
A Novel Deblocking Filter Architecture for H.264/AVC

Lella Aicha Ayadi1 & Taheni Dammak1
& Hassen Loukil1 & Mohamed Ali Benayed1

&

Nouri Masmoudi1

Received: 13 October 2014 /Revised: 25 August 2016 /Accepted: 13 October 2016 /Published online: 28 October 2016
Springer Science+Business Media New York 2016

Abstract This paper describes efficient hardware architecture
for the deblocking filter used in H.264/AVC baseline profile
video coding standard. The deblocking filter is a computation-
ally and data intensive tool leading to an increased execution
time of both encoding and decoding processes. In fact, we
propose a novel edge filter ordering which needs 64 clock
cycles to filter a Macroblock (MB). A specified memory or-
ganization is also applied in order to avoid unnecessarily
waiting for availability of the pixels that will be filtered. The
proposed architecture includes both pipelining and parallel
processing techniques and is implemented in synthesizable
HDL. This hardware is designed to be used as module of a
complete H.264/AVC decoder which the functionality was
validated on Nios II at 100 MHz.

Keywords H.264/AVC video coding . Deblocking filter .

Filter ordering . Hardware implementation

1 Introduction

The video coding standardH.264/AVC [1] orMPEG4 Part 10,
developed with the collaboration of ITU-T and ISO/IEC, of-

fers significantly better video compression efficiency than pre-
vious video compression standards (such as H.262 and H.263)
in terms of bit-rate reduction [1–3]. The performance im-
proved in the coding efficiency is mainly due to incorporation
of inter/intra predictions, small block size, integer discrete
cosine transform, context-based adaptive binary arithmetic
coding (CABAC) and deblocking filter. This latter allows re-
ducing blocking artifacts in a frame due to coarse quantization
of MBs and motion compensated prediction. In addition to
that, using the deblocking filter, the bit-rate is typically lower
by 5 to 10% and the same objective video quality is preserved
[4]. Figure 1 shows the different modules of the H.264/AVC
decoder. However, this coding gain is companied with a high
computational complexity [5].

In fact, the operation of the deblocking filter is the most
complex part of the decoders, consuming one-third of the
computational complexity of the H.264/AVC decoder, as
shown in Fig. 2. As a consequence of these demanding char-
acteristics, a hardware implementation for such a deblocking
filter for high definition video applications is involved, where
even larger frame sizes at higher frame rates are to be proc-
essed in real-time.

In this paper, we describe the new filtering order and the
newmemory organization as well as the pipelined and parallel
architecture of deblocking filter. The parallelized design is
proposed to improve high throughput performing the filtering
process of the H.264/AVC decoder in order to achieve real-
time performance.

The organization of this paper is as follows. In Sect. 2, we
give a brief overview of adaptive deblocking filter algorithm
used in H.264/AVC. Sections 3 and 4 present the related
works as well as the proposed hardware architecture in details.
The simulation results are given in the following section.
Section 6 describes the prototype and the performance evalu-
ation. Finally, this paper will be concluded in Sect. 7.

* Lella Aicha Ayadi
aicha.ayadi.aa@gmail.com

Nouri Masmoudi
nouri.masmoudi@enis.rnu.tn

1 Electronics and Information Technology Laboratory, National
School of Engineering, University of Sfax, Sfax, Tunisia

J Sign Process Syst (2017) 89:281–292
DOI 10.1007/s11265-016-1194-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-016-1194-6&domain=pdf

2 Deblocking Filter Algorithm

The main objective of the deblocking filter of H.264/AVC is to
improve the visual quality of compressed video. In fact, it elim-
inates visual artifacts generated by the block-based integer dis-
crete cosine transforms (ICTs) in intra and inter frame prediction
error coding, coarse quantization of the transform coefficients
andmotion compensated prediction. In a frame,MBs are filtered
in raster scan order. Filtering process is applied to smooth each
edge of all the 4 × 4 luma and chroma blocks in a MB except to
the edges on the boundary of a frame or a slice [1].

Figure 3 shows the indexes of the 4 × 4 blocks for lumi-
nance and chrominance components with the upper neighbor-
ing parts (T0 to T7) and the left neighboring blocks (L0 to L7).

The H.264/AVC standard has well defined the filter order-
ing for all the 4x4 blocks edges in a MB: the vertical edges are
filtered from left to right in the order V0…V7 followed by
horizontal ones from top to bottom in the order H0…H7. In
Fig. 4 the target group of 4 × 4 pixels in a MB (16 × 16 pixels)
is indicated by the shadowed area, being filtered in four steps
considering the effect of all groups of neighbor pixels . In the
first step, the left vertical edge of the block Q0 (called current)
is horizontally filtered with data in block P0 (called previous).
In the second step, the target group represents a block P1 and
the block Q1 is the posterior group. In the third step, the upper
horizontal edge of the block Q2 is vertically filtered with the
data in block P2. Finally, the horizontal edge separating blocks
P3 and Q3 is vertically filtered in the fourth stage.

Nevertheless, according to the position of the 4 × 4 block in
a MB to be filtered, the filtering order changes depending on
the availability of neighboring blocks as shown in Fig. 5.

For each edge, the appropriate filter is selected from the
filter decision according to the boundary strength (BS) which
is a number from 0 (no filtering) to 4, thresholds α and β and
content of the line of pixels [1]. Horizontal and vertical lines of
pixels are illustrated in Fig. 6. For each two neighboring
blocks (p and q), the boundary strength (BS) parameter is
determined according to Table 1.

