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Abstract This paper describes efficient hardware architecture
for the deblocking filter used in H.264/AVC baseline profile
video coding standard. The deblocking filter is a computation-
ally and data intensive tool leading to an increased execution
time of both encoding and decoding processes. In fact, we
propose a novel edge filter ordering which needs 64 clock
cycles to filter a Macroblock (MB). A specified memory or-
ganization is also applied in order to avoid unnecessarily
waiting for availability of the pixels that will be filtered. The
proposed architecture includes both pipelining and parallel
processing techniques and is implemented in synthesizable
HDL. This hardware is designed to be used as module of a
complete H.264/AVC decoder which the functionality was
validated on Nios II at 100 MHz.

Keywords H.264/AVC video coding . Deblocking filter .

Filter ordering . Hardware implementation

1 Introduction

The video coding standardH.264/AVC [1] orMPEG4 Part 10,
developed with the collaboration of ITU-T and ISO/IEC, of-

fers significantly better video compression efficiency than pre-
vious video compression standards (such as H.262 and H.263)
in terms of bit-rate reduction [1–3]. The performance im-
proved in the coding efficiency is mainly due to incorporation
of inter/intra predictions, small block size, integer discrete
cosine transform, context-based adaptive binary arithmetic
coding (CABAC) and deblocking filter. This latter allows re-
ducing blocking artifacts in a frame due to coarse quantization
of MBs and motion compensated prediction. In addition to
that, using the deblocking filter, the bit-rate is typically lower
by 5 to 10% and the same objective video quality is preserved
[4]. Figure 1 shows the different modules of the H.264/AVC
decoder. However, this coding gain is companied with a high
computational complexity [5].

In fact, the operation of the deblocking filter is the most
complex part of the decoders, consuming one-third of the
computational complexity of the H.264/AVC decoder, as
shown in Fig. 2. As a consequence of these demanding char-
acteristics, a hardware implementation for such a deblocking
filter for high definition video applications is involved, where
even larger frame sizes at higher frame rates are to be proc-
essed in real-time.

In this paper, we describe the new filtering order and the
newmemory organization as well as the pipelined and parallel
architecture of deblocking filter. The parallelized design is
proposed to improve high throughput performing the filtering
process of the H.264/AVC decoder in order to achieve real-
time performance.

The organization of this paper is as follows. In Sect. 2, we
give a brief overview of adaptive deblocking filter algorithm
used in H.264/AVC. Sections 3 and 4 present the related
works as well as the proposed hardware architecture in details.
The simulation results are given in the following section.
Section 6 describes the prototype and the performance evalu-
ation. Finally, this paper will be concluded in Sect. 7.
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2 Deblocking Filter Algorithm

The main objective of the deblocking filter of H.264/AVC is to
improve the visual quality of compressed video. In fact, it elim-
inates visual artifacts generated by the block-based integer dis-
crete cosine transforms (ICTs) in intra and inter frame prediction
error coding, coarse quantization of the transform coefficients
andmotion compensated prediction. In a frame,MBs are filtered
in raster scan order. Filtering process is applied to smooth each
edge of all the 4 × 4 luma and chroma blocks in a MB except to
the edges on the boundary of a frame or a slice [1].

Figure 3 shows the indexes of the 4 × 4 blocks for lumi-
nance and chrominance components with the upper neighbor-
ing parts (T0 to T7) and the left neighboring blocks (L0 to L7).

The H.264/AVC standard has well defined the filter order-
ing for all the 4x4 blocks edges in a MB: the vertical edges are
filtered from left to right in the order V0…V7 followed by
horizontal ones from top to bottom in the order H0…H7. In
Fig. 4 the target group of 4 × 4 pixels in a MB (16 × 16 pixels)
is indicated by the shadowed area, being filtered in four steps
considering the effect of all groups of neighbor pixels . In the
first step, the left vertical edge of the block Q0 (called current)
is horizontally filtered with data in block P0 (called previous).
In the second step, the target group represents a block P1 and
the block Q1 is the posterior group. In the third step, the upper
horizontal edge of the block Q2 is vertically filtered with the
data in block P2. Finally, the horizontal edge separating blocks
P3 and Q3 is vertically filtered in the fourth stage.

