in Table 1, the
cost of both U4 and U5 is zero since these are related to the
ω-free part of the results .

To compute the delay complexity for the multiplication
in F9[X], we have drawn the multi-evaluation and recon-
struction data flow shown in Fig. 1. As can be seen from
the figure, the critical path for the evaluation requires two
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Table 1 Cost of multi-evaluation and reconstruction for the new three-way split formulas.

Computations Cost in F3 for Cost in F3 for
multiplication in F9[X] multiplication in F3[X]

R1 = A0 + A2, R′
1 = B0 + B2 4n/3 2n/3

R2 = R1 + A1, R′
2 = R′

1 + B1 4n/3 2n/3
R3 = R1 − A1, R′

3 = R′
1 − B1 4n/3 2n/3

R4 = ωA1, R′
4 = ωB1 0 0

R5 = A0 − A2, R′
5 = B0 − B2 4n/3 2n/3

R6 = R4 + R5, R′
6 = R′

4 + R′
5 4n/3 0

P0 = A0B0 M9(n/3) M3(n/3)
P1 = R2R

′
2 M9(n/3) M3(n/3)

P2 = R3R
′
3 M9(n/3) M3(n/3)

P3 = R6R
′
6 M9(n/3) M9(n/3)

P4 = A2B2 M9(n/3) M3(n/3)
U1 = P1 − P2 4n/3 − 2 2n/3 − 1
U2 = P1 + P2 4n/3 − 2 2n/3 − 1
U3 = P0 + P4 4n/3 − 2 2n/3 − 1
C2 = −(U2 + U3) 4n/3 − 2 2n/3 − 1
U4 = U2 − U3 4n/3 − 2 0
U5 = U4 − P3 4n/3 − 2 0
U6 = ωU5 0 0
C3 = U1 + U6 4n/3 − 2 2n/3 − 1
C1 = U1 − U6 4n/3 − 2 2n/3 − 1
C = P0 + C1X

n/3 + C2X
2n/3 + C3X

3n/3 + C4X
4n/3 8n/3 − 8 4n/3 − 4

Total 5M9(n/3) + 60n/3 − 24 4M3(n/3) + M9(n/3) + 24n/3 − 10

additions. It begins at A0 and ends at R2. On the other hand,
the critical path for the reconstruction needs four additions
that starts from P1 and continues through U2, U4, and U5,
ending at C1. It should be noted that multiplication by ω is
cost free and not counted in the complexity analysis. The
last consideration is the requirement for one addition in the
final overlap, so we obtain the complexity in Eq. 15.

⎧⎪⎪⎨
⎪⎪⎩

M9,⊗(n) ≤ 5M9,⊗(n/3), M9,⊗(1) = 4,
M9,⊕(n) ≤ 5M9,⊕(n/3) + 20n − 24, M9,⊕(1) = 2,
M9(n) ≤ 5M9(n/3) + 20n − 24, M9(1) = 6,
D9(n) ≤ D9(n/3) + 7D⊕, D9(1) = D⊕ + D⊗.

(15)

Applying Lemma 1 leads to these bounds:
⎧⎪⎪⎨
⎪⎪⎩

M9,⊗(n) ≤ 4nlog3 5,
M9,⊕(n) ≤ 26nlog3 5 − 30n + 6,
M9(n) ≤ 30nlog3 5 − 30n + 6,
D9(n) ≤ (7 log3 n + 1)D⊕ + D⊗.

(16)

We now obtain the following complexity for M3(n) by
substituting the result from Eq. 15 into M3(n) and applying
Lemma 1:

⎧⎪⎨
⎪⎩

M3,⊗(n) ≤ 4M⊗(n/3) + M9,⊗(n/3), M3,⊗(1) = 1,
M3,⊕(n) ≤ 4M3,⊕(n/3) + M9,⊕(n/3) + 8n − 10, M3,⊕(1) = 0,
M3(n) ≤ 4M3(n/3) + M9(n/3) + 8n − 10, M3(1) = 6,
D3(n) ≤ D9(n/3) + 7D⊕.

