
Technology-Optimized Fixed-Point Bit-Parallel Multipliers
for FPGAs

Burhan Khurshid1

Received: 25 January 2016 /Revised: 31 August 2016 /Accepted: 14 October 2016 /Published online: 24 October 2016
#

Abstract Modern day field programmable gate arrays have
carry-chains and look-up tables as the basic logic elements.
Efficient realization of different arithmetic circuits on FPGAs
demands an improved mapping of different functionalities
onto these logic elements. A majority of the work related to
the implementation of different arithmetic circuits on FPGAs
focusses on the architectural optimization that can be carried
out at the top level. While this works well for ASICs, the
performance on FPGAs may be degrading due to the poor
mapping of the architecture onto the underlying FPGA re-
sources. In this paper, we present technology-optimized
fixed-point bit-parallel multiplier structures. The multipliers
are technology-optimized by re-structuring the initial
Boolean networks and transforming them into an optimized
circuit net-list that utilizes the target elements efficiently. A
detailed theoretical and experimental analysis of our imple-
mentation using Xilinx FPGAs shows a subsequent speed-
up in performance when compared to the conventional reali-
zations. We have also compared our implementation against
various technology-independent realizations reported in prior
literature. The idea is to provide a clear cut analysis about the
performance speed-up that is achievable through technology-
dependent approaches.

Keywords Circuit optimization . Field programmable gate
arrays . Fixed-point bit-parallel multipliers .

Technology-dependent optimizations . Technologymapping

1 Introduction

Fixed-point multiplication is frequently used in many digital
signal processing (DSP) applications like filtering, Fourier
transformations, convolution etc. [1–3]. Bit-parallel imple-
mentation styles are often preferred because of their ability
to provide high throughput. Traditional implementations,
however, have mostly been processor oriented and the design
process focusses on developing the high-level code for a fixed
processor architecture. This severely limits the evolution of
the underlying architecture. For increased performance vari-
ous platform oriented solutions like application specific inte-
grated circuits (ASICs) and structural ASICs have been used
[3]. These permit the evolution of the architecture to specifi-
cally meet the performance requirement of the intended appli-
cation [4]. However, the huge non-recurring engineering
(NRE) costs associated with ASICs has typically cornered
their use for special application domains only [4].

Very recently FPGAs have been used as an alternative to
ASICs. FPGAs avoid high NRE costs by giving designers the
flexibility of configuring the device in field [5, 6]. With fea-
tures like large scale integration [5, 7], lower energy require-
ment using same process technology, availability of several
on-board macros and intellectual property (IP) cores [8] etc.,
FPGAs are fast moving into low and medium volume produc-
tions [1, 9, 10]. Look-up tables (LUT) and carry-chains form
the basic logic elements in modern FPGAs [11–13]. An LUT
is a k-input block RAM that can implement any Boolean
function of k variables. State-of-art FPGAs support 6-input
LUTs with the capability of implementing a 6-input Boolean
function or two 5-input Boolean functions with shared inputs
[14–16]. Carry-chains enable fast and efficient realization of
arithmetic circuits by avoiding the general FPGA routing [17,
18]. Modern FPGAs also support full custom processing ele-
ments like multipliers, DSP blocks, high speed clocking and

* Burhan Khurshid
burhan_07phd12@nitsri.net

1 Department of Computer Science and Engineering, NIT,
Srinagar, India

J Sign Process Syst (2017) 89:293–317
DOI 10.1007/s11265-016-1195-5

Springer Science+Business Media New York 2016

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-016-1195-5&domain=pdf

I/O resources etc. [19]. The use of these optimized blocks
can lead to efficient implementation of arithmetic functions
[20, 21].

Whilst the pre-fabricated aspects of FPGAs have many ad-
vantages, it limits the optimized synthesis of different circuits
on these platforms. Traditional approaches mainly focus on
architectural modifications that can be carried out at the top
level. The effectiveness of these approaches, which are gener-
ally well suited for ASICs is limited in FPGAs. The main
reason for this difference is the pre-fabricated nature of the
FPGAs and the fixed routing structures, which does not allow,
otherwise architecturally optimized systems to map efficiently
on them. The use of specialized custom blocks enhances the
performance, but these are always limited in number and once
that limit is reached the performance degrades rapidly. For
example, Xilinx Virtex-5 xc5vlx50 has 48 DSP48E slices
which can be used to perform multiply-accumulate (MAC)
operation. A direct Finite Impulse Response (FIR) filter imple-
mentation based on the use of Generic Multiplier (GM) will
utilize these DSP slices and an optimum performance is ob-
served. However, as the filter order increases beyond 48, the
DSP48E slices are used up and there is a rapid dip in the
performance. This is shown in Fig. 1 where number of slices
(a) and power dissipation (b) are plotted against the filter order.
Another issue with hard IP cores and macro blocks is that they
are fixed in the FPGA fabric. This increases the cost of routing
data to and from these blocks [22]. Figure 2 shows a plot of the
critical path delay against the filter order for a GM based direct
FIR filter. For filter orders greater than 48, general LUT fabric
is used whose position can be easily altered during the
Placement & Route (PAR) phase of the FPGA design cycle,
resulting in the reduction of the overall critical path delay. For
filter orders less than 48, DSP48E blocks are used and owing
to their fixed position longer critical paths are experienced.

The aim is, thus, to utilize the huge processing re-
sources in the most efficient manner, so that the solu-
tion can out-perform other available platforms. This not only
requires the development of a suitable architecture at the top

level, but also how efficiently the architecture is mapped on
to the underlying FPGA fabric. In this paper, we con-
sider technology-dependent approaches for efficient real-
ization of multiplier circuits. We propose a general heu-
ristic for efficiently mapping the Boolean networks onto
6-input LUTs. Based on this heuristic technology-
dependent optimization of fixed-point bit-parallel multipliers
is carried out.

The rest of the paper is organized as follows: Section 2
briefly discusses fixed-point bit-parallel multipliers used in this
paper. Section 3 discusses some basic terminology used in this
paper. Section 4 discusses the proposed heuristic for efficiently
mapping Boolean networks onto 6-input LUTs. Based on this
heuristic, technology-dependent optimization of three different
bit-parallel multipliers is discussed in section 5. Synthesis and
implementation is carried out in section 6. Conclusions are
drawn in section 7 and references are listed at the end.

2 Fixed-Point Bit-Parallel Multipliers

A variety of architectures have been proposed to improve the
performance of multiplication operation in DSP systems

(a) (b)

0 8 16 24 32 40 48 56 64 72
0

150

300

450

600

750

900

1050

1200

N
O

. O
F

 S
L

IC
E

S

FILTER ORDER

0 8 16 24 32 40 48 56 64
530

535

540

545

550

555

560

565

570

P
O

W
E

R
 (

m
W

)

FILTER ORDER

Figure 1 Variation in a Number
of slices and b Power dissipation
with filter order.

0 8 16 24 32 40 48 56 64

10

20

30

40

50

60

70

80

90

 D
E

L
A

Y
 (

nS
)

FILTER ORDER

Figure 2 Variation in critical path delay with filter order.

294 J Sign Process Syst (2017) 89:293–317

[23–28]. These mainly follow three implementation styles viz.
bit-parallel, bit-serial and digit-serial. Bit-parallel systems are
ideal for high-speed applications. Since modern day
FPGAs are mainly speed oriented [29, 30], multiplier
architectures falling in this category have been considered
in this work.

Three widely used bit-parallel multipliers have been con-
sidered for technology-dependent optimizations. These in-
clude parallel Ripple Carry Array (RCA) multipliers,
Parallel Carry-Save Array (CSA) multipliers and Carry-Save
(CS) based Baugh-Wooley (BW) multipliers. The operands in
each case are assumed to be in fixed-point 2’s complement
representation. Therefore, N-bit operands X and Y may be
represented as under:

X ¼ xN−1:xN−2xN−3……x1x0 ð1Þ

Y ¼ yN−1:yN−2yN−3……y1y0 ð2Þ

The most significant bit in each case is the sign bit with ‘0’
denoting a positive number and ‘1’ a negative number. The
magnitude of these numbers lies in the range [−1, 1) and is
given by:

X ¼ −xN−1 þ ∑
N−1

i¼1
xN−1−i2

−i ð3Þ

Y ¼ −yN−1 þ ∑
N−1

i¼1
yN−1−i2

−i ð4Þ

This type of representation is apt for DSP operations
like filtering where the filter coefficients that model the
frequency behavior of the signal have values in the
range − 1 to 1. The value of the product P = X × Y
is given by:

P ¼ −p2N−2 þ ∑
2N−2

i¼1
p2N−2−i2

−i ð5Þ

The product P may be represented as:

P ¼ p2N−2:p2N−3p2N−4……p1p0 ð6Þ

In constant word-length multiplication, the N-1 lower order
bits in the product P are truncated, and the product is given by:

Z ¼ −zN−1 þ ∑
N−1

i¼1
zN−1−i2

−i ð7Þ

The constant word length product Zmay be represented
as:

Z ¼ zN−1:zN−2zN−3……z1z0 ð8Þ

The product Z, therefore, is not a full-precision product
[31]. Complete details about truncated multiplication can be
found in [32–34]. Based on the concept of constant word-
length multiplication, three traditional approaches to bit-

FAFAFA FA

FAFAFA FA

FAFAFA FA

FAFAFA FA

 0 X3 Y0 0 X2 Y0 0 X1 Y0 0 X0 Y0

 Z3 Z2 Z1 Z0

0

0

0

Y3

FAFAFA FA

FAFAFA FA

FAFAFA FA

FAFAFA FA Y3

VECTOR MERGING ADDER

HAHA HA

FAFA FA

FAFA FA

VECTOR MERGING ADDER

1

 0 0 0 0

X3 Y1 X2 Y1 X1 Y1 X0 Y1

X3 Y2 X2 Y2 X1 Y2 X0 Y2

X3 Y3 X2 Y3 X1 Y3 X0 Y3

 0 X3 Y0 0 X2 Y0 0 X1 Y0 0 X0 Y0

X3 Y1 X2 Y1 X1 Y1 X0 Y1

X3 Y2 X2 Y2 X1 Y2 X0 Y2

X3 Y3 X2 Y3 X1 Y3 X0 Y3

 Z3 Z2 Z1 Z0 Z3 Z2 Z1 Z0

X3 Y0 X2 Y0 X1 Y0

X3 Y1 X2 Y1 X1 Y1 X0 Y1

X3 Y2 X2 Y2 X1 Y2 X0 Y2

X3 Y3 X2 Y3 X1 Y3 X0 Y3

(a) (b) (c)
Figure 3 Bit-parallel fixed-point multipliers. a RCA multiplier. b CSA multiplier. c BW multiplier.

J Sign Process Syst (2017) 89:293–317 295

parallel fixed-point multiplication have been used. The
complete details about these multipliers are given in
[31, 35]. Brief description about these multipliers is
provided below:

2.1 RCA Multiplier

RCA multiplier operates by rippling the carry to the
adder to the left in the same row. Thus, within a row
each adder has to wait for the carry input to perform its
computation. In other words, there exists an intra-
iteration constraint between any two adjacent adder
nodes within a row, assuming there is no pipelining
involved. Owing to this ripple-carry nature the critical
paths involved are quite large which limits the speed of
multiplication. Figure 3(a) shows the schematic for a 4-
bit RCA fixed-point multiplier.

2.2 CSA Multiplier

In CSA multiplier, the carry outputs are saved and used in the
adder in the next row. In this case, the partial product is re-
placed by a partial sum and a partial carry, which are saved

and passed on to the next row. The advantage of carry-save
multiplication is that the additions at different bit positions in
the same row are now independent of each other and can be
carried out in parallel, which essentially speeds up the addition
phase of each cycle, and hence speeds up the multiplication.
The addition of the partial sum and the partial carry at the last
step is performed by a Vector Merging Adder (VMA), which
may be implemented either as a ripple-carry adder or a carry-
save adder. Figure 3(b) shows the schematic for a 4-bit CSA
fixed-point multiplier. The VMA details are not shown in the
figure.

2.3 BW Multiplier

The difficulty of 2’s complement multiplication lies in
handling the sign bits of the multiplicand and multiplier.
An efficient way to overcome this problem is provided
by the BW multiplication algorithm. The algorithm is an
efficient way to handle the sign bits and helps in de-
signing regular multipliers using 2’s complement oper-
ands. The BW multiplication may be implemented as
either a carry-ripple array or a carry-save array. Figure 3(c)
shows the schematic for a 4-bit BWmultiplier implemented as
a carry-save array.

3 Preliminary Terminologies

Logic synthesis is concerned with realizing a desired
functionality with minimum possible cost. In the context
of general digital design the cost of a circuit is a metric
which provides an idea about the speed, area consump-
tion or power dissipation of a circuit. In some cases, the

01

030406 05

02

a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

 Z4 Z3 Z2 Z1 Z0

x0

x1x2

x3

x4

Figure 4 A generalized Boolean Network.

01

03

a4 a3 a2 a1 a0

Z0

01

0304

x0

x1

a5 a4 a3 a2 a1 a0

Z1

01

030405

02 x0

x1x2

a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

Z2

01

030406 05

02

a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

 Z3

x0

x1x2

x3

x4

01

030406 05

02

a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

 Z4

x0

x1x2

x3

x4

(a)(b)(c)

(d)(e)

Figure 5 Boolean networks for
individual outputs. Repeated
nodes are shown in same shades.

296 J Sign Process Syst (2017) 89:293–317

cost may be expressed as a combination of these param-
eters. A combinational function may be represented
graphically as a directed acyclic graph (DAG) called
the Boolean network. Individual nodes within this net-
work may represent logic gates, primary inputs (PIs) or
primary outputs (POs). The Boolean networks consid-
ered in this work are very simple, therefore, actual gates
have been used for nodes in most of the cases. Each
node implements some local function and together with
its predecessor nodes implements a global function. A
node in a Boolean network may be driven by one or
more predecessor nodes known as fan-in nodes.
Similarly a node may drive one or more successor
nodes known as fan-out nodes. The PIs of a Boolean
network are the nodes without any fan-in. Similarly the
POs are the nodes without any fan-out.

A cone of a node v, Cv, is a sub-graph that includes
the node v and some of its non-PI predecessor nodes.
Any node u, within this sub-graph has a path to the
node v, which lies entirely in Cv. The node v is called
the root of the cone Cv. The level of the node v is the
length of the longest path from any PI node to node v.
If node v is a PO node then the level will give the
depth of the Boolean network. Thus network-depth is
the largest level of a node in the network. A net-list
of connected LUTs and carry-chains obtained after
transformation of the Boolean network is called a
circuit. The critical path and resource utilization of a
circuit is measured by the depth and number of utilized
LUTs, respectively.

4 General Heuristic for Technology-Dependent
Optimization

Technology-dependent optimization transforms the initial
Boolean network into a circuit netlist that utilizes the target
logic elements efficiently. The transformation should be opti-
mal i.e. the logic distribution among the targeted elements
should ensure minimum possible depth and minimum re-
source utilization. The target element in majority of FPGAs
is k-input LUT [11–13]. It is a block RAM that can implement
any Boolean function of k variables by directly storing its
truth table. State-of-art FPGAs support 6-input LUTs
with the capacity of implementing a single 6-input
Boolean function or two 5-input Boolean functions that
share inputs [14–16]. An efficient utilization of this circuit
element could lead to higher logic densities resulting in a
reduced fan-out of the logic nets and thus a minimal-depth
circuit. Apart from the general LUT fabric, most of the
FPGAs also support a dedicated carry-chain in each of the
logic slices [17, 18]. The inclusion of this primitive makes
the carry propagation fast as the general FPGA routing is
avoided.

Technology-dependent optimization using LUTs is a
two-step process. First, the parent network is partitioned
into suitable Boolean networks. Individual nodes within
each network are then covered with suitable cones. The
local function implemented by each cone is then
mapped onto a separate LUT. In the second step, the
entire parent network is constructed by assembling the
individually optimized Boolean networks.

01

03

a4 a3 a2 a1 a0

x0

x1

Z0

5

04

x0

x1x2

a5

Z1

4

05

02

a9 a8 a7 a6

x2

x3

x4

Z2

3

06

a10

 Z3

x3

x4 Z4

2

(a)(b)(c)(d)

Figure 6 Boolean networks for
repeated nodes. The number in
the circle represents the priority of
each network.

01

03

a4 a3 a2 a1 a0

Z0(a)

01

a4 a3 a2

x0

03

a4 a3 a2 a1 a0

x1

01

04

x0

x1

a5

Z1 (b)

04

x0

x1x2

a5

05

02

a9 a8 a7 a6

x2

Z2(c)

02

a9 a8 a7

x3

05

02

a9 a8 a7 a6

x2x406

a10

 Z3

x3

x4

(d)

06

a10

x3

x4 Z4

Figure 7 Sub-networks for different eliminated networks.

J Sign Process Syst (2017) 89:293–317 297

The performance speed-up achieved from technology-
dependent optimization may vary from network to network.
Similarly, the optimization process may be different for differ-
ent networks. We propose a general heuristic that may be
followed towards the optimization process. The heuristic in-
volves construction of different Boolean networks from the
parent network; identification of repeated nodes from the con-
structed networks; prioritization of the identified networks;
covering and re-structuring of the identified networks and
finally re-construction of the parent network. We explain the
different steps by considering the Boolean network of Fig. 4.
Note that Fig. 4 presents a more generalized network having
multiple inputs and multiple outputs. In actual arithmetic cir-
cuits, the networks are much simpler and some of the steps
may not be required at all.

