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Abstract Occlusion edges correspond to range disconti-
nuity in a scene from the point of view of the observer.
Detection of occlusion edges is an important prerequisite for
many machine vision and mobile robotic tasks. Although
they can be extracted from range data, extracting them
from images and videos would be extremely beneficial.
We trained a deep convolutional neural network (CNN) to
identify occlusion edges in images and videos with just
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RGB, RGB-D and RGB-D-UV inputs, where D stands for
depth and UV stands for horizontal and vertical compo-
nents of the optical flow field respectively. The use of CNN
avoids hand-crafting of features for automatically isolating
occlusion edges and distinguishing them from appearance
edges. Other than quantitative occlusion edge detection
results, qualitative results are provided to evaluate input data
requirements and to demonstrate the trade-off between high
resolution analysis and frame-level computation time that is
critical for real-time robotics applications.

Keywords Deep learning · Occlusion edge detection ·
Automatic feature extraction · Robotics applications

1 Introduction

Occlusion edge detection is a fundamental capability of
computer vision systems as is evident from the number of
applications and significant attention it has received [1–5].
Occlusion edges are useful for a wide array of tasks includ-
ing object recognition, feature selection, grasping, obstacle
avoidance, navigating, path-planning, localization, mapping
and stereo-vision. In addition to numerous applications, the
concept of occlusions edges is supported by the human
visual perception research [6] where it is referred to as
figure/ground determination. Once occlusion boundaries
have been established, depth order of regions become pos-
sible [7, 8] which aids navigation, simultaneous localization
and mapping (SLAM) and path planning. Specifically, there
is utility of geometric edges for running SLAM algorithms
for mobile robots. Many textureless environments are not
suitable for feature based SLAM techniques despite being
relatively common in indoor environments. However, maps
based on occlusion and geometric edges will still allow
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localisation even in these low texture regions (see example
in Fig. 1). For indoor mapping, planes seem a natural con-
sideration for landmarks and indeed numerous researchers
have explored plane based mapping [9]. Although less
common in robotic experiments, there are places not suit-
able for planar mapping including buildings with curved
walls, natural outdoor environments and extremely cluttered
scenes such as those found in search and rescue scenarios.
Although planes can be a good way of compressing map
information, an observed planar surface is not as constrain-
ing to robot pose as feature points and edges. Another strong
motivation for using the geometric edges is that they allow
localisation by both range and image sensors. For many
indoor environments, considering only geometric edges,
removes floors, walls and ceilings leaving the elements that
lie along the intersection of planes or in cluttered regions,
resulting in significant compression of the map data. While
such compression may not be significantly effective in many
unstructured outdoor environments, occlusion edge detec-
tion can still be useful in certain structured scenarios such
as roads and pavements.

Occlusion edges also help image feature selection by
rejecting features generated from regions that span an occlu-
sion edge. As these are dependent on viewpoint position,
removing these variant feature saves on further processing
and increases recognition accuracy [10]. In many object
recognition problems, the shape of the object is better for
recognition rather than its appearance, which can be eas-
ily dramatically altered e.g., by painted objects, camouflage
and people wearing different clothes. However, shape deter-
mination is not the approach for state-of-the-art SIFT based
object recognition algorithms. Furthermore, knowledge of
occlusion edges is a key component of virtual reality (VR),
mixed reality (MR) [11, 12] and optic flow algorithms [7].
In robotics, geometric edges of objects demarcate their spa-
tial extents helping with grasping, manipulation as well
as maneuvering through the world without collision and
therefore, knowledge of occlusion edges is essential.