For strength 4 (strong filtering) up to three pixels on either
side of the edge can be filtered, while for strengths between 1
and 3 (standard filtering) only up to two pixels on either side
of the edge may be modified.

When BS ≠ 0, |p0 - q0| <α, |p1- p0| <β, |q1- q0| <β, the
filter will be applied to the desired line of pixels, where the
thresholds α and β mainly rely on the quantization parameter
(QP) and some other syntax elements [1]. The whole proce-
dure of generating filtered sample values is illustrated in
Fig. 7.

T0

L2

L1

L0

T3T2T1

B5B4

B3B2B1B0

B9B8

B7B6

L3

B11B10

B12 B13 B14 B15

T4

L5

L4

T5

B19B18

B17B16

T6

L7

L6

T7

B23B22

B21B20
V0 V1 V2 V3

H0

H1

H2

H3 V4 V5

H5

H4

V6 V7

H7

H6

Luminance

Chrominance_V

Chrominance_U

Figure 3 Edges’ filtering order of 4x4 luma and chroma blocks in a MB.

P0 Q0 Q1P1

P2

Q2 P3

Q3

1st step 2nd step

4th step3rd step

Figure 4 Four stages of the deblocking filter to a 4 × 4 pixels group.

Entropy decoding

Inverse quantization + IICT

Prediction (Intra + Inter)

Deblocking filter

others

Decoder Profile

Figure 2 Profiling of H.264/AVC decoder for Foreman video test
sequence.

Deblocking
Filter

inverse
transform

inverse
quantization

entropy
decoding

Bitstream

Intra
prediction

motion
compensation

reference frame

Figure 1 Structure of the H.264/AVC decoder.

282 J Sign Process Syst (2017) 89:281–292

3 Related Works

During the last few years, several different hardware acceler-
ators have been presented in the literature for efficient hard-
ware realization of the deblocking filter in H.264/AVC video
standard. The processing edge order defined by the H.264/
AVC standard is shown in Fig. 8. The vertical edges of the
luminance and chrominance blocks are all treated before the
horizontal ones.

This sequential order limits the parallel implementation
(software or hardware) and the performances of the integrated
solution in terms of throughput and latency. Furthermore, this
processing order is expensive in terms of memory. Indeed, it
generates a large number of temporary data which is 24 4 × 4
blocks (16 in luma block and 4 for each chroma block).

In this case, the idea of G.Khurana [6] was to change the
filtering order in order to reduce the local memory size taking
on an alternation between the horizontal and vertical filtering
of the blocks to be filtered. This order proposed by
G.Khurana, shown in Fig. 9, used only a single filter unit to
perform all the filtering operations. However, the number of
cycles needed to filter 48 edges in a MB is still significantly
important.

In similar manner, the proposal of He.Jing [7] is based on
multiple filtering units providing less execution time to filter
27 edges than the previous filtering order. This order is repre-
sented in Fig. 10.

An efficient architecture that uses six filtering cores was
proposed by M.Kthiri [8]. Based on this proposal, a higher
level of parallelism was presented in order to meet as possible
a minimal number of cycles used to filter only 11 edges in a
MB. Nevertheless, this processing order, shown in Fig. 11,
increases significantly the use of the local memory. Thus, an
additional area is required.

Considering the order in [9], four filters occur in parallel for
the luma component but only two filters for the chroma ones
as shown in Fig. 12. In order to achieve more performances
keeping the same level of parallelism, our solution proposes to
exploit four filters for both luma and chroma components.

The design in [10] employs a double deblocking filter with
concurrent edge filter and requires 32 BRAMS for data
storage.

According to [11], the design adopts three filters for in-loop
de-blocking filter (ILF) in H.264/AVC supporting baseline,
main, and high profile (BP/MP/HP) video. Nevertheless, the
processing rate still significantly important which is around
260 cycles per MB. Although the proposed design in [12] can
achieve a processing rate of around 48 cycles per MB, it re-
quires a large storage part consuming 43 % of the total area
expense.

In [13], two identical filtering units are proposed allowing
on-the-fly filtering of vertical and horizontal edges to increase
the filtering performance.

4 Proposed Deblocking Filter Algorithm
and Architecture

4.1 Filtering Order

Our filtering order is illustrated in Fig. 13. It provides a better
use of the architecture parallelism. Up to four edges are able to
be treated at the same time. The repeated numbers correspond

Luminance

Chrominance

1 2

3

4

1

2

3

3

4

4

1

2

Figure 5 Rules of Edges’ filtering order of 4 × 4 block depending on it
position in a MB.

p0p1p2p3 q3q2q1q0

p0

p1

p2

p3

q3

q2

q1

q0

Vertical
Boundary

Horizontal
Boundary

Figure 6 Horizontal and vertical lines of pixels.

Table 1 Decision flow for determining bs values.

Condition BS

p or q is intra coded and boundary is a macroblock boundary 4

p or q is intra coded and boundary is not a macroblock boundary 3

neither p or q is intra coded; p or q contain coded coefficients 2

neither p or q is intra coded; neither p or q contain coded coefficients;
p and q have different reference frames or a different number of
reference frames or different motion vector values

1

neither p or q is intra coded; neither p or q contain coded coefficients;
p and q have same reference frame and identical motion vectors

0

J Sign Process Syst (2017) 89:281–292 283

to the filtering which occurs in parallel. As a result, only 12
edges have to be filtered in a MB.

Considering this order, four filtering occur in parallel pro-
ducing the same result as specified by the H.264/AVC
standard.