4.1 Construction

The first step constructs separate Boolean networks for each
output from the parent network. This is done by traversing the
parent network in post-order depth-first fashion and dividing it
at the output nodes. For the parent network of Fig. 4, there are
five output nodes. The network is traversed in a post-order
depth first fashion and five separate networks corresponding
to outputs Z0, Z1, Z2, Z3 and Z4 are constructed. This is shown
in Fig. 5.

4.2 Identification

After constructing individual networks, the search for re-
peated nodes begins in each of the networks. Different
repeated nodes existing in networks of Fig. 5 are shown
in the same shade. The network for repeated nodes is then
drawn separately as shown in Fig. 6.

4.3 Prioritization

In this step each identified network is assigned a prior-
ity based on the number of appearances in the original
networks. For example, the network in Fig. 6(a) is
assigned a priority of 5, because it appears in five dif-
ferent networks. Similarly, the network in Fig. 6(b) is
assigned a priority of 4 because it appears in four dif-
ferent networks and so on. Note that the entire parent
network can be constructed by interconnecting these
identified networks.

4.4 Covering and Re-Structuring

In this step, the individual nodes within the identified
networks are covered with suitable cones which are
later optimally mapped onto LUTs. Mapping is done
as per the priority, as it results in the maximum logic

01

03

a4 a3 a2 a1 a0

Z0(a)

01

a4 a3 a2

03

a4 a3 a2 a1 a0

x1

01

04 x1

a5

Z1 (b)

04 x1x2

a5

05

02

a9 a8 a7 a6

x2

Z2(c)

02

a9 a8 a7

05

02

a9 a8 a7 a6

x2x406

d0

 Z3

x4

(d)

06

a10

x4 Z4

01

a4 a3 a2

02

a9 a8 a7

x0

x0

x3
x3

Figure 8 Re-structuring of eliminated networks for efficient utilization of LUTs.

a4 a3 a2 a1 a0

Z0

a5

Z1

a9 a8 a7 a6

Z2

a9 a8 a7a10

 Z3

a4 a3 a2

 Z4

03

01

04

0102

0506

02

Figure 9 Optimally mapped
Boolean network.

298 J Sign Process Syst (2017) 89:293–317

density. For example, the network in Fig. 6(a) has a
priority of 5 and, if mapped optimally, will result in
an improved logic density in all the networks it is a
part of. For efficient mapping each network in Fig. 6 is
divided into sub-networks. This is again done by tra-
versing the network in post-order depth-first fashion
and dividing it at output nodes. Thus the network of
Fig. 6(a) is divided into three sub-networks correspond-
ing to outputs X0, X1 and Z0. Similarly, networks in
6(b), 6(c) and 6(d) are divided into different sub-net-
work, as per their fan-out. This is shown in Fig. 7. A
straight forward approach to mapping would be to as-
sign the logic implemented by each sub-network to a
separate cone and map it onto a separate LUT. This,
however, leads to under-utilization of the resources. For
efficient mapping, therefore, the entire assembly of sub-
networks is re-structured. This requires transferring
some sub-networks from their original networks and
combining them with sub-networks that belong to dif-
ferent networks. For example, sub-network X0, that
originally belonged to 7(a) is now transferred to 7(b)
and included with sub-networks X2 and Z1. Similarly,
the sub-network X3 is now included with sub-networks
Z3 and Z4 that belongs to 7(d). This re-structuring of
sub-networks ensures a proper utilization of the LUT
fabric. The re-structured sub-networks are shown in
Fig. 8. The re-structured sub-networks are then effi-
ciently mapped onto 6-input LUTs by directly mapping
their functionalities onto these target elements.

4.5 Re-Construction

The parent network is then re-constructed by connecting
the mapped networks from step iv. The overall structure
is a simple feed-forward structure having a unidirection-
al dataflow. The final mapped structure is shown in
Fig. 9.

The covering and re-structuring process will determine the
effectiveness of the technology-dependent optimization in im-
proving the performance of the mapped circuit. The process is
limited by the number of inputs and outputs in a network. For
example, if we are targeting 6-input LUTs then the covering of
the network in Fig. 10(a) will require separate LUTs for each
node, as the total number of input exceeds six. However, for
Fig. 10(b) the total number of inputs is six and the entire
network can be mapped onto a single LUT. Similarly, in
Fig. 10(c), although the number of inputs is six, the number
of outputs exceeds one. In this case the number of outputs will
determine the number of required LUTs. For effective cover-
ing and re-structuring the redundancies within the networks
need to be exploited. In arithmetic circuits three types of re-
dundancies may exist. These may be exploited to design high
density minimum-depth circuits. We first discuss these redun-
dancies and how they can be exploited to design efficient
circuits.

4.6 Node Decomposition

Decomposition of a node into two or more nodes may lead to
an effective combination of the nodes within a network. The
decomposed nodes can be combined with other nodes and

(a) (b)

a

b

c

d
b

c

a

d1

d2

Figure 11 Node Decomposition. a Normal covering. b Covering with
node decomposition.

(a) (c)(b)

a

b

c

d d

a

b

c d

b

c

a

e

Figure 10 Covering of nodes for networks with different number of
inputs and outputs.

(a)
(b)

d

c

b

a

a d

a c

a b

Figure 12 Node duplication. a Normal covering. b Covering with
duplicated nodes.

J Sign Process Syst (2017) 89:293–317 299

covered with fewer cones. For example, consider the network
of Fig. 11(a). It consists of three input nodes a, b and c and a
single output node d. The input nodes drive the output node d.
Normal covering will require a cone for each of the input and
output nodes resulting in a network depth of two and a total
LUT count of four. However, if the output node d is
decomposed into two nodes d1 and d2, and then combined
with input nodes, a better covering is possible. This is shown
in Fig. 11(b) where the node d1 is combined with nodes a and

b and node d2 is combined with node c. With this realization
the total LUT count is reduced to two. Node decomposition is
usually employed for the output nodes.

4.7 Node Duplication

In some cases the output of a single node may be serv-
ing as input to multiple nodes within a network. In such
cases the input node may be duplicated and covered
separately along with the different nodes it serves. For
example, in Fig. 12(a), input node a drives three output
nodes b, c and d. Normal covering will require a cone
for each node resulting in an LUT count of four and a
network depth of two. However, if the input node is
duplicated and included separately with the output
nodes b, c and d, an efficient covering will result. This is
shown in Fig. 12(b) where the input node a is included sepa-
rately with output nodes b, c and d. The total number of LUTs
is reduced to three and the network depth is reduced to
one. Node duplication is usually employed at the input
nodes.

RRR

RRR

RRR

 0 X3Y0 0 X2 Y0 0 X1 Y0 0 X0 Y0

 X3 Y1 X2 Y1 X1 Y1 X0 Y1

 X3Y2 X2 Y2 X1 Y2 X0 Y2

 X3 Y3 X2 Y3 X1 Y3 X0 Y3

 Z3 Z2 Z1 Z0

(a)

0

0

0

Y3

RRR

 0 X3 Y0 X2 0 0 X1 Y0 X0 0

RRR

RRR

X3 Y1 X2 X1 Y1 X0

X3 Y2 X2 X1 Y2 X0

X3 Y3 X2 X1 Y3 X0

 Z3 Z2 Z1 Z0

(b)

0

0

0

Y

Figure 14 LUT-Carry-chain
based 4-bit RCA multiplier. a
Traditional realization. b
Modified realization.

(a) (b)

a

b

c

d

a

b

c

d

Figure 13 Re-convergent paths. a Normal covering. b Covering
exploiting re-convergent paths.

300 J Sign Process Syst (2017) 89:293–317

4.8 Re-Convergent Paths

A node in the network with a fan-out greater than one, which
terminates at other nodes within the same network, is a
source of re-convergent path. Re-convergent paths can
be realized within the LUT and the total number of
inputs to a network can be reduced. For example the
network of Fig. 13(a) has two re-convergent paths that can
be included within a LUT. This will reduce the number of
inputs from seven to five. A reduction in the number of inputs
ensures that the entire network is covered using a single cone
that can be mapped onto a single LUT. This is shown in
Fig. 13(b) where the LUT count and network depth has been
reduced to one.

5 Technology-Dependent Optimization
of Fixed-Point Bit-Parallel Multipliers

5.1 Bit-parallel Fixed-Point RCA Multiplier

As mentioned previously an RCA multiplier has rows of
ripple carry chains. Traditionally, these are implemented
on FPGAs using a combination of LUTs and carry-
chains. The carry-chain handles the rippling of carry
in each row and the LUTs implement the associated
logic. Such a realization is shown in Fig. 14(a) where
a 4-bit fixed-point RCA multiplier is implemented using
a combination of LUTs and carry-chains. Bit-parallel
structures can be easily pipelined by inserting registers

S0

(a)

 X0Y0 s0 c0 X0Y0 s0 c0

C1
S1

 X0Y0 s0 c0

 X1 Y0 s1

 X1 Y0 s1

S0

(b)

C1

S1

LUT1

LUT2

LUT3

1

1

1

 X0Y0 s0 c0 X1 Y0 s1 X0 s0 c0
 X1 Y0 s1 X0 s0 c0Figure 16 Mapping of two-bit

cell. a Logic replication. b
Optimized circuit using 6-input
LUTs.