In the context of Dynamic Data Driven Applications
Systems (DDDAS), it is therefore essential to develop algo-
rithms that enable faster and more accurate occlusion edge
determination via intelligent processing of heterogeneous
information sources such as RGB, depth information and
motion related data. Such information can be dynamically
accommodated in the map of the environment and sys-
tem model to improve the accuracy of decision-making.
More accurate and efficient decision-making strategies can
in turn help the measurement system, in this case the
RGB and Depth camera to improve scene understanding
capabilities by performing necessary actions such as cam-
era movement, pan, tilt and zoom. In this context, recent
works [13, 14] show the effectiveness of the DDDAS
framework for various vision and perception problems.
Furthermore, to enhance automation and efficiency, metic-
ulous hand-crafting of visual features should be avoided as
much as possible. Finally, efficient frame-wide decision-
making scheme is required along with other key information
regarding the model space and control objectives for clos-
ing the control loop. In general, there are multiple specific
DDDAS applications that this study will be relevant for such
as target recognition, surveillance and tracking and video
processing.

In this context, this paper evaluates the efficacy of Deep
Learning tools [15] for the task of occlusion edge detec-
tion. Recently, this class of techniques have emerged as the
top performing machine learning tool for various tasks such
as object recognition [16], speech recognition [17], denois-
ing [18], hashing [19] and data fusion [20]. While Deep
Neural Networks (DNN) pre-trained using Deep Belief Net-
works (DBN) [21, 22] perform quite well in most data types,
deep Convolutional Neural Networks [23, 24] have been
shown to be most suited for images. The better performance
is primarily attributed to the preservation of local structures
(i.e., localized pixel dependencies) by CNN as opposed
to DBN-DNN (where, typically layers are fully connected
bipartite graphs). The occlusion edge detection task can

Figure 1 A voxel map and the
corresponding geometric edges
for the mason hallway
dataset [25].



J Sign Process Syst (2017) 88:205–217 207

logically be conceived as a two step process: identifying
edges in an image followed by distinguishing between
occlusion and appearance edges. Therefore, deep neural net-
works are particularly interesting for this problems as they
extract hierarchical features (features of features) from data
and visualization of intermediate optimized filters [16] show
that edge type features are very common. It also should be
noted that such an approach eliminates the need for com-
plicated hand-crafting of features that is commonly done
in many current approaches. Due to availability of GPUs
and recent advancements in the algorithmic/implementation
side, model parameters of large CNNs can be effectively
learnt using sufficient amount of data for complex prob-
lems [16] and overfitting problems can be avoided signif-
icantly. In fact, the CNN model size (depth and breadth)
can be optimized iteratively for a certain problem. Often
however, memory of the implementing GPU becomes the
bottle-neck.

In this paper, the main contributions are: (i) formulation
of an occlusion edge detection problem as a classification of
center-pixels of an image patch with RGB, Depth (D) and
optical flow field (UV) channels (ii) performance evalua-
tion of CNNwith various input information sources, namely
RGB, RGB-D and RGB-D-UV for occlusion edge detec-
tion problem and (iii) fusion of patch predictions to generate
frame-wide occlusion edges which can be used for robotic
applications. Note, similar methods and studies exist in
different contexts such as for tracking with occlusion detec-
tion [26], wearable multimodal sensor fusion [27], vehicle
registration [28] and wide-area motion imagery [29]. This
study uses a publicly available benchmark RGB-D (with
multiple time frames) data set captured with moving cam-
era in an indoor environment by the Computer Vision group
at Technische Universität München (TUM) [30]. The opti-
mized and hardware-accelerated CNN implementation has
been done on NVIDIA K-40 GPU.

The paper is organized in seven sections including the
introduction. The problem formulation along with the data
set description is provided in Section 2. While Section 3
provides the details of architecture and training parameters
for the CNN, testing and post-processing are discussed in
Section 4. Various experiments with corresponding quanti-
tative results are provided in Section 5 and qualitative obser-
vations are articulated in Section 6. Finally, the paper is
summarized and concluded with future research directions
in Section 8.