4.2 Filter Architecture

The internal architecture of the deblocking filter is shown in
Fig. 14. The designed architecture was described in VHDL.
Once data and associated parameters are ready to be learned,
the process of filtering starts to generate the filtered MB that

BS, α, β,
p3, p2, p1,p0, q0, q1, q2, q3

p0'=(p2+2(p1+p0+q0)+q1+4)/8
p1'=(p2+p1+p0+q0+2)/4

p2'=(2p3+3p2+p1+p0+q0+4)/8

p0'=(2p1+p0+q1+2)/4

q0'=(q2+2(q1+q0+p0)+p1+4)/8
q1'=(q2+q1+q0+p0+2)/4

q2'=(2q3+3q2+q1+q0+p0+4)/8

q0'=(2q1+q0+q1+2)/4

p0'=p0+∆0
q0'=q0-∆0

p1'=p1+∆p1

q1'=q1+∆q1

BS ≠ 0

|p0 – q0| < α

|p1 – p0| < β

|q1 – q0| < β

|p0 – p2| < β

|p0 – p2| < β
et

|p0 – q0| < α/4+2

|q0 – q2| < β
et

|p0 – q0| < α/4+2

|q0 – q2| < β

BS=4

yes
no

yes

yes

no

no

no

yes

yes

yes

yes

no

no

no

Yes
(Strong filtering)

No
(Standard filtering)

No filtering

No filtering

No filtering

∆0 = Min(Max(-C0 , ∆0i) , C0)

∆p1 = Min(Max(-C1 , ∆pli) , C1)

∆q1 = Min(Max(-C1 , ∆qli) , C1)

∆0i = [4(q0-p0)+(p1-q1)+4] /8

∆pli = [p2+(p0+q0+1)/2-2p1] /2

∆qli = [q2+(q0+p0+1)/2-2q1] /2

no

p0p1p2p3 q3q2q1q0

p0

p1

p2
p3

q3

q2

q1

q0

Vertical
Boundary

Horizontal
Boundary

Figure 7 Deblocking filter flowchart.

T0

L2

L1

L0

T3T2T1

B5B4

B3B2B1B0

B9B8

B7B6

L3

B11B10

B12 B13 B14 B15

T4

L5

L4

T5

B19B18

B17B16

Luminance

Chrominance U

T6

L7

L6

T7

B23B22

B21B20

Chrominance V

22

17

23

2018

19

21

24

31 32

28272625

35

29 30

3633 34

393837 40

41

4645

4443

42

4847

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

35 3634

3938 40

10

11

12

14

15

16

Figure 8 Original H.264/AVC filtering order.

T0

L2

L1

L0

T3T2T1

B5B4

B3B2B1B0

B9B8

B7B6

L3

B11B10

B12 B13 B14 B15

T4

L5

L4

T5

B19B18

B17B16

Luminance

Chrominance U

T6

L7

L6

T7

B23B22

B21B20

Chrominance V

26

45

17

9

1

25

2

10

18

27

19

11

3

20

12

4

28

33

42

3837

34

41

46

15 16

8765

23

13 14

2421 22

313029 32

35

4443

4039

36

4847

Figure 9 Filtering order proposed by G.Kurana [6].

284 J Sign Process Syst (2017) 89:281–292

will be later stored in the appropriate memory. All modules of
the internal architecture are synchronized with a control unit.

The role of the BInput Data Store^ block, shown in Fig. 14,
is to concatenate on 128 bits the sixteen pixels to be filtered;
corresponding to a 4 × 4 block.

Figure 15 shows our proposed memory organization. In
order to guarantee one clock cycle transfers, we propose to
use eight 5 × 128-bit memory modules. The data storing in the
appropriate memory is synchronized with a BControl Unit^ by
control signals. In fact, these memories are controlled by the
signals « wren » and « rden ». If wren = ‘1’, the memory
receives data and stores them into appropriate addresses.
Else if rden = ‘1’, we can read then from the memory the
different stored pixels by giving only the desired pixel address
provided by the BControl Unit^. Before starting the filtering
process, all data have to be stored in the appropriate memory
modules in 47 cycles. Indeed, 28 cycles are required to store
the luma block values and the neighboring pixels left and
right. Then 19 cycles are taken to store the pixel of chroma
blocks and neighborhoods. The process of data storage is rep-
resented in Fig. 16.

The BCalculator Unit^ module allows computing indexA
and indexB that are defined as clipping values which essen-
tially depend on the quantization parameter.

The BFilter unit^ module uses one calculator module to
define some parameters such as c1 and threshold values (α
andβ) by referring to tables given by the H264/AVC standard.

Furthermore, this block uses sixteen filter 1-D units in or-
der to process in parallel and simultaneously the filtering of
four edges. Each one allows the filtering of a line of pixels.
The internal filter 1-D architecture is represented by Fig. 17.
The filtering process performs the filtering operations using
the pixels not filtered and the values of BS, thresholds (α and
β) and c1 value, which were previously calculated. The
BParameters calculator^, shown in Fig. 17, generates the fil-
tering parameters used in the deblocking filter algorithm.

The FIFO 1, 2, 3 and 4, represented in Fig. 14, allows
storing the intermediate results of the horizontal filtering to
make the vertical filtering later. The organization of these
memories is illustrated in Fig. 18. FIFO 1 and 2 are two
5 × 128-bit FIFO memories while FIFO 3 and 4 are two
4 × 128-bit FIFO memories.

