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Abstract This paper presents a design exploration of a
new EEG-based embedded system for home devices con-
trol. Two main issues are addressed in this work: the first
one consists of an adaptive filter design to increase the clas-
sification accuracy for motor imagery. The second issue
deals with the design of an efficient hardware/software
embedded architeclture integrating the entire EEG signal
processing chain. In this embedded system organization, the
pre-processing techniques, which are time consuming, are
integrated as hardware accelerators. The remaining blocks
(Intellectual Properties - IP) are developed as embedded-
software running on an embedded soft-core processor. The
pre-processing step is designed to be self-adjusted accord-
ing to the intrinsic characteristics of each subject. The
feature extraction process uses the Common Spatial Pat-
tern (CSP) as a filter due to its effectiveness to extract
the ERD/ERS (Event-Related Desynchronization/ Synchro-
nization) effect, where the classifier is based on the Maha-
lanobis distance. The advantage of the proposed system lies
in its simplicity and short processing time while maintain-
ing a high performance in term of classification accuracy.
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A prototype of the embedded system has been implemented
on an Altera FPGA-based platform (Stratix-IV). It is shown
that the proposed architecture can effectively extract dis-
criminative features for motor imagery with a maximum
frequency of 150 MHz. The proposed system was validated
on EEG data of twelve subjects from the BCI competi-
tion data sets. The prototype performs a fast classification
within time delay of 0.399 second per trial, an accuracy
average of 94.47 %, an average transfer rate over all sub-
jects of 20.74 bits/min. The estimated power consumption
of the proposed system is around 1.067 Watt (based on an
integrated tool-power analysis of Altera corporation).
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1 Introduction

Advances in Brain Computer Interfaces (BCI) make this
technology solicited by dependant people to provide another
alternative to control home devices by using only brain
activities [1]. ElectroEncephaloGram (EEG) signals are
captured from the brain using electrodes placed along the
scalp according to one of the most known standards is the
10-20 standard. Two main approaches are used in the BCI
community during the validation process of the BCI sys-
tem. On the one hand the offline approach, widely applied
for testing, which consists of using existing data sets avail-
able on the Internet like those provided by BCI Competition
[2, 3] considered as benchmarks for EEG signal process-
ing. These data sets were recorded using the so-called cue

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-016-1192-8&domain=pdf
mailto:kaisbelwafi@gmail.com


264 J Sign Process Syst (2017) 89:263–279

paradigm. The subject is sitting in front of a computer
screen and an arrow will appear prior to starting the record-
ing of each trial indicating a right or left hand imagination.
If the arrow points to left or right direction, then the subject
should imagine moving its left or right hand respectively.

On the other hand, according to the online approach,
the data is recorded and processed immediately at the end
of each acquired trial. The online validation is a final step
of the validation process. It is worth noting that it’s very
difficult to compare the obtained results with those pre-
sented in the literature because we are not sure that the EEG
acquisition process is done using the same conditions, the
same environment and tools. Furthermore, subjects are not
the same, subsequently, the EEG frequencies bands are so
differents.

A typical BCI chain is shown in Fig. 1. The system is
based on recording and analyzing EEG-brain activity and
recognizing EEG patterns associated with specific brain
activity; i.e. it consists of matching between the EEG data
and classes corresponding to a mental task represented in
imagined right and left hand movement. In order to control
home devices, the user has to produce two different brain
activity patterns: Left-Hand (LH) and Right-Hand (RH).
Next, the acquired signal will be processed using dedicated
signal processing components to decode the activity into
commands enabling the artificial actuator to control basic
home devices. However, the acquired EEG signal is contam-
inated with several artifacts derived from many factors such
as bad electrode location, dirty skin, etc. [4]. Furthermore,
the presence of these artifacts is also due to the interfer-
ence with signals coming from other parts of the body such
as heart and muscle activities. It is mandatory to remove
all artifacts and enhance the signal to noise ratio (SNR)
by filtering the acquired data. The filtering block aims to
remove artifacts, improve the stationarity, and increase the
classification accuracy. Unfortunately, pre-processing may
introduce spurious informations, and could cause the loss
of precious data, which might lead to a system perfor-
mance deterioration. To avoid any of the above mentioned
symptoms, undesirable signals should be carefully removed
through one of the appropriate techniques such as FIR
or IIR filters [5, 6]. Another challenge, which should be
taken into consideration, is the large inter-subject variance
of EEG signal properties. The assumption that the motor
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Figure 1 A typical block diagram of a BCI architecture.