Nevertheless, according to the position of the 4 × 4 block in
a MB to be filtered, the filtering order changes depending on
the availability of neighboring blocks as shown in Fig. 5.

For each edge, the appropriate filter is selected from the
filter decision according to the boundary strength (BS) which
is a number from 0 (no filtering) to 4, thresholds α and β and
content of the line of pixels [1]. Horizontal and vertical lines of
pixels are illustrated in Fig. 6. For each two neighboring
blocks (p and q), the boundary strength (BS) parameter is
determined according to Table 1.

For strength 4 (strong filtering) up to three pixels on either
side of the edge can be filtered, while for strengths between 1
and 3 (standard filtering) only up to two pixels on either side
of the edge may be modified.

When BS ≠ 0, |p0 - q0| <α, |p1- p0| <β, |q1- q0| <β, the
filter will be applied to the desired line of pixels, where the
thresholds α and β mainly rely on the quantization parameter
(QP) and some other syntax elements [1]. The whole proce-
dure of generating filtered sample values is illustrated in
Fig. 7.
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Figure 3 Edges’ filtering order of 4x4 luma and chroma blocks in a MB.

P0 Q0 Q1P1

P2

Q2 P3

Q3

1st step 2nd step

4th step3rd step

Figure 4 Four stages of the deblocking filter to a 4 × 4 pixels group.

Entropy decoding

Inverse quantization + IICT

Prediction (Intra + Inter)

Deblocking filter

others

Decoder Profile

Figure 2 Profiling of H.264/AVC decoder for Foreman video test
sequence.

Deblocking
Filter

inverse
transform

inverse
quantization

entropy
decoding

Bitstream

Intra
prediction

motion
compensation

reference frame

Figure 1 Structure of the H.264/AVC decoder.

282 J Sign Process Syst (2017) 89:281–292



3 Related Works

During the last few years, several different hardware acceler-
ators have been presented in the literature for efficient hard-
ware realization of the deblocking filter in H.264/AVC video
standard. The processing edge order defined by the H.264/
AVC standard is shown in Fig. 8. The vertical edges of the
luminance and chrominance blocks are all treated before the
horizontal ones.

This sequential order limits the parallel implementation
(software or hardware) and the performances of the integrated
solution in terms of throughput and latency. Furthermore, this
processing order is expensive in terms of memory. Indeed, it
generates a large number of temporary data which is 24 4 × 4
blocks (16 in luma block and 4 for each chroma block).

In this case, the idea of G.Khurana [6] was to change the
filtering order in order to reduce the local memory size taking
on an alternation between the horizontal and vertical filtering
of the blocks to be filtered. This order proposed by
G.Khurana, shown in Fig. 9, used only a single filter unit to
perform all the filtering operations. However, the number of
cycles needed to filter 48 edges in a MB is still significantly
important.

In similar manner, the proposal of He.Jing [7] is based on
multiple filtering units providing less execution time to filter
27 edges than the previous filtering order. This order is repre-
sented in Fig. 10.

An efficient architecture that uses six filtering cores was
proposed by M.Kthiri [8]. Based on this proposal, a higher
level of parallelism was presented in order to meet as possible
a minimal number of cycles used to filter only 11 edges in a
MB. Nevertheless, this processing order, shown in Fig. 11,
increases significantly the use of the local memory. Thus, an
additional area is required.

Considering the order in [9], four filters occur in parallel for
the luma component but only two filters for the chroma ones
as shown in Fig. 12. In order to achieve more performances
keeping the same level of parallelism, our solution proposes to
exploit four filters for both luma and chroma components.