Because the proposed architecture is designed to perform
both horizontal and vertical filtering of four 4 × 4 block edges
using the same filter, pixels horizontally filtered in each block
must be transposed after being storing in their appropriate
memory and before starting vertical filtering. In fact, the
BTranspose Unit^ is required to transpose a 4 × 4 block of
pixels from rows to columns as Fig. 19 illustrates. The

T0

L2

L1

L0

T3T2T1

B5B4

B3B2B1B0

B9B8

B7B6

L3

B11B10

B12 B13 B14 B15

T4

L5

L4

T5

B19B18

B17B16

Luminance

Chrominance U

T6

L7

L6

T7

B23B22

B21B20

Chrominance V

5

8

3

2

1

4

2

3

4

7

6

5

4

7

6

5

8

1

3

76

2

1

9

8 9

7653

9

4 6

105 7

1086 11

3

54

98

4

1110

Figure 11 Filtering order proposed by M.Kthiri [8].

T0

L2

L1

L0

T3T2T1

B5B4

B3B2B1B0

B9B8

B7B6

L3

B11B10

B12 B13 B14 B15

T4

L5

L4

T5

B19B18

B17B16

Luminance

Chrominance U

T6

L7

L6

T7

B23B22

B21B20

Chrominance V

14

23

9

5

1

13

2

6

10

15

11

7

3

12

8

4

16

17

22

2019

18

21

24

10 11

7654

14

8 9

1512 13

181716 19

20

2524

2322

21

2726

Figure 10 Filtering order proposed by He.Jing [7].

T0

L2

L1

L0

T3T2T1

B5B4

B3B2B1B0

B9B8

B7B6

L3

B11B10

B12 B13 B14 B15

T4

L5

L4

T5

B19B18

B17B16

Luminance

Chrominance U

T6

L7

L6

T7

B23B22

B21B20

Chrominance V

2

13

1

1

1

1

2

2

2

3

3

3

3

4

4

4

1

9

14

109

10

13

14

6 6

5555

7

6 6

77 7

888 8

11

1515

1212

11

1616

Figure 12 Filtering order proposed by H.Loukil [9].

T0

L2

L1

L0

T3T2T1

B5B4

B3B2B1B0

B9B8

B7B6

L3

B11B10

B12 B13 B14 B15

T4

L5

L4

T5

B19B18

B17B16

Luminance

Chrominance U

T6

L7

L6

T7

B23B22

B21B20

Chrominance V

2

9

1

1

1

1

2

2

2

3

3

3

3

4

4

4

4

9

10

109

10

9

10

6 6

5555

7

6 6

77 7

888 8

11

1111

1212

11

1212

Figure 13 Proposed filtering order.

J Sign Process Syst (2017) 89:281–292 285

implemented BTranspose Unit^ completes the transposition of
a 4 × 4 block in 1 clock cycle. The MB totally filtered will be
stored in FIFO 0 (40 × 128-bit FIFO memory). To have the
result of filtering, we get to empty FIFO 0 in 40 clock cycles.
For each clock cycle, the separation between the pixels con-
stituting a 4 × 4 block is performed by the BOutput Data
Store^.

The proposed architecture operates in a parallel structure
that performs four filtering simultaneously. The process of
filtering is schematized with the timing diagram presented in
Fig. 20 where Bt represents the transposed block. Therefore,
the first 3 clock cycles are needed to filter pixels that are

associated with the four initial edges (assigned 1). In fact,
the blocks on either side of this edge (L0, B0, L1, B4, L2,

Demultiplexer

Filter Unit

Mu
ltip
lex
er2

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

Input Data
Store

Mu
ltip
lex
er1

FIFO 0

FIFO 1
FIFO 2
FIFO 3
FIFO 4

RAM1
RAM2
RAM3
RAM4
RAM5
RAM6
RAM7
RAM8

/

/

/

3

3

Output Data
Store

start
Start_out

Done
Done_out

Control Unit

8

8

8

8 8 8

.

.

.

...

Transpose
Unit

/

/

/

/

slangistuptuOslangistupnI

128

3

reset

clk

Calculator Unit

Qpav_Current

Qpav_Top
QPav_Left

indexA

indexB

128

/

/

/

5

// 6

/ 128

/

128

128

128

128

128

128

///

p0

p15

p0p15

p14

p14

Figure 14 Proposed deblocking filter architecture.

Figure 15 Memory organization.

L0

B4

B0

L3

L2

L1

B12

B8

B5

B1

B13

B9

B6

B2

B14

B10

B7

B3

B15

B11

T1

T0

T3

T2

L4

L7

L6

L5 B18

B16

B22

B20

B21

B23

B17

B19

T7

T4

T5

T6

8 4 4 8 4 8 4

9 cycles 5 cycles 5 cycles 9 cycles 5 cycles 9 cycles 5 cycles

1 writing cycle

Luminance
Chrominance U and V

Figure 16 Data storage.

286 J Sign Process Syst (2017) 89:281–292

B8, B12 and L3) are respectively reached from the following
memories: RAM 1, RAM 5, RAM 6, RAM 2, RAM 3, RAM
7, RAM 4 and RAM 5, by taking just one read cycle. After a
clock cycle reserved for the multiplexer 1, these data are ready
to be filtered where the filtering takes a clock cycle too. Then,
the blocks L’0, L’1, L’2 and L’3 are forwarded to FIFO 0 to be
stored in four clock cycles. While these blocks are storing, the
blocks B’0, B’4, B’8 and B’12, partially filtered, are directly
transmitted to the appropriate filters for the next edge. During
the next four clock cycles, the blocks B^0, B^4, B^8 and B^12
(horizontally filtered) are transferred to the temporary memory
FIFO 1 and the filtering of the third edge is performed.