(17)

Figure 1 Multi-evaluation (left)
and reconstruction (right) data
flow for multiplication in F9[X].
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⎧⎪⎪⎨
⎪⎪⎩

M3,⊗(n) ≤ 4nlog3 5 − 3nlog3 4,
M3,⊕(n) ≤ 26nlog3 5 − 33.33nlog3 4 + 6n + 1.33,
M3(n) ≤ 30nlog3 5 − 36.33nlog3 4 + 6n + 1.33,
D3(n) ≤ (7 log3 n + 1)D⊕ + D⊗, D3(1) = D⊗.

(18)

When we compare the total number of arithmetic operations
in Eq. 18 with that in Eq. 13, which is the best known 3-
way algorithm, we see that the algorithm presented in this
section becomes cost effective after the size of polynomials
is more than 729. The percentage of cost reduction increases
significantly when the polynomial size increases. For exam-
ple, the reduction is about 4% for n = 37, 14% for n = 38,
25% for n = 39, and 55% for n = 310. The delay com-
plexity in Eq. 18 is about 75% higher than that in Eq. 13
and this relative difference remains the same for all practi-
cal values of n. This is because the dominant coefficients
for the delay complexities in Eqs. 18 and 13 are 7 log3 n and
4 log3 n, respectively.

5 Complexity Analysis and Implementation
Results for Practical n Values

This section presents the arithmetic complexity analysis
and hardware implementation of polynomial multiplications
over F3 and F9 for n = 167, 193, 239, 317 and 353. It
should first be noted that we use 2-way or 3-way splits. If
n is not divisible by two or three, we pad the polynomial
with one or two zeros so that the sizes become divisible by
three. The adjustment has a negligible effect on the com-
plexity. Another note is that using the same algorithm in
every recursion until the size becomes unity fails to produce
the best results and that employing the schoolbook method
after the size becomes small enough yields a better outcome.
We recall that the schoolbook method requires n2 multi-
plications and (n − 1)2 additions in order to multiply two
degree (n − 1) polynomials leading to

M3(n + 1) ≤ M3(n) + 4n. (19)

When we refer to the schoolbook method it is implied that
we are computing M3(n + 1) in terms of M3(n).

To demonstrate the effect of this approach, we can con-
sider, for example, M3(8). Using the improved Karatsuba
method in each recursion gives

M3(8)=3M3(4)+25=9M3(2)+58 = 27M3(1)+94 = 123.

On the other hand, using the schoolbook method after n = 4
gives

M3(8) = 3M3(4) + 25 = 3 · 25 + 25 = 100.

We use the same strategy for the multiplication in F9[X].
It can be observed that using the schoolbook method and

the improved Karatsuba 2-way method together for multi-
plication in F9[X] yields better results for small values of
n. Recalling M9(1) = 6 from Section 2 leads to an easy
determination that the improved Karatsuba 2-way method
for multiplication in F9[X] gives

M9(n) ≤ 3M9(n/2) + 7n − 6, (20)

and that the schoolbook method in F9[X] gives

M9(n + 1) ≤ M9(n) + 16n + 4. (21)

As a further refinement, we use an additional strategy and
proceed as follows: We split the degree (n−1) polynomials
that will be multiplied into two parts by extracting ω part
and ω-free part, i.e., we write A, B ∈ F9[X] as A = A0 +
A1ω and B = B0 + B1ω where A0, A1, B0, B1 ∈ F3[X] of
degree (n − 1). Then

AB = (A0 + A1ω)(B0 + B1ω) = A0B0 − A1B1

+((A0 + A1)(B0 + B1) − A0B0 − A1B1)ω, (22)

i.e., M9(n) ≤ 3M3(n) + 8n − 3 and M9(3) ≤ 60.
We are now ready to compute the arithmetic cost of mul-

tiplication for n = 167, 193, 249, 317, and 353. We have
employed the following abbreviations for the algorithm
names:

• KA for the improved Karatsuba 2-way in F3[X] as
presented in Section 3.2

• SB for the schoolbook method in F3[X]
• KA9 for the improved Karatsuba 2-way in F9[X] as

given by Eq. 20
• A19 for the new 3-way algorithm for multiplication in

F9[X], as explained in Section 4
• A29 for multiplication in F9[X] as given by Eq. 22
It should be noted that when we recursively use an algorithm
A� times, we write (A)�. The recursions listed in Tables 2
are also used in our hardware implementations.