The design in [10] employs a double deblocking filter with
concurrent edge filter and requires 32 BRAMS for data
storage.

According to [11], the design adopts three filters for in-loop
de-blocking filter (ILF) in H.264/AVC supporting baseline,
main, and high profile (BP/MP/HP) video. Nevertheless, the
processing rate still significantly important which is around
260 cycles per MB. Although the proposed design in [12] can
achieve a processing rate of around 48 cycles per MB, it re-
quires a large storage part consuming 43 % of the total area
expense.

In [13], two identical filtering units are proposed allowing
on-the-fly filtering of vertical and horizontal edges to increase
the filtering performance.

4 Proposed Deblocking Filter Algorithm
and Architecture

4.1 Filtering Order

Our filtering order is illustrated in Fig. 13. It provides a better
use of the architecture parallelism. Up to four edges are able to
be treated at the same time. The repeated numbers correspond
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Table 1 Decision flow for determining bs values.

Condition BS

p or q is intra coded and boundary is a macroblock boundary 4

p or q is intra coded and boundary is not a macroblock boundary 3

neither p or q is intra coded; p or q contain coded coefficients 2

neither p or q is intra coded; neither p or q contain coded coefficients;
p and q have different reference frames or a different number of
reference frames or different motion vector values

1

neither p or q is intra coded; neither p or q contain coded coefficients;
p and q have same reference frame and identical motion vectors

0
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to the filtering which occurs in parallel. As a result, only 12
edges have to be filtered in a MB.

Considering this order, four filtering occur in parallel pro-
ducing the same result as specified by the H.264/AVC
standard.

4.2 Filter Architecture

The internal architecture of the deblocking filter is shown in
Fig. 14. The designed architecture was described in VHDL.
Once data and associated parameters are ready to be learned,
the process of filtering starts to generate the filtered MB that
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Figure 7 Deblocking filter flowchart.
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will be later stored in the appropriate memory. All modules of
the internal architecture are synchronized with a control unit.

The role of the BInput Data Store^ block, shown in Fig. 14,
is to concatenate on 128 bits the sixteen pixels to be filtered;
corresponding to a 4 × 4 block.

Figure 15 shows our proposed memory organization. In
order to guarantee one clock cycle transfers, we propose to
use eight 5 × 128-bit memory modules. The data storing in the
appropriate memory is synchronized with a BControl Unit^ by
control signals. In fact, these memories are controlled by the
signals « wren » and « rden ». If wren = ‘1’, the memory
receives data and stores them into appropriate addresses.
Else if rden = ‘1’, we can read then from the memory the
different stored pixels by giving only the desired pixel address
provided by the BControl Unit^. Before starting the filtering
process, all data have to be stored in the appropriate memory
modules in 47 cycles. Indeed, 28 cycles are required to store
the luma block values and the neighboring pixels left and
right. Then 19 cycles are taken to store the pixel of chroma
blocks and neighborhoods. The process of data storage is rep-
resented in Fig. 16.

The BCalculator Unit^ module allows computing indexA
and indexB that are defined as clipping values which essen-
tially depend on the quantization parameter.

The BFilter unit^ module uses one calculator module to
define some parameters such as c1 and threshold values (α
andβ) by referring to tables given by the H264/AVC standard.

Furthermore, this block uses sixteen filter 1-D units in or-
der to process in parallel and simultaneously the filtering of
four edges. Each one allows the filtering of a line of pixels.
The internal filter 1-D architecture is represented by Fig. 17.
The filtering process performs the filtering operations using
the pixels not filtered and the values of BS, thresholds (α and
β) and c1 value, which were previously calculated. The
BParameters calculator^, shown in Fig. 17, generates the fil-
tering parameters used in the deblocking filter algorithm.

The FIFO 1, 2, 3 and 4, represented in Fig. 14, allows
storing the intermediate results of the horizontal filtering to
make the vertical filtering later. The organization of these
memories is illustrated in Fig. 18. FIFO 1 and 2 are two
5 × 128-bit FIFO memories while FIFO 3 and 4 are two
4 × 128-bit FIFO memories.