The horizontally filtered blocks B1^, B5^, B9^ and B13^
will be stored in FIFO 2. The filtering of vertical edges of the
Luma component is well explained by Fig. 21. Regarding the
vertical filtering, horizontal edge needs 5 clock cycles to be
filtered. Indeed, unlike the horizontal filtering, one extra clock
cycle will be reserved to transposition as shown in Fig. 22.
After achieving the filtering of the edges assigned 5 (T0|B0,
T1|B1, T2|B2, T3|B3), the blocks T0’, T1’, T2’and T3’ totally
filtered will be stored in FIFO 0 in 4 clock cycles. After 42
clock cycles, the entire Luma component is filtered and stored
in FIFO 0. As for the filtering of Chroma edges, it will be
similar to Luma ones. Thus, the proposed design is able to
finalize the whole filtering of a MB in 64 cycles.

5 Simulation Results

In order to verify the compatibility with the H.264/AVC stan-
dard, the exactitude of the implemented architecture has been
checked with RTL simulations using ModelSim ALTERA.
Then, the VHDL code is synthesized to an ALTERA Stratix
III FPGA using ALTERA Quartus. As explained before, the
architecture proposed in this paper considered a new filter
ordering allowing the whole filtering of a MB in 64 cycles.
47 cycles are reserved for storing data in the appropriate mem-
ories. For output data, 40 cycles are needed to have a filtered
MB. Deblocking filter synthesis results are represented in
Table 2. Figure 23 represents the area profiling of the pro-
posed design in terms of ALUTs, logic registers and memory
bits.

Furthermore, the Table 3 shows the performance of our
hardware architecture among various related works. This
work uses the same level of parallelism as previous work in
[9], but processes twice times higher throughput. It achieves
2343 kMB per second which is sufficient to process 4 K
(4096 × 2160@ 60fps) application. This hardware design also
achieves higher performance than the hardware architecture
presented in [10, 11, 13] in terms of throughput. Table 3 high-
lights that the designs in [8, 12] are competitive in hardware
efficiencywhen comparedwith the proposed design in term of
processing time. However, [8, 12] require large local memory
that results in additional area cost. Indeed, design in [12] can
process one MB data in 48 cycles at a cost of 41.6 K gates
along with 640 bytes single-port SRAM. Deblocking filter
hardware accelerator in [8] uses six filter units (three filters
for the horizontal edges and three filters for the vertical edges).
The rest of this architecture is composed by fourteen local
memory modules, a BS calculator unit, one threshold

A00 A01 A02 A03

A30 A31 A32 A33

A20 A21 A22 A23

A10 A11 A12 A13

A00' A01' A02' A03'

A30' A31' A32' A33'

A20' A21' A22' A23'

A10' A11' A12' A13'

A00' A03'A02'A01'

A22'A21'A20'

A13'A12'A11'A10'

A33'A32'A31'A30'

A23'

A00'

A10'

A20'

A30'

A01'

A11'

A21'

A31'

A02'

A12'

A22'

A32'

A03'

A13'

A23'

A33'

A00''

A10'’

A20'’

A30'’

A01''

A11''

A21''

A31''

A02''

A12''

A22''

A32''

A03''

A13''

A23''

A33''

Transposition

Before the filtering
of a vertical edge

After the filtering
of a vertical edge

B
ef
or
e
th
e
fil
te
rin
g

of
a
ho
riz
on
ta
le
dg
e

A
fte
rt
he
fil
te
rin
g
of

a
ho
riz
on
ta
le
dg
e

Figure 19 Transpose unit.

T0

L2

L1

L0

T3T2T1

B5B4

B3B2B1B0

B9B8

B6

L3

B11B10

B12 B13 B14 B15

T4

L5

L4

T5

B19B18

B17B16

T6

L7

L6

T7

B23B22

B21B20

Luminance Chrominance

B7

FIFO 1

FIFO 2

FIFO 3

FIFO 4

Figure 18 Temporary memory organization.

No filtering
BS=0

Filtrage
Standard
BS=1,2,3

Filtrage Strong
BS=4

Parameters
calculator

Mux

Pixels not filteredp3 p2 p1 p0 q0 q1 q2 q3

c1

β

Pixels filteredp3 p’2 p’1 p’0 q’0 q’1 q’2 q3

BS, α et β

Figure 17 Architecture of filter 1-D.

J Sign Process Syst (2017) 89:281–292 287

calculator module, one c1 calculator module, twelve transpose
modules, six 4 × 4 register arrays and thirteen 4 × 32-bit tem-
poral buffers. This architecture consumes 11,830 LUTs con-
sidering only the area of six filer units, as shown in Table 3.

For fair area comparison with [8], we performed imple-
mentation of our architecture on Xilinx Virtex V FPGA de-
vice. If we exclude the rest of our design, it requires only
10,121 LUTs. Therefore, the hardware cost of [8] increases
in term of the final area of the architecture. In summary, the
proposed design can be beneficial for small-sized FPGAs
achieving high throughput due to low processing cycles and
relative high frequency.