 S C
S0

(a)

 X0Y0 s0 c0 X0Y0 s0 c0

S1

C1

 X1Y0 s1 X1Y0 s1

Z

(b)

 X0 Y0 s0 c0 s0 s0 c0 c0Figure 15 Boolean network for
RCA multiplier. a Basic cell. b
Two-bit cell.

J Sign Process Syst (2017) 89:293–317 301

between different rows. This works well for FPGAs
which have abundant unused registers. Pipelining the
structure also ensures that a synchronous design practice
is followed, which is always desirable for FPGA
implementation.

The realization of Fig. 14(a) requires 16 LUTs and
has a critical path limited by the delay of a single
LUT and carry-chain. For an N × N multiplier, there-
fore, the resource utilization would be N2 and the
overall critical path delay for a pipelined implementation
would be:

TCP ¼ TL þ NTC ð9Þ

Where,

TL is the delay associated with a single LUT.
TC is the delay associated with a single carry.

In this section two technology-optimized bit-parallel
RCA multipliers will be discussed. The first one is a
modification of the traditional LUT-Carry-chain structure
and results in reduced logic utilization and power dissi-
pation. The second one is an LUT-Register based novel
structure that results in a reduced critical path, at the
expense of extra LUT cost. The structures are discussed
in detail below:

5.1.1 LUT-Carry-Chain Based Bit-Parallel RCA Multiplier

The LUT-Carry-chain based bit-parallel RCA multiplier
is similar to the traditional RCA multiplier. The carry-
chain is again used to handle the rippling of carry in
each row. The associated logic is re-structured to take
advantage of the dual output capability of 6-input LUTs.
Figure 14(b) shows the schematic of the modified 4-bit
RCA multiplier. The total LUT count that implements
the combinational logic is eight and the critical path
delay is limited by the delay associated with a single
LUT and carry-chain. An N × N multiplier will require
N2/2 LUTs to implement the combinational logic, which
is 50 % less than the traditional realization. A reduction
in the utilized logic also results in the reduction in
dynamic power dissipation. This is indicated in the ex-
perimental results discussed in section 6. The critical
path delay for a pipelined implementation will be the
same as given by Eq. 9.

 X2Y0 0 X3 Y0 0 X2 0 1 Y0 0 X0 0 0 X1 Y0 0 X0 0 0

R

R

R

 X2Y1 X3 Y1 X2 1 Y1 X0 0 X1 Y1 X0 0

R

R

R

 X2Y2 X3 Y2 X2

X

X

X1 Y2 X0 0 X1 Y2 X0 0

R

R

R

 X2Y3 X3 Y3 X2 X0Y3 0 X1 Y3 X0 0 X1 Y3 X0 0

Z3

Z2

Z1

Z0

R

R

R

R

Figure 17 Technology-optimized 4-bit RCA multiplier based on LUT-
Register combination.

302 J Sign Process Syst (2017) 89:293–317

5.1.2 LUT-Register Based Bit-Parallel RCA Multiplier

The LUT-Register based multiplier is a novel structure that
utilizes a combination of LUTs and registers instead of the
LUT-Carry-chain combination. Figure 15(a) shows the parent
network for the basic cell used in an RCA multiplier. Two
separate Boolean networks corresponding to the sum (S) and
carry (C) outputs may be constructed from the parent network.
Identification and prioritization steps may then be used to
obtain separate networks. However, owing to the simplicity
of the parent network, the re-structuring of the identified net-
works will lead back to the parent network of Fig. 15(a).
Therefore, identification and prioritization steps are complete-
ly omitted and the covering of the parent Boolean network is
directly considered. A straight forward approach would be to
cover each node with a separate cone and then map the local
function implemented by each cone onto a separate LUT.
This, however, will lead to under-utilization of the available
resources, thereby resulting in low density and increased in-

terconnect length in the final circuit implementation. Since
interconnects in FPGAs are configurable switches, an in-
creased interconnect length not only contributes to the overall
combinational delay but also increases the switching activity
along the paths. This may be hazardous for power-critical
applications as the power dissipation in FPGAs is a strong
function of the switching activity. It is thus desirable to have
an implementation with high logic density and minimum pos-
sible routing. This issue is countered by considering the
Boolean network for two multiplier cells simultaneously.
Figure 15(b) shows the parent network corresponding to a
two-bit multiplier cell. The network is partitioned into three
Boolean networks corresponding to two sum bits S0 and S1
and a carry bit C1. This is done by replicating the logic at the
fan-out node Z. The replicated logic is shown as shaded por-
tion and appears in both S1 and C1 networks. This is shown in
Fig. 16(a). The individual networks are now mapped optimal-
ly onto suitable LUTs. Sub-network S0 computes the sum bit
and utilizes one LUT. Sub-networks S1 and C1 are implement-

 0 X0Y0

 Z3 Z2 Z1 Z0

R
R

R

R
R

R

R
R

R

R R R R R R R

 0 X1Y0 0 X2Y0 0 X3Y0

000 0

X0Y1

X0Y2

X0Y3X1Y3

X1Y2

X1Y1X2Y1

X2Y2

X2Y3

X3Y1

X3Y2

X3Y3

Y3

Figure 18 Conventional LUT-
Carry-chain based realization of a
4-bit CSA multiplier.

J Sign Process Syst (2017) 89:293–317 303

ed as 6-input functions and are mapped separately onto 6-
input LUTs. The entire distribution is shown in Fig. 16(b).
The overall multiplier unit is then realized by cascading the
binary cells together. Such a realization is purely combination-
al in nature. It is observed that in each row the LUTs comput-
ing the first sum bit (S0) and last carry bit (CN-1) are not
actually required, except for the last row where the sum bit
is required. Thus, there is a reduction of two LUTs in each
intermediate row and a reduction of one LUT in the last row.
AnN × Nmultiplier based on the realization of Fig. 16(b) will
thus require (3N2/2)-2 N + 1, LUTs and will have a critical
path delay that varies linearly with the operand word-length.
The combinational realization can be easily pipelined by
placing registers at the output of each binary cell. Such
a realization is shown in Fig. 17. The pipelined realiza-
tion breaks the data path from input to output which
enables the multiplier to be clocked at higher frequen-
cies. For correct operation, however, the inputs must
remain constant during the period of operation. While
this works fine for constant-coefficient multiplication,
additional registers are required at the input if the data
is varying in real-time. This is not a problem for
FPGAs as there are abundant unused registers in each
logic slice. Further, the use of input/output buffers also
ensures that the data is held sufficiently long enough for
correct operation.

0 Y0 X0 Y1

R R

0

 Y2 X0 Y3

0 Y0 X1 Y1

R R

0

 Y2 X1 Y3

R
R

R

0 Y0 X2 Y1

R R

0

 Y2 X2 Y3

0 Y0 X3 Y1

R

0

 Y2 X3 Y3

R
R

R

R
R

R

 Z3 Z2 Z1 Z0

Y3

Figure 19 Modified LUT-Carry-
chain based realization of a 4-bit
CSA multiplier.

X1Y0

 Z3 Z2 Z1 Z0

R
R

R
R

R R R R R

X2Y0

000

X0Y1

X0Y2

 X0 Y3X1Y3

X1Y2

X1Y1X2Y1

X2Y2

X2Y3

X3Y0

X3Y1

X3Y2

X3Y3

1

R

Figure 20 Conventional LUT-Carry-chain based realization of a 4-bit
BW multiplier.

304 J Sign Process Syst (2017) 89:293–317

5.2 Bit-parallel Fixed-Point Carry-Save Based Multipliers

Ripple-carry based architectures map well on FPGAs because
of their inherent ability to utilize the fast carry-chains. Carry-
save based architectures are not generally suited for FPGAs
because there is no rippling of carry in these structures and the
fast carry-chains remain unutilized. In this section, efficient
mapping of fixed-point bit-parallel carry-save multipliers
on FPGAs is discussed. It is shown that by proper re-
structuring and covering, carry-save based multipliers can be
implemented on FPGAswith almost same performance as that
of RCA multipliers. Two carry-save based multipliers have
been considered; CSA multiplier and CS based BW multipli-
er. An important part of these multipliers is the VMA that

combines the partial sum and partial carry to generate the final
result. Like with RCA multipliers, LUT-Carry-chain and
LUT-Register realizations of these multipliers will be
discussed.