2 Problem Formulation and Generating
the Training data

In general, it is difficult to define occlusion edge pixels rig-
orously. In an image, edges manifest along paths of high

contrast and are due to four main reasons: (i) texture change,
i.e., abrupt change in surface color, (ii) lighting change,
i.e., sharp shadows, (iii) range discontinuity, i.e., abrupt
change in distance from the observer and (iv) surface nor-
mal change, e.g., intersection of two planes. Throughout this
work it is assumed that appearance edges are a necessary but
not sufficient condition for occlusion edges. This assump-
tion is rarely violated in real world environments but when
it is then even the human visual system fails.

It is important to appreciate the distinction in the causes
of image edges. Texture change and illumination edges
are not observed by 3D sensors. Therefore, the remaining
geometric edge types are range discontinuities and abrupt
surface normal changes. Surface normal changes are pose
invariant, however edges due to range discontinuities can
vary with observer position. These surface normal and range
discontinuities are illustrated in the last image of Fig. 2. The
cylinder sides in Fig. 2 are examples of range discontinu-
ities. The position of these edges varies in 3D space as the
position of the observer shifts whereas the cylinder rim edge
position is consistent regardless of observer position. For
use in mapping, the following characteristics is desired from
extracted edge voxels: they should be generally invariant to
rotation and translation, and they should be helpful in terms
of constraining pose. Therefore, in this study the focus is on
identifying the third and fourth type of edges, i.e., edges due
to range discontinuity and surface normal change.

Traditional approaches for detect geometric edges in 3D
data include a keypoint detector based on a 3D extension
of the Harris corner operator in the Point Cloud Library
[31]. This detector operates on local normals of points. A
related approach for selecting interest points on 3D meshes
was introduced in [32]. In principle, this study is similar
to a recent works on indoor scene segmentation [33] and
depth map prediction [34]. However, this study focuses on
if only occlusion edges can be isolated using CNNs and also
if reasonable performance can be achieved without using
the depth channel of the RGB-D data. As mentioned earlier,
this paper uses a benchmark RGB-D data set the Computer
Vision group at Technische Universität München (TUM).
The data set contains RGB and depth images of a Microsoft
Kinect sensor that was recorded at full frame rate (30 Hz)
and sensor resolution 640 × 480 by moving camera in an
indoor environment. The occlusion edge detection problem
is formulated as a classification problem and the proce-
dure of generating training data is provided in the following
subsection.

2.1 Training Data

Although most of the occlusion edge detection exercises,
training labels are generated manually, the occlusion edge
information is largely present in a clean version of the depth
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Figure 2 Image with associated edges due to appearance and due to geometry.

(D) channel. Therefore, occlusion edge label for a pixel, i.e.,
the ground truth can be automatically determined to some
extent using the depth channel data. However, visually it can
be observed that ground truth obtained in such a way may
have a large percentage of missed detection. Still, we show
that this automated label generation process enables training
of a deep CNN. The label generation procedure is illustrated
in Fig. 3. From left to right, the three plates in the figure
shows an example RGB frame, the corresponding (clean)
D channel data and classification frame generated using a
simple thresholding only on the depth data. Other than gray
(signifying no edge) and white (signifying occlusion edges)
colors, the black color can be seen in the classification
frame. This signifies bad depth measurements due to pres-
ence of absorbing surface or larger than maximum distance
allowed between the sensor and the surface.

As shown in Fig. 4, the RGB-D data set was col-
lected using a camera motion along a certain trajectory in
an indoor environment. The trajectory is divided into dis-
joint training and testing sections so that the trained model
can be tested using previously unseen data. The frames
in the RGB-D data set are 480 × 640 in size. In order
to create training examples for the Convolutional Neural
Network (CNN), 32 × 32 patches are extracted from the
large frames in the training section. The training label for
each patch is determined by the pixels located at the cen-
ter [35, 36]. As illustrated in Fig. 5, if majority of the pixels
(2 × 2 in this case) at the center of a 32 × 32 patch con-
tains occlusion edges, the patch is labeled as an Occlusion

patch. On the other hand, if center pixels contain appear-
ance edges or no edge, corresponding patch is labeled as
a No Occlusion patch. Patches with considerable bad or
unlabeled pixels are pre-filtered and not used for training.
Furthermore, a class balancing is also performed between
occlusion and no-occlusion examples within the training
data set. As expected, we observe that balancing provides
significant performance improvement as originally number
of occlusion patches are significantly lower compared to no
occlusion patches.