An additional note is that the classical approach for poly-
nomial multiplication over F9 is the method expressed in
Eq. 22, which has

M9(n)/M3(n) ≈ 3. (23)

Our proposed algorithms reduce this ratio to 2.57 or lower
for the values indicated in Table 2, representing an improve-
ment of about 15%.

For hardware implementation using digital technologies,
we represent the elements of F3 as (x1, x2) where x1, x2 ∈
{0, 1} and the elements of F3, 0, 1, and 2 are represented
by (0, 0), (1, 0) and (0, 1), respectively. The addition of the
elements of F3 is performed using the method reported in
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Table 2 Complexities for polynomial multiplication over F3 and F9 for special n values.

n Multiplication in F3[X] Multiplication in F9[X] Ratio

Algorithms used Total cost Algorithms used Total cost M9(n)/M3(n)

167 (KA)6, (SB)3 21762 (A19)2, KA9, A29, KA, (SB)5 52916 2.43

193 (KA)5, (SB)7 30001 (A19)2, A29, (KA)3, (SB)3 67481 2.25

239 (KA)6, (SB)4 35298 (A19)4, A29, (SB)3 82636 2.34

317 (KA)6, (SB)5 52065 (A19)4, (KA9)
2 123916 2.38

353 (KA)7, (SB)3 67761 (A19)4, A29, (SB)5 173836 2.57

[20]. Let (x1, x2), (y1, y2), (z1, z2) ∈ F3 such that (x1, x2)+
(y1, y2) = (z1, z2). The addition can be implemented as
follows:

t = (x1 | y2) ˆ (x2 | y1);
z1 = (x2 | y2)ˆt;
z2 = (x1 | y1)ˆt;

It should also be noted that the negation is as follows:
2(x1, x2) = −(x1, x2) = (x2, x1), i.e., multiplication of an
element of F3 by −1 is essentially free of cost.

Assume that (x1, x2), (y1, y2), (z1, z2) ∈ F3 such that
(x1, x2)(y1, y2) = (z1, z2). We use the following method
for multiplication in F3.

z1 = (x1 & y1) | (x2 & y2);
z2 = (x1 & y2) | (x2 & y1);
Now, we show the representation and operations for F9.

Recall that we represent

F9 ∼= F3[ω]/(ω2 + 1)={0, 1, 2, ω, ω + 1, ω + 2, 2ω, 2ω + 1, 2ω + 2}.

The elements of F9 are therefore represented by a0 + a1ω,
where a1, a2 ∈ F3. For a, b, c, d ∈ F3, the addition and
multiplication in F9 are:

{
(a + bω) + (c + dω) = (a + c) + (b + d)ω,

(a + bω)(c + dω) = ac − bd + (bc + ad)ω.

Since the elements of F3 are each represented as a two-tuple,
we need two two-tuples for representing the elements of F9,
i.e., for a = a0 + a1ω ∈ F9, we have a = (a0,1, a0,2) +
(a1,1, a1,2)ω or simply a = [(a0,1, a0,2), (a1,1, a1,2)],
where the entries are from {0, 1}.

Let a, b ∈ F9 such that a = [(a1, a2), (a3, a4)] and b =
[(b1, b2), (b3, b4)]. Then a + b is obtained as follows:

a + b = [(a1, a2) + (b1, b2)︸ ︷︷ ︸
Call F3 addition

, (a3, a4) + (b3, b4)︸ ︷︷ ︸
Call F3 addition

].

On the other hand,multiplication of a = [(a1, a2), (a3, a4)]
and b = [(b1, b2), (b3, b4)] can be performed as follows:

ab = [(a1, a2)(b1, b2) − (a3, a4)(b3, b4), (a3, a4)(b1, b2)

+(a1, a2)(b3, b4)].

It should be noted that multiplication in F9 requires
multiplication, addition and negation in F3.