5.2.1 LUT-Carry-Chain Based Bit-Parallel Carry-Save
Multipliers

From the top level schematics of Fig. 3(b) and 3(c) it is ob-
served that there is no rippling of carry within a row of carry-
save multipliers. However, the carry does ripple along each
column from one row to the next. Thus instead of placing the
carry-chains horizontally along a row, they can be placed ver-
tically along a column. The associated logic is again imple-
mented using 6-input dual-output LUTs. Such an arrangement
is shown in Figs. 18 and 19 where conventional and modified
4-bit CSAmultipliers are implemented using LUTs and carry-
chains. Figures 20 and 21 show the same realization for a CS
based BW multiplier. The structures have approximately the
same hardware cost as that of an RCA multiplier. The
only overhead is that of the terminating VMA unit,
which requires an additional carry-chain and LUTs to
implement the associated logic. Resource utilization
and critical path are listed in Table 1 for an N-bit operand
word-length. Actual synthesis and implementation is
discussed separately in section 6.

5.2.2 LUT-Register Based Bit-Parallel Carry-Save
Multipliers

The basic cell in carry-save based multipliers remains
the same as in RCA multiplier. However, as mentioned
previously, the carry ripples along a column from one
row to the next. This requires a vertical arrangement of
binary cells along a column. The final circuit net-list
that combines the individual binary cells is thus differ-
ent. This is shown in Figs. 22 and 23, where CSA and
CS based BW multipliers are implemented, respectively,
for an operand word-length of four bits. Since the basic

Table 1 Performance
comparison of different fixed-
point bit-parallel multiplier
schemes.

Multiplier Scheme Design No. of LUTs that implement logic Critical path

RCA Conventional LUT-Carry-chain N2 TL + NTC
Modified LUT-Carry-chain N2/2 TL + NTC
Proposed LUT-Register (3N2/2)-2 N + 1 TL

Conventional LUT-Carry-chain N(N + 1) TL + NTC
CSA Modified LUT-Carry-chain N(N + 1)/2 TL + NTC

Proposed LUT-Register 3N2/2 TL

Conventional LUT-Carry-chain N(N + 1)-2 2TL + NTC

BW Modified LUT-Carry-chain N(N + 1)/2 TL + NTC
Proposed LUT-Register [3 N(N-2)/2] + 5 TL

X1Y0X0Y1

R

0

 Y2 X0 Y3

X2Y0X1Y1

R R

0

 Y2 X1 Y3

R
R

X3 Y0X2Y1

R R

0

 Y2 X2 Y3

 Y2 X3 Y1

R

R
R

R
R

 Z3 Z2 Z1 Z0

X3Y3

1

Figure 21 Modified LUT-Carry-chain based realization of a 4-bit
BW multiplier.

J Sign Process Syst (2017) 89:293–317 305

cell is the same as the one used in an RCA multiplier, the
optimizations done at the lower level are preserved. However,
there is some additional overhead owing to the VMA that
generates the final product. The VMA is a simple binary adder

and can be realized using the same general heuristic as
discussed in section 4. Figure 24 shows the parent network
and the corresponding LUT net-list for the basic cell that is
used to implement the VMA. Note that some modification is

Y
3

 X

0

 Y

2

 Y
3

 X
0

Y
2

 Y
1

 X
0

Y
0

0

 0

R

 Y

0
X

1
 0

0

 Y
1

 X
1

 Y

0

 0

 0

 Y
1

 X
1

 Y

0

0

 0

R

 Y

2
X

1

Y
3

 X

1

 Y

2

 Y
3

 X
1

Y
2

R

R

R

R

 Y

0
X

2
 0

0

 Y

1

 X
2

 Y

0

 0

 0

R

 Y

2
X

2

Y
3

 X
2

 Y

2

 Y
3

 X
2

Y
2

R

R

R

R

 Y

0
X

3
 0

0

 Y

1

 X

3

Y

0

 0

 0

R

 Y

2
X

3

Y
3

 X

3

 Y

2

R

R

R

R

 Y

1
 X

2

 Y

0

 0

 0

 Y
1

 X
3

 Y

0

0

 0

R
R

R

Z
0

Z
1

Z
2

Z
3

Y
3

Y
3

0
0

Y
3

0

R

R
R

R

R

R

R

R

R

R

R

Figure 22 Technology-optimized 4-bit CSA multiplier based on LUT-Register combination.

306 J Sign Process Syst (2017) 89:293–317

required in the first and the final row of the BW multiplier.
Like with RCA multipliers, the final net-list is further
optimized by eliminating some redundant LUTs that are
not required. This involves the elimination of the sum
bits in the first column except for the terminating cell
of the column where the sum bit has to be retained. The

schematic showing the arrangement of binary cells in
three different multipliers is shown in Fig. 25. A theo-
retical comparison of the resource utilization and critical
path for different multiplier schemes is listed in Table 1.
Actual synthesis and implementation is discussed sepa-
rately in section 6.

 Y

3

X

0

 Y
2

 Y

3
 X

0

 Y
2

 Y
1

 X
0Y

0

 X

1

R

Y

2X
1

 Y
3

X

1

 Y
2

 Y

3
 X

1

 Y
2

R

R

Y

2X
2

 Y
3

X

2

 Y
2

 Y

3
 X

2

 Y
2

R

R

R
R

R

Z
0

Z
1

Z
2

Z
3

1
1

0
0

1
0

 Y
1

 X
1Y

0

 X

2
 Y

1

 X

2Y
0

 X
3

 Y
2

 X

3

 Y
1

 Y
3

X
3

R
R

R
R

R
R

R

R

R
R

R
R

R

R
R

R

R

R

R

R

R

R
R

Figure 23 Technology-optimized 4-bit BW multiplier based on LUT-Register combination.

J Sign Process Syst (2017) 89:293–317 307

6 Synthesis, Implementation and Discussions

6.1 General Considerations and Methodology

The implementation in this work targets FPGAs that
have 6-input LUTs as the basic logic element. This in-
cludes state-of-art Xilinx 5th, 6th and 7th generation
FPGAs. In particular, devices from Virtex-5 family have
been considered for implementation. Each logic slice in
these FPGAs supports combinational and synchronous
resources like 6-input LUTs, fast carry-chains, storage
elements, function generators etc. [12]. The amount of
supported resources varies from family to family, and
within a family from device to device. The 6-input
LUTs supported by these devices can be used in dual

output mode to implement two 5-input Boolean func-
tions that share inputs. Each carry-chain supports four-
bit operands and performs fast arithmetic addition based
operations within a slice. Registers are synchronous el-
ements that are used for pipelined implementations.
Each logic slice can provide a combinational output or
a registered output.

The implementation in this work is carried out for
different operand word-lengths. The parameters consid-
ered are area, timing and power dissipation. Area is
measured in terms of on-chip resources utilized. These
include LUTs, flip-flops and slices. Timing is concerned
with the clock speed of a design and is limited by the
setup time of the input/output registers, propagation and
routing delays associated with the critical path, clock to

(a)

FA FAFAFA

FAFA

FAFAFA FA

FAFAFA FA

FA FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

(b)

HAHA HA

FAFA FA

FAFA FA

(c)
Figure 25 Cell arrangement in different multipliers. a RCA multiplier. b CSA multiplier. c BW multiplier.

 a1 b1 1

1

(b) (c)

 a0 b0 c0 a0 b0 c0 a0 b0 c0

 a1 b1

S0

 S1 C1

 a0 b0 c0 a1 b1 a0 b0 c0 a1 b1 a0 b0 c0

S0

S1 C1

 a0 b0 c0 a0 b0 c0

S0

(a)

 a1 b1 a1 b1

S1 C1

Z

Figure 24 a Parent network for VMA. b Re-structured Boolean networks. b Optimized LUT net-list.

308 J Sign Process Syst (2017) 89:293–317

output time associated with the flip-flops and the skew
between the input register and the output register. For
pure combinational circuits, timing is mainly concerned
with the propagation and routing delays associated with
the critical path. Throughout this work, inherent Digital
Clock Managers (DCMs) have been used to control the
mapping of the clocking resources onto the underlying
FPGA fabric. This helps in keeping the skew to a
minimal.

Timing analysis may be either static or dynamic.
Static timing analysis gives information about the
speed of the implemented design. This is usually
expressed in terms of the critical path delay and oper-
ating frequency of the design. Static timing analysis is
done post synthesis and post PAR. However, the met-
rics obtained after synthesis are often not accurate
enough due to the programmability of the FPGA which
allows for interconnect delays to change significantly
between iterations. Therefore, the metrics presented in
this work are post PAR, i.e. once the design has been
translated and mapped and all the components have
been placed and routed to meet the requisite design
constraints. Dynamic timing analysis verifies the func-
tionality of the design by applying test vectors and
checking for correct output vectors. An important result
from dynamic timing analysis is the switching activity
information captured in the value change dump (VCD)
file.