Other than 3-channels input with RGB and 4-channels
input with RGB-D, we also explore ‘structure from motion’
using optical flow information. As we are interested in depth
discontinuity, change in video frames due to motion can be
quite useful. Specifically, we use a 2-frame estimation of
horizontal (U) and vertical (V) components of the optical
flow field with an iterative reweighted least square (IRLS)
formulation. Figure 6 shows two consecutive frames and the
output of the off-the-shelf optical flow algorithm [37].

Remark II.1 In an absolute sense, occlusion edges depend
on the gradient of the depth image which is very sensitive
to noise in the depth map and the depth map derived from a
single image is very noisy and has large errors. In our work,
we are estimating the occlusion edges directly rather than
estimating depth first and then calculating occlusion edges.
Secondly there are additional cues (RGB, UV) other than
depth which contribute to establishing occlusion edges that
our technique is taking advantage of.

Figure 3 Example RGB, depth and classification frames from the training data generation procedure. In the classification frame gray signifies
no edge, occlusion edges are white and black is for no or unreliable data.
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Figure 4 Partitioning of
camera trajectory for collecting
RGB-D data set into training
and testing sections.

3 CNN Architecture and Model Learning

The architecture of the Convolutional Neural Network
(CNN) used in this paper is illustrated in Fig. 7. The CNN
has three pairs of convolution-pooling layers followed by
softmax output layer [16]. This section articulates details of
those layers as well as various hyper-parameters used for
model learning.

Description of layers As described in Section 2.1, 32 ×
32 patches were used as data for the CNN in this study.
Depending on the experiment, different number channels
are used for the input data. For example, while 4 chan-
nels were used for single (time) frame RGB-D data (as
shown in Fig. 7), 6 channels were used for an RGB-D-UV
sequence. Note, all these channels are passed independently
through the convolution and max-pooling processes in par-
allel before combining them for the output layer. So, the
convolution and max-pooling processes shown in Fig. 7
applies separately on patches with respect to every chan-
nel. More detailed description of various experiments will
be provided in Section 5. The layer size parameters here
correspond to the RGB-D experiment with 4 channels. The

first convolutional layer uses 32 filters (or kernels) of size
5 × 5 × 4 with a stride of 1 pixel and padding of 2 pixels
on the edges. A two-fold sub-sampling or pooling layer fol-
lows the convolutional layer that generates the input data (of
size 16 × 16 × 32) for the second convolutional layer. This
layer uses 32 filters of size 5 × 5 × 32 with a stride of 1
pixel and padding of 2 pixels on the edges. A second pool-
ing layer with the same specification as the first one is used
after that to generate input with size 8× 8× 32 for the third
convolutional layer that uses 64 filters of size 5 × 5 × 32
with same stride and padding strategies as before. The third
pooling layer also has the same configuration as the two
before it and leads to a softmax output layer with two labels
corresponding to No Occlusion and Occlusion classes.

Hyper-parameters The CNN described above was trained
using stochastic gradient descent with a mini-batch size of
100 examples. Although biases of convolutional layer neu-
rons were initialized with constant values zero, weights of
the neurons were initialized with zero-mean Gaussian dis-
tributions with standard deviations as: 0.0001 for first, 0.01
for second and 0.01 for third convolutional layer. Interest-
ingly, the network performed better with a comparatively

Figure 5 Generation of training
data 32 × 32 patches from
original 480 × 640 frames and
labeling based on center-pixels.
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Figure 6 Two consecutive
RGB frames and the output of
the optical flow algorithm.