6 Prototype and Performance Evaluation

6.1 Prototype

To validate the functionality of the proposed hardware archi-
tecture of the deblocking filter algorithm in a practical reali-
zation, a video decoder was developed and implemented on
Altera Stratix III development platform making use of a
Stratix III EP3SL150 FPGA device. In addition to all the
implementation resources offered by the reconfigurable de-
vice, this platform also can uses the Altera NIOS II softcore
processor and provides several block RAMmodules and high

FIFO 0

2

3

4

5

6

7

8

9

10

11

12

FIFO1

FIFO2

FIFO3 & 4

FIFO 0

FIFO 0

FIFO 0

FIFO 0

FIFO 0

FIFO1
& 2

FIFO 0

FIFO 0

1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

L’0,L’1,L’2,L’3
B’0,B’4,B’8,B’12

B’’0,B’’4,B’’8,B’’12
B’1,B’5,B’9,B’13

B’’1,B’’5,B’’9,B’1'3
B’2,B’6,B’10,B’14

B’’2,B’’6,B’’10,B’’14
B’3,B’7,B’11,B’15

T’0,T’1,T’2,T’3
Bt’0,Bt’1,Bt’2,Bt’3

Bt’’0,Bt’’1,Bt’’2,Bt’’3
Bt’4,Bt’5,Bt’6,Bt’7

Bt’’4,Bt’’5,Bt’’6,Bt’’7
Bt’8,Bt’9,Bt’10,Bt’11

Bt’’8,Bt’’9,Bt’’10,Bt’’11
Bt’12,Bt’13,Bt’14,Bt’15

L’4,L’5,L’6,L’7
B’16,B’18,B’20,B’22

B’’16,B’’18,B’’20,B’’22
B’17,B’19,B’21,B’23

T’4,T’5,T’6,T’7
Bt’16,Bt’17,Bt’20,Bt’21

Bt’’16,Bt’’17,Bt’’20,Bt’’21
Bt’18,Bt’19,Bt’22,Bt’23

Figure 20 Timing diagram of the proposed architecture.

Read Mux1 Filter Mux2

Read Mux1 Filter Mux2

Read Mux1 Filter Mux2

Storage in FIFO 0

Storage in FIFO 1

Storage in FIFO 2

1 8765432 109 14131211 15 160

Read Mux1 Filter Mux2

20191817 21 22

Storage in FIFO 3 and 4

Figure 21 Filtering of vertical edges in multiple parallel pipeline.

288 J Sign Process Syst (2017) 89:281–292

speed on-chip bus communication links. The main avail of
this softcore processor is its extensibility and adaptability to
incorporate custom logic directly into the NIOS II arithmetic
logic unit (ALU). Furthermore, the interconnection between
the NIOS II and several peripherals is implemented by a ded-
icated bus (Avalon Bus). Altera introduces the SOPC builder
tool, for the quick creation and easy evaluation of embedded
systems. The integration off-the-shelf intellectual property
(IP) as well as reusable custom components is realized in a
friendly way, reducing the required time to set up a SoPC
(system on programmable chip).

6.2 Integration with the Embedded Video System

Architecture validation was realized by integrating the
deblocking filter algorithm as a coprocessor into the embed-
ded video decoding system which the components are illus-
trated in Fig. 24. The proposed embedded system consists of
three major parts, including the NIOS II softcore processor,
the deblocking filter coprocessor and the peripheral interface
modules. All these modules are connected to the 32-bits
Avalon bus. The deblocking filter coprocessor uses two buses
to input/output data which are data_in and data_out as shown
in Fig. 24. The bus widths are 32 bits.

The Altera NIOS II softcore processor (FAST version) is
configured as follows: a 32-bits scalar RISC processor with
Harvard architecture, 6 stage pipeline, 1-way direct-mapped
64 KB data cache, 1-way direct-mapped 64 KB instruction
cache and can gives up to 200 MIPS. Such interconnect buses
are used not only to exchange the control signals between the
NIOS II and the deblocking filter coprocessor, but also to send
all the required data to filtering process.

The NIOS II processor executes a software program that is
loaded into the DDR memory. This software is written in C
language and is used to check if the deblocking filter copro-
cessor is not busy with the waitrequest signal. In this case, our
coprocessor loads the current MB and its neighboring blocks
through the 32-bits data_in signal and activates the data

processing. During the calculation step, the coprocessor is
busy and cannot be accessed.

At the end of processing, thewaitrequest signal has a low level
state and the coprocessor provides the filtered pixels through the
32-bits data_out signal. Indeed, in the purpose of using the 32-bits
bus size, each four 8-bits coefficient must be processed as a 32-
bits long word in order to decrease the memory access.

Figure 25 presents an example to read/write data from/to
deblocking filter coprocessor. In fact, the deblocking filter
coprocessor receives address, read or write and writedata
signals after the rising edge of the clock. The deblocking filter
coprocessor asserts if necessary waitrequest before the next
rising clock edge to hold off the transfers. When the coproces-
sor asserts waitrequest, the transfers are delayed and the ad-
dress and control signals are held constant. The transfers are
completed on the rising edge for the first clk after the copro-
cessor reasserts waitrequest.

6.3 Performance Evaluation

The embedded video system is used to verify and evaluate the
performances of our deblocking filter coprocessor in HW/SW
(hardware/software) context. Indeed, it is designed for accel-
erating computation for the H.264/AVC decoder. The proces-
sor core clock and system clock are set to 100 MHz. Taking
into account the performances of the embedded video system
using the Altera Stratix III development platform, we have
measured the execution times of the deblocking filter in SW
and HW/SW by using the NIOS II timer Bhigh_res_timer^
which can be used for the cycle-accurate time-frame estima-
tion. Once the whole design are described in VHDL at the

Read Trans Mux1 Filter

Read Trans Mux1 Filter

Read Trans Mux1 Filter

Storage in FIFO 0

Storage in FIFO 0

17 24232221201918 2625 30292827 31 32

Mux2

Mux2

Mux2 Storage in FIFO 0

Read Trans Mux1 Filter Mux2 Storage in FIFO 0

33 34 42. . .