We have implemented the polynomial multiplication of
degree (n − 1) for n = 167, 239, 317, and 353. For each of
these values, we have used the proposed algorithms for F3

and F9 for a number of recursions at the beginning and as
the size of polynomials became smaller we have switched
to other algorithms so that the overall arithmetic complex-
ity could be kept at a minimum. Table 2 lists the sequence
of algorithms used for each of the values of n. For exam-
ple, for the multiplication of polynomials of degree 166 (or
size 167) over F3, KA is used for the first six recursions,
and SB is then used for the multiplication of polynomials of
degree two. For computing the multiplication of polynomi-
als of degree 166 over F9, we used A19 twice, KA9 once,
A29 once, KA once and SB five times.

We have implemented the proposed algorithms at the
Register Transfer Level (RTL) using Verilog HDL. For each
algorithm, the sequence of operations described in Table 2
has been realized as pure combinational circuits. As an
example, a high level block diagram of our circuits for the
multiplication algorithm A19 is given in Appendix. In our
implementation using Verilog, the schoolbook multiplica-
tion, F3 addition and F9 addition have each been coded to
be configurable so that they can be instantiated in the recur-
sive tree simply by passing the size parameter. The gate level
synthesis has been performed in a Synopsys Design Com-
piler Version E-2010.12 using the TSMC 65 nm standard
cell library at the worst case corner. The synthesis has been
targeted to optimize for the area. The total areas and crit-
ical path delays achieved in the post-synthesis simulation
for a variety of values of n are listed in Table 3. We note
that there seems to be no previous ASIC implementation
of characteristic three polynomial or field multiplication
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Table 3 Implementation
results for polynomial
multiplication over F3 and F9
for special values of n.

n Multiplication in F3[X] Multiplication in F9[X]

Area (μm2) Delay (ns) Area (μm2) Delay (ns)

167 253598 6.05 615590 7.19

193 310440 6.37 818432 8.26

239 420115 6.23 1078434 8.68

317 607605 5.49 1631070 8.25

353 841728 7.04 2009400 9.06

algorithms for values of n similar to those reported in
Table 3. Readers interested in FPGA implementation results
for multiplication of elements over characteristic fields like
F397 are referred to [20].

6 Further Improvements

M3(n) can be improved about 50% if we design a new algo-
rithm as follows: We use the evaluation points 0, 1, ω, −ω

and ∞. Then we have

Evaluation at X = 0 =⇒ P0 = A0B0 = C0

Evaluation at X = 1 =⇒ P1 = (A0 + A1 + A2)

×(B0 + B1 + B2) = C0 + C1 + · · · + C4

Evaluation at X = ω =⇒ P2 = (A0 + A1ω − A2)

×(B0 + B1ω − B2) = C0 + C1ω − · · · + C4

Evaluation at X = −ω =⇒ P3 = (A0 − A1ω − A2)

×(B0 − B1ω − B2) = C0 − C1ω + · · · + C4

Evaluation at X = ∞ =⇒ P4 = A2B2 = C4.

Let P2 = P2,0 + ωP2,1 and P3 = P3,0 + ωP3,1. It can be
observed that P2,0 = P3,0 and P2,1 = −P3,1, which shows
that P3 can be obtained from P2, thus avoiding the require-
ment to compute P3. The following formula and recursions

can easily be obtained with the use of the method described
previously in this section:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C0 = P0,

C1 = −P0 − P1 − P2,0 − P4 + P2,1ω,

C2 = −P0 − P2,0 + P4,

C3 = −P0 − P1 − P2,0 − P4 − P2,1ω,

C4 = P4.

(24)

⎧⎪⎨
⎪⎩

M3,⊗(n) ≤ 3M⊗(n/3) + M9,⊗(n/3), M3,⊗(1) = 1,
M3,⊕(n) ≤ 3M3,⊕(n/3) + M9,⊕(n/3) + 14n/3 − 6, M3,⊕(1) = 0,
M3(n) ≤ 3M3(n/3) + M9(n/3) + 14n/3 − 6, M3(1) = 6,
D3(n) ≤ D9(n/3) + 7D⊕.

(25)

⎧⎪⎪⎨
⎪⎪⎩

M3,⊗(n) ≤ 2nlog3 5 − n,

M3,⊕(n) ≤ 13nlog3 5 − 4.85nlog3 n − 13n,

M3(n) ≤ 15nlog3 5 − 4.85nlog3 n − 14n,

D3(n) ≤ (7 log3 n + 1)D⊕ + D⊗.