imagery information is located in α-rhythm and β-rhythm
is not always true [7]. For this reason the band for each
subject should be adjusted to maximize its classification
accuracy.

Moreover, artifacts in recorded EEG signals are the con-
sequence of any EEG contamination like muscle activity
and eye blinks. Given these particular reasons, the selection
of filter parameters is one of the most challenging problems
for EEG processing [8], and should be realized very care-
fully. One of the main objectives of this paper is to provide
an efficient BCI with adaptive pre-processing techniques
customized for each subject to improve the classification
accuracy. Many digital filtering techniques can be used to
remove undesirable frequencies [9]. Unfortunately, if the
same filter is applied to all subjects in the data set, its effect
will depend on the subject and might skew the results.

In general, the EEG signal is described in terms of
rhythmic activity split into frequency bands with respect to
specific function of the brain. The most interesting EEG
brain waves presented in [10] are:

• The delta (δ) activity ([0.5-4]Hz) more related to sleep
and anesthesia.

• The theta (θ ) activity ([4-8]Hz) describing sleep and
micro-sleep stage towards drowsiness

• The alpha (α) activity ([8-13]Hz) providing somatosen-
sory cortex and temporal cortex acquired during
reduced visual attention.

• The beta (β) activity ([13-30]Hz) resulting from active
thinking or during solving concrete problems.

Even if the proposed pre-processing approach is promising
for cleaning data from contaminating artifacts and keeping
meaningful data in α-rhythm and β-rhythm [11, 12], it is
accompanied with significant increase of processing time.
Besides, for a given data set with long EEG recordings
involving many subjects, filtering techniques require sig-
nificant computing capabilities. To reduce the time-related
overhead for the EEG data, hardware/software solution is
proposed and presented as an embedded system in which
the pre-processing component is represented as a customiz-
able co-processor controlled by an embedded soft-core
processor. An FPGA-based platform has been used for the
validation of our filtering approach by using offline data sets
of twelve subjects.

The next step of the BCI chain is the feature extraction
which has been reported in the literature including power
spectral density [13], Short-Time Fourier Transform STFT
[14], Common Spatial Pattern (CSP) [11, 15], wavelet anal-
ysis [14] and band power, etc. The choice of a particular
technique depends basically on the application domain. For
example, CSP is appropriate for the motor imagery appli-
cation as it allows effectively to extract ERD/ERS effect
[16]. The main idea of this technique is to design a pair of
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spatial filters so that the filtered signal’s variance is maximal
for one class while being minimal for others [15]. Eventu-
ally, all selected and extracted features have to be classified
using a high-accuracy classification component. A review of
many BCI techniques can be found in [17] where the most
effective and widely used classification algorithms are: Lin-
ear Discriminant Analysis (LDA), Support Vector Machine
(SVM), Neural Networks (NN), Hidden Markov Models
(HMM) and Mahalanobis distance (MD).

Although the BCI theory has been well established, the
implementation of hardware in real-time environment is still
far below the currently available high computational signal
processing operations. It is well known that the computa-
tional complexity of the home device control system using
EEG signals is too high due to the large data set and com-
plex mathematical operations [16]. Our design methodology
is based on a deep software performance analysis to iden-
tify and extract critical functions and components to be
moved as hardware parts and integrated with the software.
The entire system is co-simulated and validated at different
abstraction levels. Its performance evaluation is conducted
using FPGA-based platform, which can be configured for
different applications.