Figure 22 Filtering of horizontal edges in multiple parallel pipeline.

Figure 23 Hardware complexity profiling.

Table 2 Deblocking
filter synthesis results. ALUTS 15.978/113.600 (14 %)

Input/output 292/744

Registers 17.253/113.600 (15 %)

Memory bits 12.288/5.630.976 (1 %)

J Sign Process Syst (2017) 89:281–292 289

RTL level and fitted into the FPGA, we have determined
decoding time of the process of filtering. Table 4 shows a
comparison of the processing time (ms) necessary to decode
100 frames of different video test sequences (CIF 352×288@
30 fps) with the deblocking filter by SW and HW/SW solu-
tions. We focus on the following standard video test se-
quences: BNews^, BForeman^, and BAkiyo^ having different
movements and camera operations. From these results, we can
conclude that the gain is estimated to 20% of processing time.
Although this order can be considerable, it will still be limited

by the significant transfer data between the deblocking filter
coprocessor and SDRAM memory.

7 Conclusion

In this paper, we proposed an efficient hardware architecture
operating four filters simultaneously for real-time implemen-
tation of H.264 adaptive deblocking filter algorithm and gen-
erating a filtered MB in 64 clock cycles. Also, we have pre-
sented a modern implementation of the complex video appli-
cation such as H.264/AVC decoder in HW/SW solution.

In fact, the deblocking filter component has been integrated
as a coprocessor into embedded video system for improving
the system performances. The deblocking filter in HEVC re-
lies on the same principles as in H.264/AVC but it differs in
ways that have a significant impact on complexity. Indeed,
HEVC limits the filtering to the edges lying on an 8x8 grid
so that reduces by half the number of filter modes and the
number of samples that may be filtered. However, there are
also aspects of HEVC that increase the complexity of the filter
such as the addition of clipping in the strong filter mode. In
other words, this workmay bemodified in order to support the
filtering process in HEVC.

Table 3 Comparisons among related works.

Algorithm [8] [9] [10] [11] [12] [13] Proposed

Technology VirtexV StratixII VirtexV 0.13 μm 0.18 μm 0.18 μm StratixIII

Level of parallelism 6 4 2 3 4 2 4

ALUTs or Gates 11,830b 23,874 16,594 36,900 41,600 12,600 15,978

Processing time (cycles/MB) 49 105 75 260 48 110 64

Working Frequency (MHz) 123.75 150 43.4 225 135 100 150

Throughputa (kMB/s) 2525 1428 578 865 2812 909 2343

a Throughput (kMB/s) = Frequency (kHz) /processing time (cycles/MB)
b Area considering only six filter units

Figure 24 Embedded video system.

address address

readdata

writedata

clk

address

read

write

waitrequest

data_in

data_out

Figure 25 Read/write data
from/to deblocking filter
coprocessor.

290 J Sign Process Syst (2017) 89:281–292

References

1. Joint Video Team of IT-T VEG and ISO/IEC MPEG. (2003), BDraft
ITU-T Recommendation and Final Draft International Standard of Joint
Video Specification^, ITU-T Rec. H.264 and ISO/IEC 14496–10AVC.

2. Sullivan, G. Topiwala, P & Luthra, A. (2004). The H.264/AVC
Advanced Video Coding Standard: Overview and Introduction to
the Fidelity Range Extensions. SPIE Conf. On Apps. Of digital
Image Processing (pp. 454–474).

3. Ostermann, J., Bormans, J. P., List, P., Maroe, D., Narroschke, M.
F., Pereira, F., et al. (2004). Video coding with H.264/AVC: tools,
performance and complexity. IEEE Circuit and Systems Magazine,
4(1), 7–28.

4. Wiegand, T., Sullivan, G. J., Bjontegaard, G., & Luthra, A. (2003).
Overview of the H.264/AVC video coding standard. IEEE
Transactions on Circuits and Systems for Video Technology,
13(7), 560–576.

5. Horowitz, M., Joch, A., Kossentini, F., & Hallapuro, A. H. (2003).
264/AVC baseline profile decoder complexity analysis. IEEE
Transactions on Circuits and Systems for Video Technology,
13(7), 704–716.

6. Khurana, G., Kassim, T., Chua, T., & Mi, M. (2006). A pipelined
hardware implementation of in-loop deblocking filter in H.264/AVC.
IEEE Transactions on Consumer Electronics, 52(2), 536–540.

7. Jing, H. Yan, H. Xinyu, X. (2009). An Efficient Architecture for
Deblocking Filter in H.264/AVC. International Conference on
Intelligent Information Hiding and Multimedia Signal Processing
(pp. 848–851).

8. Kthiri, M. Kadionik, P. Lévi, H. Loukil, H. Ben Atitallah, A.
Masmoudi, N. (2010). A Parallel Hardware Architecture of
Deblocking Filter in H264/AVC. International Symposium on,
Electronics and Telecommunications (ISETC) (pp. 341–344).

9. Loukil, H. Ben Atitallah, A. Masmoudi, N. (2009). Hardware archi-
tecture for H.264/AVC deblocking filter algorithm. IEEE
International Conference on Systems, Signals and Devices (pp 1–6).