Power dissipation is given by the sum of static power
dissipation and dynamic power dissipation. Static power
dissipation consists of device static power dissipation
and design static power dissipation. Device static power
dissipation represents the power dissipated by the device
to operate and be available for programming. It forms
the major portion of the FPGA static power dissipation
and varies with family. Design static power dissipation

is the additional continuous power drawn from the
source when the device is configured and there is no
activity. Dynamic power dissipation is related to the
charging and discharging of capacitances along different
logic nodes and interconnects. The software device da-
tabase models the capacitance of each FPGA resource
according to its configuration and connectivity. The
software algorithms then predict the activity of each
node in the netlist before calculating and adding up
the power of all components. Alternatively, the designer
may supply the activity file obtained during dynamic
timing analysis for power calculations.

In this work, similar test-benches have been used for
simulation and metrics generation and are typically de-
signed to represent the worst case scenario (in terms of
switching activity) for data entering into the synthesized
blocks. Design entry is done using VHDL. The con-
straints relating to synthesis and implementation are du-
ly provided and a complete timing closure is ensured.
Synthesis and implementation is done using Xilinx ISE
12.1 [36]. Power analysis is done using Xpower analyzer
[36].

6.2 Coding Strategy

Design entry is one of the most important steps in
FPGA design flow. It is the only manual step in the
entire design flow. The rest of the steps are either fully
automated or semi-automated. For getting maximum
performance from an FPGA design, a proper coding of
its functionality is important. HDL coding styles can
have a significant impact on the quality of results that
are achieved once the design is implemented. It is thus
desirable to write HDL codes that map efficiently onto
the target FPGA. It is usually preferable to describe the
behavior of the design and let the synthesis tool do the

Table 2 Resource utilization for
different technology-optimized
bit-parallel multiplier schemes.

Scheme Design No. of LUTs that
implement logic

No. of slices No. of registers

RCA Conventional LUT-Carry-chain (CLCCh) 256 69 225

Modified LUT-Carry-chain (MLCCh) 128 68 225

Proposed LUT-Register (PLR) 352 92 315

Conventional LUT-Carry-chain (CLCCh) 272 75 241

CSA Modified LUT-Carry-chain (MLCCh) 135 74 238

Proposed LUT-Register (PLR) 371 102 342

Conventional LUT-Carry-chain (CLCCh) 268 75 238

BW Modified LUT-Carry-chain (MLCCh) 136 74 235

Proposed LUT-Register (PLR) 327 98 321

J Sign Process Syst (2017) 89:293–317 309

mapping of the code. Such a coding strategy is inferen-
tial, in the sense that the HDL code is inferred by the
synthesizer and the distribution of logic to the underly-
ing resources is done by the synthesizer itself.

Inferential coding styles are simple and have many ad-
vantages like readability and portability. However, the
synthesis tool does not have any information about the
purpose or intent of the design. As such the optimiza-

(a)

(b)

(c)

8 16 32 64
0

200

400

600

800

1000

1200

1400

N
O

. O
F

 L
U

T
s

WORD LENGTH

 CLCCh-RCA
 MLCCh-RCA
 PLR-RCA
 CLCCh-CSA
 MLCCh-CSA
 PLR-CSA
 CLCCh-BW
 MLCCh-BW
 PLR-BW

LUT UTILIZATION

8 16 32 64
0

50

100

150

200

250

300

N
O

. O
F

 S
L

IC
E

S

WORD LENGTH

OCCUPIED SLICES

8 16 32 64
0

100

200

300

400

500

600

700

800

900

N
O

. O
F

 R
E

G
IS

T
E

R
S

WORD LENGTH

REGISTERS

Figure 26 Resource utilization
versus word-length for different
technology-optimized
realizations. a LUT utilization. b
Occupied slices. c Registers.

310 J Sign Process Syst (2017) 89:293–317

tions performed by the synthesis tool may not be opti-
mum for the intended application.

Instantiation based coding strategy may be used as an
alternative for mapping a desired functionality onto the
FPGA device. With instantiation based coding styles the
designers can control the exact placement of the indi-
vidual blocks. Although instantiation based codes are
complex and suffer from poor readability, the notion
that the designer has control over the mapping process
makes it desirable. In fact, instantiation may sometimes
be the only way to make use of the complex resources
available in the device.

The logic blocks synthesized in this work are tech-
nology-optimized. It is, therefore, important that the op-
timizations done prior to design entry remain preserved
throughout the design flow. For this reason, instantiation
based coding strategy has been used throughout this
work.

7 Results and Discussions

In this section, actual synthesis and implementation of
different multiplier realizations discussed in section 5 is
carried out. The performance of these multipliers is
compared against the Xilinx IP multiplier v.11.2 and
some technology-independent realizations reported in
[38]. The analysis is done for an operand word-length
varying from 8 to 64 bits and the targeted device is
xc5vlx30-3ff324 from Virtex-5.

7.1 Area Analysis

Table 2 provides a comparison of the resources utilized for
logic implementation by different multiplier realizations for an
operand word-length of 16 bits. In each multiplier scheme the
modified LUT-Carry-chain realization requires least number
of LUTs to implement the combinational logic. This is due to
the efficient utilization of the underlying FPGA fabric as
discussed in section 5. Amongst different multiplier schemes,
the RCA based multiplier structures map efficiently onto the
FPGA device. Evidently, for a given realization, the RCA
scheme has the minimum LUT and slice count. Further
analysis is carried out by plotting the resources utilized
as a function of operand word-length. The results are
shown in Fig. 26.

Next, different multipliers reported in [37] are compared
against the technology-optimized realizations. Comparison is
also provided against the Xilinx IP multiplier v.11.2. Table 3
shows the resources utilized for an operand word-length of 16
bits. Note that the Xilinx IP multiplier v.11.2 can be imple-
mented using LUTs or DSP cores. For area analysis, the real-
ization utilizing LUTs is considered. The results again indicate
that technology-optimized multipliers utilize the underlying
fabric more efficiently. Further analysis is done by plotting
the resources utilized against the operand word-length. The
results are shown in Fig. 27.

7.2 Timing Analysis

Table 4 provides a comparison of the critical path delay
and maximum achievable clock frequency for different

Table 3 Resource utilization for
proposed technology-optimized
realizations and different
technology-independent
realizations.

Design No. of LUTs that
implement logic

No. of
Slice

No. of
Registers

RCA based Modified LUT-Carry-chain (MLCCh-RCA) 128 68 225

RCA based Proposed LUT-Register (PLR-RCA) 352 92 315

CSA based Modified LUT-Carry-chain (MLCCh-CSA) 135 74 238

CSA based Proposed LUT-Register (PLR-CSA) 371 102 342

BW based Modified LUT-Carry-chain (MLCCh-BW) 136 74 235

BW based Proposed LUT-Register (PLR-BW) 327 98 321

Xilinx IP Multiplier v.11.2 (XIP-V 11.2) 285 89 304

Multipliers reported in [37]

Carry Save Multiplier (CSM) 353 93 321

Carry Ripple Multiplier (CRM) 398 107 298

Booth Signed Multiplier-I (BSM-I) 428 142 372

Booth Signed Multiplier-I (BSM-I) 289 77 243

Booth Signed Multiplier-I (BSM-I) 402 108 334

J Sign Process Syst (2017) 89:293–317 311

multiplier realizations discussed in section 5. The oper-
and word-length is 16-bits. In each multiplier scheme,
the LUT-Register based realization shows an improved

timing behavior. This is because the LUT-Register based
structure is implemented with a reduced circuit depth
and the critical path in these structures is effectively

(a)

(b)

(c)

8 16 32 64
0

200

400

600

800

1000

1200

1400

1600

N
O

. O
F

 L
U

T
s

WORD LENGTH

 CSM
 CRM
 BSM-I
 BSM-II
 BSM-III
 XIP-V 11.2
 MLCCh-RCA
 PLR-RCA
 MLCCh-CSA
 PLR-CSA
 MLCCh-BW
 PLR-BW

LUT UTILIZATION

8 16 32 64
0

150

300

450

600

750

900

N
O

. O
F

 S
L

IC
E

S

WORD LENGTH

OCCUPIED SLICES

8 16 32 64
0

200

400

600

800

1000

N
O

. O
F

 R
E

G
IS

T
E

R
S

WORD LENGTH

REGISTERS

Figure 27 Resource utilization
versus word-length for different
multiplier realizations. a LUT
utilization. b Occupied slices. c
Registers.

312 J Sign Process Syst (2017) 89:293–317

re-timed. Amongst different multiplier schemes, the BW
based LUT-Register structures show an improved timing
behavior. Further analysis is carried out by plotting the

critical path delay and maximum clock frequency as a
function of operand word-length. The results are shown
in Fig. 28.