Because the proposed architecture is designed to perform
both horizontal and vertical filtering of four 4 × 4 block edges
using the same filter, pixels horizontally filtered in each block
must be transposed after being storing in their appropriate
memory and before starting vertical filtering. In fact, the
BTranspose Unit^ is required to transpose a 4 × 4 block of
pixels from rows to columns as Fig. 19 illustrates. The
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implemented BTranspose Unit^ completes the transposition of
a 4 × 4 block in 1 clock cycle. The MB totally filtered will be
stored in FIFO 0 (40 × 128-bit FIFO memory). To have the
result of filtering, we get to empty FIFO 0 in 40 clock cycles.
For each clock cycle, the separation between the pixels con-
stituting a 4 × 4 block is performed by the BOutput Data
Store^.

The proposed architecture operates in a parallel structure
that performs four filtering simultaneously. The process of
filtering is schematized with the timing diagram presented in
Fig. 20 where Bt represents the transposed block. Therefore,
the first 3 clock cycles are needed to filter pixels that are

associated with the four initial edges (assigned 1). In fact,
the blocks on either side of this edge (L0, B0, L1, B4, L2,
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Figure 15 Memory organization.
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B8, B12 and L3) are respectively reached from the following
memories: RAM 1, RAM 5, RAM 6, RAM 2, RAM 3, RAM
7, RAM 4 and RAM 5, by taking just one read cycle. After a
clock cycle reserved for the multiplexer 1, these data are ready
to be filtered where the filtering takes a clock cycle too. Then,
the blocks L’0, L’1, L’2 and L’3 are forwarded to FIFO 0 to be
stored in four clock cycles. While these blocks are storing, the
blocks B’0, B’4, B’8 and B’12, partially filtered, are directly
transmitted to the appropriate filters for the next edge. During
the next four clock cycles, the blocks B^0, B^4, B^8 and B^12
(horizontally filtered) are transferred to the temporary memory
FIFO 1 and the filtering of the third edge is performed.

The horizontally filtered blocks B1^, B5^, B9^ and B13^
will be stored in FIFO 2. The filtering of vertical edges of the
Luma component is well explained by Fig. 21. Regarding the
vertical filtering, horizontal edge needs 5 clock cycles to be
filtered. Indeed, unlike the horizontal filtering, one extra clock
cycle will be reserved to transposition as shown in Fig. 22.
After achieving the filtering of the edges assigned 5 (T0|B0,
T1|B1, T2|B2, T3|B3), the blocks T0’, T1’, T2’and T3’ totally
filtered will be stored in FIFO 0 in 4 clock cycles. After 42
clock cycles, the entire Luma component is filtered and stored
in FIFO 0. As for the filtering of Chroma edges, it will be
similar to Luma ones. Thus, the proposed design is able to
finalize the whole filtering of a MB in 64 cycles.

5 Simulation Results

In order to verify the compatibility with the H.264/AVC stan-
dard, the exactitude of the implemented architecture has been
checked with RTL simulations using ModelSim ALTERA.
Then, the VHDL code is synthesized to an ALTERA Stratix
III FPGA using ALTERA Quartus. As explained before, the
architecture proposed in this paper considered a new filter
ordering allowing the whole filtering of a MB in 64 cycles.
47 cycles are reserved for storing data in the appropriate mem-
ories. For output data, 40 cycles are needed to have a filtered
MB. Deblocking filter synthesis results are represented in
Table 2. Figure 23 represents the area profiling of the pro-
posed design in terms of ALUTs, logic registers and memory
bits.