Figure 7 Illustration of Convolutional Neural Network (CNN) architecture used for Occlusion Edge classification.

Figure 8 Post-processing at the testing phase involves collecting
32 × 32 overlapping patches with a constant stride from large frames;
prediction confidence of a patch center pixel label is converted into a

Gaussian kernel with Full Width at Half Maximum (FWHM); Gaus-
sian labels are fused in a mixture model to generate smooth occlusion
edges.

Figure 9 Training and testing error plots (for RGB-D, RGB and RGB-D-UV inputs) over various training epochs.
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larger initialization of the weight standard deviation (0.3)
for the output layer. The learning rate and momentum used
for all the convolutional layers and for all training epochs
were 0.001 and 0.9 respectively. Finally, L2-regularizers
were used for all convolutional layers as well with weight
0.001. No dropout was used for model training in this
study.

Training with GPU: The NVIDIA Kepler series K40
GPUs are FLOPS/Watt efficient and are being used to drive
real-time image processing capabilities. The Kepler series
GPU consists of a maximum of 15 Streaming Execution
(SMX) units and up to six 64-bit memory controllers. Each
SMX unit has 192 single-precision CUDA cores and each
core comprises of fully pipelined floating-point and inte-
ger arithmetic logic units. The K40 GPUs consist of 2880
cores with 12 GB of on-board device memory (RAM). Deep
Learning applications have been targeted on GPUs previ-
ously in [16] and these implementations are both compute
and memory bound. Stacking of the channels for the RGB-
timeseries and the RGB delta experimnets result in a vector
of 32× 32× 12, which is suitable for the Single Instruction
Multiple Datapath (SIMD) architecture of the GPUs. At the
same time, the training batch size caches in the GPU mem-
ory, so the utilization of the K40 GPU’s memory is very
high. This also results in our experiments to run succesfully
on a single GPU instead of partitioning the different layers
over multiple GPUs.

4 Testing and Post-processing

Performance testing of CNN is done in both quantitative
and qualitative manner with various input information as
will be explained in Section 5. For quantitative results,
classification errors are computed based on the model’s
ability to predict label of the center pixels of a test patch
collected from a frame captured in testing section of camera
motion. The qualitative observations and visualization are
made using a post-processing scheme as illustrated in Fig. 8.
In this scheme, classification confidence for a patch center
pixels is collected from the softmax posterior distribution
and it is extrapolated across the patch using a Gaussian dis-
tribution with Full Width at Half Maximum (FWHM). Such
Gaussian kernels from overlapping patches are fused in a
mixture model to generate smooth occlusion edges in the
testing frame.

5 Experiments and Quantitative Results

Different experiments are performed with different sets of
input data for comparative evaluation. They are described

below along with corresponding quantitative performance
of the CNN model:

RGB-D frame The first set of experiments used single
temporal frames of RGB-D data (i.e., 4 channels). This
task may seem rather straight forward as the (noisy) depth
information is directly available as one of the channels in
the input data. However, majority of edges in the current
frames are appearance edges and RGB channels clearly
provide that information. Therefore, the task for the CNN
model is to detect edges via automatic feature extraction and
distinguishing occlusion edges from appearance edges.

RGB frame The second set of experiments used single
temporal frames of RGB data (i.e., 3 channels). The goal
here was to investigate if discriminative features exist and
can be extracted by CNN from just RGB channels in order
to classify patches into Occlusion and No occlusion edges.
Ideally, without temporal information RGB channels may
not carry a lot of occlusion information. However, occlusion
information may remain in certain features such as shadows.
Therefore, the goal here is to investigate if such features can
be recognized by a CNN to detect occlusion edges.

RGB-D-UV frame The third set of experiments used UV
channels (horizontal and vertical components of the optical
flow field respectively) in addition to RGB-D channels (i.e.,
6 channels). These additional channels provide the critical
temporal information for occlusion edge detection.