(26)

The complexity of each algorithm is summarized in
Table 4. It should be noted that the new 3-way algorithm
outperforms the improved Karatsuba algorithmwhen n > 400.

Example 1 This example illustrates our design of an area
efficient algorithm for n = 709. Using the recursion in
Eq. 25 and the values for M3(239), M9(239) and M3(355)
from Table 2 yields the following results:

M3(709) < M3(717) ≤ 3M3(239)

+M9(239) + 14 · 239 − 6 = 191870.

Table 4 Complexities of the different approaches for multiplication over F3.

Algorithm M3,⊕(n) M3,⊗(n) Delay

2-way (Section 3.1) 6nlog2 3 − 8n + 2 nlog2 3 3 log2 nD⊕ + D⊗
Improved 2-way (Section 3.2) 5.5nlog2 3 − 7n + 1.5 nlog2 3 3 log2 nD⊕ + D⊗
3-way (Section 3.3) 5.8nlog3 6 − 8n + 2.2 nlog3 6 4 log3 nD⊕ + D⊗
Improved 3-way (Section 3.4) 5.53nlog3 6 − 7.33n + 1.8 nlog3 6 4 log3 nD⊕ + D⊗
New 3-way (Section 4) 26nlog3 5 − 33.33nlog3 4 + 6n + 1.33 4nlog3 5 − 3nlog3 4 (7 log3 n + 1)D⊕ + D⊗
New 3-way (Section 6) 13nlog3 5 − 4.85nlog3 n − 13n 2nlog3 5 − n (7 log3 n + 1)D⊕ + D⊗
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On the other hand, improved Karatsuba gives

M3(709) < M3(710) ≤ 3M3(355) + 7 · 355 − 3.

Even if we use M3(355) = M3(353) ≤ 67761 from
Table 2, we get

M3(709) ≤ 205765.

The improved Karatsuba thus yields M3(709) ≤ 205765
while the new algorithm results in M3(709) ≤ 191870, i.e.,
an approximately 7% reduction in the complexity

Remark 3 The classical approach for performing multipli-
cation in F32n is to use the Karatsuba algorithm in the first
recursion so that the complexity becomes approximately
M3(2n) ≤ 3M3(n). The other possible method relies on the
extension field representation of the elements based on the
use of F32n

∼= F9n . The elements of F32n can then be rep-
resented by the polynomials over F9 of degree less than n.
This method requires approximately M3(2n) ≤ M9(n).
Recall that M9(n) ≈ 2.5M3(n) (see Table 2). The use of the
3-way algorithm for multiplication of polynomials over F9

is therefore superior to the classical approach by about 15%.

7 Conclusion

In this paper, we have proposed improved algorithms
for multiplication in F3n . As a first step, we introduced
improvements to the classical Karatsuba algorithm, which
can also be employed for characteristic three fields, and we
also indicated the computational cost of the improved Karat-
suba 2-way and 3-way algorithms. Next, we explained our
derivation of a new 3-way polynomial multiplication algo-
rithm with five 1/3 sized multiplications using interpolation
in F9 and determined the arithmetic and delay complexity
associated with the recursive use of this algorithm. We then
described ASIC implementation of multiplication of poly-
nomials that are of practical interest. The final contribution
of this work is another efficient algorithm for multiplication
in F3n that uses polynomial multiplication over F9 and pro-
duces superior results. This algorithm leads to about 15%
reduction in terms of the number of basic F3 operations
needed for fields considered in Section 5.

Appendix

A high level block diagram of our circuits for the multi-
plication algorithm of A19 is presented in Fig. 2. A and B

are two degree (n − 1) polynomials over F3. They are split
into three parts as A(X) = A0 + A1X

n/3 + A2X
2n/3 and

B(X) = B0 + B1X
n/3 + B2X

2n/3 where Ai and Bi are

Figure 2 A high level block diagram of A19.

polynomials of degree less than n/3. For the details of the
algorithm, we refer the reader to Section 4.
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