(a)

(b)

8 16 32 64
0

2

4

6

8

10

12

14

16

M
A

X
. D

E
L

A
Y

 (
nS

)

WORD LENGTH

 CLCCh-RCA
 MLCCh-RCA
 PLR-RCA
 CLCCh-CSA
 MLCCh-CSA
 PLR-CSA
 CLCCh-BW
 MLCCh-BW
 PLR-BW

CRITICAL PATH

8 16 32 64
0

100

200

300

400

500

600

700

800

M
A

X
. C

L
O

C
K

 F
R

E
Q

. (
M

H
z)

WORD LENGTH

OPERATING FREQUENCY

Figure 28 Timing parameters
versus word-length for different
technology-optimized
realizations. a Critical path. b
Operating frequency.

Table 4 Timing analysis for
different technology-optimized
bit-parallel multiplier schemes.

Scheme Design Critical path (nS) Max. clock frequency (MHz)

RCA Conventional LUT-Carry-chain (CLCCh) 7.298 354.2

Modified LUT-Carry-chain (MLCCh) 6.964 347.58

Proposed LUT-Register (PLR) 5.994 523.01

Conventional LUT-Carry-chain (CLCCh) 7.689 317.3

CSA Modified LUT-Carry-chain (MLCCh) 7.172 336.8

Proposed LUT-Register (PLR) 5.736 534.18

Conventional LUT-Carry-chain (CLCCh) 8.481 307.4

BW Modified LUT-Carry-chain (MLCCh) 7.002 338.002

Proposed LUT-Register (PLR) 5.724 548.24

J Sign Process Syst (2017) 89:293–317 313

(a)

(b)

8 16 32 64
0

10

20

30

40

50

M
A

X
. D

E
L

A
Y

 (n
S)

WORD LENGTH

 CSM
 CRM
 BSM-I
 BSM-II
 BSM-III
 XIP-V 11.2-LUT
 XIP-V 11.2-DSP
 MLCCh-RCA
 PLR-RCA
 MLCCh-CSA
 PLR-CSA
 MLCCh-BW
 PLR-BW

CRITICAL PATH

8 16 32 64
0

100

200

300

400

500

600

700

800

M
A

X
. C

L
O

C
K

 F
R

E
Q

. (
M

H
z)

WORD LENGTH

OPERATING FREQUENCY

Figure 29 Timing parameters
versus word-length for different
multiplier realizations. a Critical
path. b Operating frequency.

Table 5 Timing analysis for
proposed technology-optimized
realizations and different
technology-independent
realizations.

Design Critical path (nS) Max. clock frequency (MHz)

RCA based Modified LUT-Carry-chain (MLCCh-RCA) 6.964 347.58

RCA based Proposed LUT-Register (PLR-RCA) 5.994 523.01

CSA based Modified LUT-Carry-chain (MLCCh-CSA) 7.172 336.8

CSA based Proposed LUT-Register (PLR-CSA) 5.736 534.18

BW based Modified LUT-Carry-chain (MLCCh-BW) 7.002 338.002

BW based Proposed LUT-Register (PLR-BW) 5.724 548.24

LUT based Xilinx IP Multiplier (XIP-V 11.2_LUT) 11.363 472.3

DSP based Xilinx IP Multiplier (XIP-V 11.2_DSP) 8.26 550.05

Multipliers reported in [37]

Carry Save Multiplier (CSM) 10.34 356.21

Carry Ripple Multiplier (CRM) 17.342 308.71

Booth Signed Multiplier-I (BSM-I) 19.008 298.71

Booth Signed Multiplier-I (BSM-I) 11.543 323.002

Booth Signed Multiplier-I (BSM-I) 11.45 325

314 J Sign Process Syst (2017) 89:293–317

The performance of technology-optimized multiplier struc-
tures is also compared against the Xilinx IP multiplier v.11.2
and some technology-independent realizations reported in
[37]. With respect to Xilinx IP multiplier v.11.2, it should be
noted that both LUT and DSP based realizations have been
considered. Also the multipliers reported in [37] have been re-
implemented using synchronous design practices by effective-
ly pipelining these structures. The underlying platform and
timing constraints are kept same for all implementations.
Table 5 provides a comparison of different timing parameters
for an operand word-length of 16 bits. The modified LUT-
Carry-chain structures and the LUT-Register based structures
again show an enhanced timing performance. Further analysis
is carried out by plotting different timing parameters as a
function of operand word-length. The results are shown in
Fig. 29.

7.3 Power Analysis

Table 6 gives the dynamic power dissipation for differ-
ent multiplier realizations discussed in section 5. The
analysis is done for a constant clock frequency of
300 MHz and an operand word-length of 16 bits. In
each multiplier scheme, the modified LUT-Carry-chain
structure has minimum dynamic power dissipation.
This is due to the reduced logic utilization in these
structures. Amongst different multiplier schemes, the
RCA based multipliers have slightly lesser power dissi-
pation. This may again be attributed to their ability to
use the underlying carry-chains efficiently. Since all the
realizations are pipelined, there is a relaxed switching
activity in all the multiplier structures. Evidently,
technology-optimized realizations have considerably

Table 7 Power dissipation for
proposed technology-optimized
realizations and different
technology-independent
realizations.

Design Dynamic power dissipation (Watt)

RCA based Modified LUT-Carry-chain (MLCCh-RCA) 0.0252

RCA based Proposed LUT-Register (PLR-RCA) 0.0321

CSA based Modified LUT-Carry-chain (MLCCh-CSA) 0.0261

CSA based Proposed LUT-Register (PLR-CSA) 0.0331

BW based Modified LUT-Carry-chain (MLCCh-BW) 0.0258

BW based Proposed LUT-Register (PLR-BW) 0.033

LUT based Xilinx IP Multiplier (XIP-V 11.2_LUT) 0.0242

DSP based Xilinx IP Multiplier (XIP-V 11.2_DSP) 0.0182

Multipliers reported in [37]

Carry Save Multiplier (CSM) 0.03569

Carry Ripple Multiplier (CRM) 0.06713

Booth Signed Multiplier-I (BSM-I) 0.06974

Booth Signed Multiplier-I (BSM-I) 0.06889

Booth Signed Multiplier-I (BSM-I) 0.05652

Table 6 Dynamic power
dissipation for different
technology-optimized bit-parallel
multiplier schemes.

Scheme Design Logic power
(Watt)

Dynamic power
dissipation (Watt)

RCA Conventional LUT-Carry-chain (CLCCh) 0.01008 0.0336

Modified LUT-Carry-chain (MLCCh) 0.00747 0.0252

Proposed LUT-Register (PLR) 0.01027 0.0321

Conventional LUT-Carry-chain (CLCCh) 0.0098 0.0338

CSA Modified LUT-Carry-chain (MLCCh) 0.00783 0.0261

Proposed LUT-Register (PLR) 0.0098 0.0331

Conventional LUT-Carry-chain (CLCCh) 0.00983 0.0339

BW Modified LUT-Carry-chain (MLCCh) 0.00774 0.0258

Proposed LUT-Register (PLR) 0.01056 0.033

J Sign Process Syst (2017) 89:293–317 315

lower power dissipation when compared to the technol-
ogy independent realizations reported in [37]. This is
shown in Table 7, where power dissipation of
technology-optimized multipliers is compared against
different realization reported in [37]. However, LUT
and DSP based Xilinx IP multiplier v.11.2 are the most
power efficient realizations. This is due to the inherently
optimized structure of these IPs. Further analysis plots
the variation in dynamic power dissipation with word-
length for different multiplier realizations. The results
are shown in Figs. 30 and 31.

8 Conclusions

This paper discussed the optimum realization of three
different fixed-point bit-parallel multipliers on FPGAs.

The optimizations presented in this paper were technology
dependent and aimed at achieving improved integration levels
in FPGAs by considering the synthesis process at a lower
technology-dependent level. Optimized structures utilizing
the basic FPGA fabric viz. LUTs, carry-chains and registers
were discussed and their performance was theoretically com-
pared against the conventional realizations. Performance com-
parisons, based on generated synthesizer metrics against var-
ious existing approaches were also provided. The proposed
realizations showed a subsequent improvement in perfor-
mance. This was in accordance with the theoretical analysis
done. The results presented in this paper showed that technol-
ogy dependent optimizations have a direct impact on area,
delay and power dissipation of the design. The idea was to
present a clear cut analysis that would provide an insight about
the performance speed-up that is achievable through technol-
ogy dependent optimizations.

8 16 32 64
0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

P
O

W
E

R
 (

W
at

t)

WORD LENGTH

 CSM
 CRM
 BSM-I
 BSM-II
 BSM-III
 XIP-V 11.2-LUT
 XIP-V 11.2-DSP
 MLCCh-RCA
 PLR-RCA
 MLCCh-CSA
 PLR-CSA
 MLCCh-BW
 PLR-BW

DYNAMIC POWER DISSIPATION
Figure 31 Dynamic power
dissipation versus word-length for
different multiplier realizations.