Numerical results are provided below for all of these
cases. For training the CNN, 57,518 training patches
extracted from large image frames (collected in training
section of the camera trajectory) are used. During test-
ing, 1,271,002 patches (collected in testing section of the
camera trajectory) are used to provide quantitative per-
formance data. Figure 9 shows training and testing error
plots over various epochs and specifically the training error
graph clearly demonstrates that the training process does
not saturate. Table 1 provides percentages of overall error,
false alarm and missed detection averaged over epochs 80
through 100 as well as the value of the Pratt Metric averaged
over the same epochs. Note, while the overall error, false
alarm and missed detection percentages measure pixel-wise
accuracy, the Pratt Metric evaluates the similarity between

Table 1 Occlusion detection performance of CNNwith RGB-D, RGB
and RGB-D-UV inputs.

Channels Overall error False alarm Missed detection Pratt Metric

RGB-D 16.43 % 16.10 % 43.04 % 0.287

RGB 15.36 % 15.20 % 46.70 % 0.292

RGB-D-UV 15.18 % 14.95 % 46.31 % 0.363
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Figure 10 Example RGB frame and corresponding occlusion edge ground truth.

detected occlusion edges and the corresponding ground
truth occlusion edges as described in [38].

As provided in Table 1, for both cases, false alarm perfor-
mance is significantly better compared to missed detection
performance. The primary reason for this is that the train-
ing labels are generated using an automated procedure using
the imperfect depth channel and that can cause many missed
detection training examples. For example, qualitative results
in the next section show that the CNN based model captures
certain occlusion edges which were not part of the ground
truth. Numerically, overall error percentage is very close
to false alarm rate as majority of the test example patches
do not contain occlusion edges. The occlusion edge detec-
tion tool is more sensitive with RGB-D input compared
to the RGB input. Therefore, missed detection percentage
with RGB-D input is 3.65 % less compared to that with
RGB input. However, that also causes false alarm rate to
rise for RGB-D input. As majority of test example patches

do not contain occlusion edges, overall error for RGB input
is slightly lower than that of RGB-D input. Adding two
more channels based on optical flow, reduces the false alarm
rate without increasing the missed detection significantly.
The overall performance is also found to be the best (both
pixel-wise and in terms of the Pratt Metric) in the case of
RGB-D-UV input. Overall, it is interesting to observe that
performance is quite comparable even just with RGB chan-
nels compared to using all 6 channels. This is significant
as it suggests that a vision system with deep learning algo-
rithms can potentially recognize occlusion edges without
any depth sensor.

6 Qualitative Observations

This section presents qualitative results in order to under-
stand the efficacy of the deep learning tools for occlusion

Figure 11 Occlusion edge detection performance on a test frame for
RGB-D input with stride 8 and 4; heat map shows the fused detection
confidence (red-yellow-blue signifies high-medium-low); red circled

region shows example of confusing appearance edges as occlusion
edges; performance improves while computational time increases with
decrease in strides.
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Figure 12 Occlusion edge detection performance on a test frame
for all three input types with stride 4; heat map shows the fused
detection confidence (red-yellow-blue signifies high-medium-low);
RGB-D most sensitive, RGB the least, RGB-D-UV has the best overall

performance; examples of missed detection, false alarm and true detec-
tion which was not labeled by automated ground truth determination
process shown in red circled regions.

edge detection and for robotics applications as a whole.
An example frame and corresponding ground truth obtained
using the automated labeling process are shown in Fig. 10.

Figure 11 shows performances with RGB-D input with
stride 4 and 8 (see Section 4 for details on strides) on
the example testing frame. As expected, occlusion edge
detection is better with a lower value of stride as more infor-
mation is available per pixel in this case. It can be noted in
the marked regions (circled in red) in the figures that false

detection of occlusion edges reduces with a lower value of
stride. The trade-off lies in computational speed. With a
lower value of stride, the frame processing time increases
linearly with increase in number of test patches. There-
fore, this trade-off has to be chosen properly for real-time
robotics applications.