Furthermore, the Table 3 shows the performance of our
hardware architecture among various related works. This
work uses the same level of parallelism as previous work in
[9], but processes twice times higher throughput. It achieves
2343 kMB per second which is sufficient to process 4 K
(4096 × 2160@ 60fps) application. This hardware design also
achieves higher performance than the hardware architecture
presented in [10, 11, 13] in terms of throughput. Table 3 high-
lights that the designs in [8, 12] are competitive in hardware
efficiencywhen comparedwith the proposed design in term of
processing time. However, [8, 12] require large local memory
that results in additional area cost. Indeed, design in [12] can
process one MB data in 48 cycles at a cost of 41.6 K gates
along with 640 bytes single-port SRAM. Deblocking filter
hardware accelerator in [8] uses six filter units (three filters
for the horizontal edges and three filters for the vertical edges).
The rest of this architecture is composed by fourteen local
memory modules, a BS calculator unit, one threshold
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Figure 19 Transpose unit.
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calculator module, one c1 calculator module, twelve transpose
modules, six 4 × 4 register arrays and thirteen 4 × 32-bit tem-
poral buffers. This architecture consumes 11,830 LUTs con-
sidering only the area of six filer units, as shown in Table 3.

For fair area comparison with [8], we performed imple-
mentation of our architecture on Xilinx Virtex V FPGA de-
vice. If we exclude the rest of our design, it requires only
10,121 LUTs. Therefore, the hardware cost of [8] increases
in term of the final area of the architecture. In summary, the
proposed design can be beneficial for small-sized FPGAs
achieving high throughput due to low processing cycles and
relative high frequency.

6 Prototype and Performance Evaluation

6.1 Prototype

To validate the functionality of the proposed hardware archi-
tecture of the deblocking filter algorithm in a practical reali-
zation, a video decoder was developed and implemented on
Altera Stratix III development platform making use of a
Stratix III EP3SL150 FPGA device. In addition to all the
implementation resources offered by the reconfigurable de-
vice, this platform also can uses the Altera NIOS II softcore
processor and provides several block RAMmodules and high
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Figure 20 Timing diagram of the proposed architecture.
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speed on-chip bus communication links. The main avail of
this softcore processor is its extensibility and adaptability to
incorporate custom logic directly into the NIOS II arithmetic
logic unit (ALU). Furthermore, the interconnection between
the NIOS II and several peripherals is implemented by a ded-
icated bus (Avalon Bus). Altera introduces the SOPC builder
tool, for the quick creation and easy evaluation of embedded
systems. The integration off-the-shelf intellectual property
(IP) as well as reusable custom components is realized in a
friendly way, reducing the required time to set up a SoPC
(system on programmable chip).

6.2 Integration with the Embedded Video System

Architecture validation was realized by integrating the
deblocking filter algorithm as a coprocessor into the embed-
ded video decoding system which the components are illus-
trated in Fig. 24. The proposed embedded system consists of
three major parts, including the NIOS II softcore processor,
the deblocking filter coprocessor and the peripheral interface
modules. All these modules are connected to the 32-bits
Avalon bus. The deblocking filter coprocessor uses two buses
to input/output data which are data_in and data_out as shown
in Fig. 24. The bus widths are 32 bits.

The Altera NIOS II softcore processor (FAST version) is
configured as follows: a 32-bits scalar RISC processor with
Harvard architecture, 6 stage pipeline, 1-way direct-mapped
64 KB data cache, 1-way direct-mapped 64 KB instruction
cache and can gives up to 200 MIPS. Such interconnect buses
are used not only to exchange the control signals between the
NIOS II and the deblocking filter coprocessor, but also to send
all the required data to filtering process.

The NIOS II processor executes a software program that is
loaded into the DDR memory. This software is written in C
language and is used to check if the deblocking filter copro-
cessor is not busy with the waitrequest signal. In this case, our
coprocessor loads the current MB and its neighboring blocks
through the 32-bits data_in signal and activates the data

processing. During the calculation step, the coprocessor is
busy and cannot be accessed.