8 16 32 64
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
O

W
E

R
 (

W
at

t)

WORD LENGTH

 CLCCh-RCA
 MLCCh-RCA
 PLR-RCA
 CLCCh-CSA
 MLCCh-CSA
 PLR-CSA
 CLCCh-BW
 MLCCh-BW
 PLR-BW

DYNAMIC POWER DISSIPATION
Figure 30 Dynamic power
dissipation versus word-length for
different technology-optimized
realizations.

316 J Sign Process Syst (2017) 89:293–317

References

1. Compton, K., &Hauck, S. (June 2002). Reconfigurable computing:
a survey of systems and software. ACM Computing Surveys, 34(2),
171–210.

2. Tessier, R., & Burleson, W. (2002). Reconfigurable computing and
digital signal processing: past, present and future. Programmable
Digital Signal Processors, 147–186.

3. Ashour, M. A., & Saleh, H. I. (2000). An FPGA implementation
guide for some different types of serial-parallel multiplier struc-
tures. Microelectronics Journal, 31, 161–168.

4. Woods, R., McAllister, J., Lightbody, G., & Yi, Y. (2008). FPGA-
based implementation of signal processing systems. Wiley.

5. Tessier, R., & Burleson, W. (2001). Reconfigurable computing for
DSP: A Survey. Journal of VLSI Signal Processing, 28, 7–27.

6. Todman, T. J., Constantinides, G. A., Wilton, S. J. E., Mencer, O.,
Luk, W., & Cheung, P. Y. K. (2005). Reconfigurable computing:
architecture and design methods. IEEE Proceedings. Computer
Digital Technology, 152(2).

7. Naseer, R., Balakrishnan, M., & Kumar, A. (1998). Direct mapping
of RTL structures onto LUT-Based FPGAs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 17(7).

8. Jaiswal, M. K., & Cheung, R. C. C. (2013) Area-efficient architec-
tures for double precision multiplier on FPGA, with run-time-
reconfigurable dual single precision support. Microelectronics
Journal, 44, 21–430.

9. Hauck, S.,&Dehon,A. (2008).Reconfigurable computing: the theory
and practice of FPGA-based computing. Morgan Kaufmann series.

10. Brown, S. D., Rose, J., Francis, R. J., & Vranesic, Z. G. (1992).
Field programmable gate arrays. Kluwer Academic Publisher.

11. Ling, A., Singh, D. P., & Brown, S. D. (2005). FPGA technology
mapping: a study of optimality. IEEE Proceedings Design
Automation Conference, 427–432.

12. Chen, D., & Cong, J. (2004). DAO map: a depth-optimal area
optimization mapping algorithm for FPGA designs. IEEE/ACM
International Conference on Computer Aided Design.

13. Anderson, J. H., & Wang, Q. (2011). Area-efficient fpga logic ele-
ments: architecture and synthesis, 16th Asia and South Pacific
Design Automation Conference (ASP-DAC).

14. Xilinx (2009). Virtex-5 family overview, DS100 (v 5.0) Feb. 6,
2009. www.xilinx.com.

15. Xilinx (2010). Virtex-6 libraries guide for HDL designs, UG623 (v
12.3) September 21, 2010. www.xilinx.com.

16. Xilinx (2011). Spartan-6 family overview, DS160 (v 2.0) October
25, 2011. www.xilinx.com.

17. Cardarilli, G. C., Pontarelli, S., Re, M., & Salsano, A. (2008). On
the use of Signed Digit Arithmetic for the new 6-Inputs LUT based
FPGAs, 15th IEEE International Conference on Electronics,
Circuits and Systems, ICECS.

18. Zhou,G., Li, L.,&Michalik, H. (2008). Area optimization of bit parallel
finite field multipliers with fast carry logic on FPGAs, International
Conference on Field Programmable Logic and Applications, FPL.

19. Gao, S., Khalili, D. A., & Chabbini, N. (2007). Optimized realiza-
tion of large-size two’s complement multipliers on FPGAs, IEEE
Northeast Workshop on Circuits and Systems, NEWCAS.

20. Altera Corporation (2006). BStratix III device handbook,^ V.1.
21. Xlinx DSPDesign Considerations (2006). XtremeDSP for Virtex-4

FPGAs, UG073, (v 2.2).
22. Kuon, I., & Rose, J. (2007). Measuring the gap between FPGAs

and ASICs. IEEE Transactions on CAD, 26(2), 203–215.
23. Abedelgwad, A., & Bayoumi, M. (2007). High speed and area

efficient multiply accumulate (MAC) unit for digital signal process-
ing applications,^ in Proceedings of IEEE International
Symposium on Circuits and Systems, ISCAS.

24. Fayed, A. A., & Bayoumi, M. (2002). A merged multiplier accu-
mulator for high speed signal processing applications, in proceed-
ings of IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP).

25. Wei, G., &Ying,W. F. (2013). The implementation of FIR low-pass
filter based on FPGA and DA, in Proceedings of the 4th
International Conference on Intelligent Control and Information
Processing, Beijing, China, 9–11 June 2013.

26. Yuan, X., Ying, T., & Chunpeng, G. (2010). Improved design of
multiplier in the digital filter. International Conference onComputer
and Communication Technologies in Agriculture Engineering.

27. Wirthlin, M. J., & McMurtrey, B. (2001). Efficient constant coeffi-
cient multiplication using advanced FPGA architectures.
International Conference on Field Programmable Logic and
Applications.

28. Writhlin, M. J. (2004). Constant coefficient multiplication using
look-up tables. Journal of VLSI Signal Processing, 36, 7–15.

29. Virtex-6 FPGA Data Sheet (2010). Xilinx, Inc., San Jose, CA.
30. Stratix-IV FPGA Family Data Sheet (2010). Altera, Corp., San

Jose, CA.
31. Parhi, K. (1999). VLSI digital signal processing systems design and

implementation. Wiley.
32. Chang, H., & Satzoda, R. K. (2010). A low error and high perfor-

mance multiplexer based truncated multiplier. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, Vol. 18, No. 12,
December 2010.

33. Kidambi, S. S., Guibaly, F. E., & Antoniou, A. (1996). Area-
efficient multiplier for digital signal processing applications. IEEE
Transactions on Circuits and Systems –II: Analog & Digital Signal
Processing, Vol. 43, No. 2.

34. Stine, E., & Duverne, O. M. (2003). Variations on truncated
multiplication. Proceedings of the Euromicro Symposium on
Digital System Design.

35. Baugh, R., &Wooley, B. (1973). A two’s complement parallel array
multiplication algorithm. IEEE Transactions on Computers,
C-22(12), 1045–1047.

36. http://www.xilinx.com.
37. Bhattacharjee, S., Sil, S., Basak, B., & Chakarbarti, A. (2011).

Evaluation of power efficient adder and multiplier circuits for
FPGA based DSP applications, International Conference on
Communication and Industrial Application (ICCIA).

Burhan Khurshid received the
B.E. degree in Electronics and
Communications Engineering
from the Kashmir University,
India, in 2008, theM. Tech degree
in Communications and IT from
National Institute of Technology,
Srinagar, India in 2011. Currently
he is pursuing his PhD in BSystem
design for DSP applications^
through the department of
C o m p u t e r S c i e n c e a n d
Engineering, National Institute of
Technology Srinagar. He is ex-
pected to receive his doctoral de-

gree by 2017. His research interests include Reconfigurable architectures,
Platform oriented solutions for arithmetic and DSP algorithms,
Architectural and technology-dependent optimizations targeted for
FPGA platforms, etc. He has many publications in the related field and
is a student member of IEEE. He is also a lifetime member of IETE.

J Sign Process Syst (2017) 89:293–317 317

	Technology-Optimized Fixed-Point Bit-Parallel Multipliers for FPGAs
	Abstract
	Introduction
	Fixed-Point Bit-Parallel Multipliers
	RCA Multiplier
	CSA Multiplier
	BW Multiplier

	Preliminary Terminologies
	General Heuristic for Technology-Dependent Optimization
	Construction
	Identification
	Prioritization
	Covering and Re-Structuring
	Re-Construction
	Node Decomposition
	Node Duplication
	Re-Convergent Paths

	Technology-Dependent Optimization of Fixed-Point Bit-Parallel Multipliers
	Bit-parallel Fixed-Point RCA Multiplier
	LUT-Carry-Chain Based Bit-Parallel RCA Multiplier
	LUT-Register Based Bit-Parallel RCA Multiplier

	Bit-parallel Fixed-Point Carry-Save Based Multipliers
	LUT-Carry-Chain Based Bit-Parallel Carry-Save Multipliers
	LUT-Register Based Bit-Parallel Carry-Save Multipliers

	Synthesis, Implementation and Discussions
	General Considerations and Methodology
	Coding Strategy

	Results and Discussions
	Area Analysis
	Timing Analysis
	Power Analysis

	Conclusions
	References