10. Ernst, E. (2007). Architecture Design of a Scalable Adaptive
Deblocking Filter for H.264/AVC, New York, MSc Dissertation,
Rochester.

11. Chien, C.A., Chang, H.C., Gue, J.I. (November 30 - December 3
2008). A high throughput in-loop de-blocking filter supporting
H.264/AVC BP/MP/HP video coding. In Proceedings of the IEEE
Asia Pasific Conference onCircuits and Systems (APCCAS’08) (pp.
312–315).

12. Chen, K. H. (2010). 48 cycles-per-macro block deblocking filter
accelerator for high-resolution H.264/AVC decoding. IET Circuits,
Devices and Systems, 4(3), 196–206.

13. Tobajas, F., CalIicό, G.M., Perez, P. A., de Armas, V., & Sarmiento,
R. (2008). An efficient double-filter hardware architecture for
H.264/AVC deblocking filtering. IEEE Transactions on
Consumer Electronics, 54(1), 131–139.

Lella Aicha Ayadi was born in
Sfax, Tunisia, in 1989. She received
her engineer diploma in 2013 from
the National Engineering School of
Sfax (ENIS), Tunisia. Currently, she
is working toward her Ph.D. degree
in Electronic Engineering at the
Laboratory of Electronics and
Information Technology (LETI)-
ENIS. Her main research activities
are focused on image and video sig-
nal processing, hardware implemen-
tation and embedded systems. She
is a member of IEEE.

Taheni Dammak Received elec-
trical engineering degree from the
National School of Engineering-
Sfax (ENIS) in 2006. She received
his M.S. and Ph.D. degrees in elec-
tronics engineering from Sfax
National School of Engineering in
2007 and 2013 respectively. She is
currently an assistant professor at
Higher Institute of Electronic and
Communication of Sfax (Tunisia).
She is teaching courses and tuto-
rials of signal processing for license
level in telecommunication. She is
currently researcher in the

Laboratory of Electronics and Information Technology and an assistant at
the University of Sfax, Tunisia. Her main research activities are focused on
image and video signal processing, DSP (Digital Signal Processing), embed-
ded systems and C programing langage.

Hassen Loukil Received electrical
engineering degree from the
National School of Engineering-
Sfax (ENIS) in 2004. He received
his M.S. and Ph.D. degrees in elec-
tronics engineering from Sfax
National School of Engineering in
2005 and 2011 respectively. He is
currently an assistant professor at
Higher Institute of Electronic and
Communication of Sfax (Tunisia).
He is teaching Embedded System
conception and System on Chip.
He is currently researcher in the
Laboratory of Electronics and

Information Technology and an assistant at the University of Sfax, Tunisia.
His main research activities are focused on image and video signal processing,
hardware implementation and embedded systems.

Table 4 Processing time (ms) of the deblocking filter algorithm with
sw and hw/sw solutions.

News Foreman Akiyo

SW 743.57 ms 735.04 ms 523.08 ms

HW/SW 560.2 ms 608.81 ms 460.31 ms

Gain (%) 24.66 17.17 17.2

J Sign Process Syst (2017) 89:281–292 291

Mohamed Ali Ben Ayed was
born in Sfax, Tunisia, in 1966.
He received his B.S. degree in
Computer Engineering from
Oregon State University and
M.S. degree in E lec t r i ca l
Engineer ing from Georgia
Institute of Technology in 1988,
his DEA, Ph.D., and HDR de-
grees in Electronics Engineering
from Sfax National School of
Engineering in 1998, 2004, and
2008, respectively. He is currently
a professor in the Department of
Communication at Sfax High

Institute of Electronics and Communication. He was a co-founder of
BUbvideo Tunisia^ in the techno-pole El- GHAZLA Tunis, an interna-
tional leader company in the domain of video coding technology. He is a
member of a research team since 1994 at (LETI, Sfax) in the domain of
Electronics and Information Technology and a reviewer in many interna-
tional and national journals and conferences. He is currently a technical
advisor of BEBREASK video^, a Research and Development company
specialized on the next high efficient video coding generation H265. His
current research interests include DSP and VHDL implementation of
digital algorithms for multimedia services, and development of digital
video compression algorithms.

Nouri Masmoudi received his
electrical engineering degree from
the Faculty of Sciences and
Techniques—Sfax, Tunisia, in
1982, the DEA degree from the
National Institute of Applied
Sciences—Lyon and University
Claude Bernard—Lyon, France in
1984. From 1986 to 1990. He re-
ceived his Ph.D. degree from the
National School Engineering of
Tunis (ENIT), Tunisia in 1990.
He is currently a professor at the
e l e c t r i c a l e n g i n e e r i n g
department—ENIS. Since 2000,
he has been a group leader
‘Circuits and Systems’ in the
Laboratory of Electronics and
Information Technology. Since

2003, he is responsible for the Electronic Master Program at ENIS. His
research activities have been devoted to several topics: Design,
Telecommunication, Embedded Systems, Information Technology,
Video Coding and Image Processing

292 J Sign Process Syst (2017) 89:281–292

	A Novel Deblocking Filter Architecture for H.264/AVC
	Abstract
	Introduction
	Deblocking Filter Algorithm
	Related Works
	Proposed Deblocking Filter Algorithm and Architecture
	Filtering Order
	Filter Architecture

	Simulation Results
	Prototype and Performance Evaluation
	Prototype
	Integration with the Embedded Video System
	Performance Evaluation

	Conclusion
	References