At the end of processing, thewaitrequest signal has a low level
state and the coprocessor provides the filtered pixels through the
32-bits data_out signal. Indeed, in the purpose of using the 32-bits
bus size, each four 8-bits coefficient must be processed as a 32-
bits long word in order to decrease the memory access.

Figure 25 presents an example to read/write data from/to
deblocking filter coprocessor. In fact, the deblocking filter
coprocessor receives address, read or write and writedata
signals after the rising edge of the clock. The deblocking filter
coprocessor asserts if necessary waitrequest before the next
rising clock edge to hold off the transfers. When the coproces-
sor asserts waitrequest, the transfers are delayed and the ad-
dress and control signals are held constant. The transfers are
completed on the rising edge for the first clk after the copro-
cessor reasserts waitrequest.

6.3 Performance Evaluation

The embedded video system is used to verify and evaluate the
performances of our deblocking filter coprocessor in HW/SW
(hardware/software) context. Indeed, it is designed for accel-
erating computation for the H.264/AVC decoder. The proces-
sor core clock and system clock are set to 100 MHz. Taking
into account the performances of the embedded video system
using the Altera Stratix III development platform, we have
measured the execution times of the deblocking filter in SW
and HW/SW by using the NIOS II timer Bhigh_res_timer^
which can be used for the cycle-accurate time-frame estima-
tion. Once the whole design are described in VHDL at the
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Figure 22 Filtering of horizontal edges in multiple parallel pipeline.

Figure 23 Hardware complexity profiling.

Table 2 Deblocking
filter synthesis results. ALUTS 15.978/113.600 (14 %)

Input/output 292/744

Registers 17.253/113.600 (15 %)

Memory bits 12.288/5.630.976 (1 %)
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RTL level and fitted into the FPGA, we have determined
decoding time of the process of filtering. Table 4 shows a
comparison of the processing time (ms) necessary to decode
100 frames of different video test sequences (CIF 352×288@
30 fps) with the deblocking filter by SW and HW/SW solu-
tions. We focus on the following standard video test se-
quences: BNews^, BForeman^, and BAkiyo^ having different
movements and camera operations. From these results, we can
conclude that the gain is estimated to 20% of processing time.
Although this order can be considerable, it will still be limited

by the significant transfer data between the deblocking filter
coprocessor and SDRAM memory.

7 Conclusion

In this paper, we proposed an efficient hardware architecture
operating four filters simultaneously for real-time implemen-
tation of H.264 adaptive deblocking filter algorithm and gen-
erating a filtered MB in 64 clock cycles. Also, we have pre-
sented a modern implementation of the complex video appli-
cation such as H.264/AVC decoder in HW/SW solution.

In fact, the deblocking filter component has been integrated
as a coprocessor into embedded video system for improving
the system performances. The deblocking filter in HEVC re-
lies on the same principles as in H.264/AVC but it differs in
ways that have a significant impact on complexity. Indeed,
HEVC limits the filtering to the edges lying on an 8x8 grid
so that reduces by half the number of filter modes and the
number of samples that may be filtered. However, there are
also aspects of HEVC that increase the complexity of the filter
such as the addition of clipping in the strong filter mode. In
other words, this workmay bemodified in order to support the
filtering process in HEVC.

Table 3 Comparisons among related works.

Algorithm [8] [9] [10] [11] [12] [13] Proposed

Technology VirtexV StratixII VirtexV 0.13 μm 0.18 μm 0.18 μm StratixIII

Level of parallelism 6 4 2 3 4 2 4

ALUTs or Gates 11,830b 23,874 16,594 36,900 41,600 12,600 15,978

Processing time (cycles/MB) 49 105 75 260 48 110 64

Working Frequency (MHz) 123.75 150 43.4 225 135 100 150

Throughputa (kMB/s) 2525 1428 578 865 2812 909 2343

a Throughput (kMB/s) = Frequency (kHz) /processing time (cycles/MB)
b Area considering only six filter units

Figure 24 Embedded video system.
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from/to deblocking filter
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