Finally, Fig. 12 shows detection performance for all three
input types with stride 4 and examples of missed detec-
tion, false alarm and true detection which was not labeled

Figure 13 Occlusion edge
detection performance
comparison with Holistically-
Nested Edge Detection (HED)
technique on RGB frame.
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by automated ground truth determination process are high-
lighted. From visual inspection, it is clear that detection
confidence (shown by the heat map, red-yellow-blue sig-
nifies high-medium-low) is the highest for RGB-D input
type which means the CNN model becomes most sensitive
with that type of input. This corresponds to the quantita-
tive results that shows RGB-D input type has the lowest
missed detection rate but highest false alarm rate. On the
other hand, RGB has the least detection confidence and
RGB-D-UV has the best overall performance. The example
of true detection labeled as false alarm because the ground
truth was not labeled properly is significant. This shows
that the CNN model is able to learn the occlusion features
properly (not just memorize) and hence is able to detect
certain occlusion edges that were missed by the automated
ground truth determination process. This also demonstrates
the need of manual labeling of occlusion edges to obtain a
more accurate quantitative performance metrics. However,
the large number of training and test examples becomes the
barrier.

7 Comparative Evaluation

For performance comparison, we ran recently developed
deep learning based Holistically-Nested Edge Detection
[39] algorithm on test frames from the same TUM data set.
We used the latest version of Caffe [40] and the pre-trained
network from HED website. In general, the HED detector is
a contour detector which prefers appearance edges that are
likely to be range discontinuities and displays impressive
performance on single images alone with RGB channels.
Qualitative and quantitative results on one of the test frames
are provided in Fig. 13 and Table 2 respectively. With visual
inspection, it is evident that although the general edge detec-
tion performance is quite good for the HED method, it
suffers from false alarms, i.e., identifying appearance edges
as object contours due to range discontinuities. Numeri-
cal results also suggest the same as the false alarm rate
of HED is significantly higher compared to our technique
while missed detection performance is slightly better for
HED. Overall error rate is lower for our method. Note, these
performance metrics are only based on patches (≈ 5000
occlusion patches and ≈ 120, 000 non-occlusion patches in
the ground truth) obtained from the single frame presented

Table 2 Occlusion detection performance comparison between our
method and HED technique with RGB input.

Method Overall error False alarm Missed detection

OccCNN (ours) 25.46 % 2.76 % 48.15 %

HED 30.78 % 16.65 % 44.90 %

in Fig. 13. Therefore, they should not be compared with the
overall results in Table 1 that considers all patches from all
109 test frames.

8 Conclusions and Future Works

In this study, we trained deep convolutional neural networks
in a supervised manner in order to detect occlusion edges
in RGB-D frames. The problem is formulated as a center-
pixel classification problem for an image patch extracted
from a larger frame. Apart from RGB-D inputs, experiments
were performed to investigate the performance associated
with dropping the depth (D) channel and adding motion
related information. It is noted that although the missed
detection rate increases without depth data, the false alarm
performance actually becomes better. Overall performance
is the best with use of all six channels, RGB-D-UV. A test-
ing and post-processing scheme is developed to visualize
the testing performance. The trade-off between high reso-
lution patch analysis and frame-level computation time is
discussed which is critical for real-time robotics applica-
tions. Future research directions primarily involve adding
‘closing the control loop’ capabilities to this deep learning
based automated feature extraction and classification tool in
order to realize an efficient DDDAS. Specific tasks are: (i)
investigation of robustness to change in lighting conditions,
textures and domain, (ii) design of motion planning using
decisions from CNNs and (ii) analysis of computation speed
vs accuracy trade-off for real-time operation.
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