The proposed system-on-chip (SoC) architecture of the
home device control system is implemented on Altera
Stratix-IV EP4SGXFPGA chip. Two main targets of the
design are set: firstly, minimum processing delays with
maximum accuracy should be achieved. Secondly, a prac-
tical implementation of an adaptive filter based on the
auto-selection of best filter parameters with respect to each
subject, and self-adjusting of the frequency bands contain-
ing useful information are provided.

This paper is organized as follows: In Section 2, brain
computer interface fundamentals and theory are presented,
as well as hardware-based BCI platforms. In Section 3, we
will provide the design exploration of the BCI chain with
an evaluation of complexity and timing. In Section 4, the
design exploration of the proposed solution is elaborated:
a brief discussion of the system performance improvement
and its execution time is also suggested. Finally, Section 5
concludes the paper and outlines our future works.

2 Related Work

To control home devices using brain signals, it is essen-
tial that imagery-related brain activity should be detected
with high accuracy from the ongoing EEG signals. The
motor imagery detection process requires sophisticated
pre-processing techniques. A typical BCI scheme (cf.
Fig. 1) consists of signal acquisition, pre-processing, feature
extraction, classification and device command generation.
Therefore, the generated output signal allows subjects to

control basic home devices like automatic door locks, auto-
matic lighting control switch, AC, etc. To interact with the
above-mentioned external devices, the user should imagine
left or right hand movement according to the state machine
presented in Fig. 2. Thus, a right-hand EEG signal allows
the user to pass to the next device, where a left-hand move-
ment selects the current device and goes to the next state
machine to complete the ON/OFF action or to come back
using only RH and LH movements.

The acquired EEG signals have to be recognized and con-
verted into a control command through one of the following
signal processing techniques:

• The steady-state visual evoked potential (SSVEP) is
based on the sensory stimulation of the visual field.
The related visual stimuli, flashing at the center of the
visual field, create a higher potential than those flashing
at the visual field periphery. According to the pattern
analysis, the SSVEP technique recognizes the stimuli
gazed at by the subject. The amplitude and the phase of
SSVEP have proved to be highly sensitive to stimulus
parameters such as flicker frequency, contrast, spa-
tial frequency and environmental conditions [18]. This
technique doesn’t seem to be suitable for people with
severe disabilities, because it requires a high degree of
concentration.

• The event-related desynchronization/synchronization
(ERD/ERS), which reflects a decrease and an increase
of the oscillatory activity related to an internal or exter-
nal event, is considered as a subject related technique. It
does not require any stimuli interaction and the power
increase and decrease of the acquired EEG signal can
be quantified as function of time and space provid-
ing more flexibilities for EEG signal analysis [19].
Although this technique requires a training phase, the
overhead induced by the training does not affect the
overall system performance, as long as it is done during
the initialization phase.

• The Movement Related Potentials (MRPs), occurs
before and during voluntary movements such as stand,
walk and point [20]. Two main components can be
distinguished in MRPs movements, which are the
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late component begins within 500 ms before move-
ments and the early component begins within 200 ms
after movements. Late component consists of rapidly
increasing negative potential from the contralateral pri-
mary motor cortex area. On the other hand, the early
component implies a slow increasing negative potential
at the vertex are of the brain.

Even if BCI users provide only slight left-right differences
accompanied with artifacts, the application of advanced pre-
processing techniques can enhance differences and improve
BCI control accuracy via filtering. Many signal process-
ing techniques have been widely used for pre-processing
purposes based on:

• Using time and frequency domain transforms such as:
fast Fourier transform (FFT) or discreet wavelet trans-
form (DWT). For example, FFT can be applied for
each channel to perform the discrete Fourier transform
computation to extract the amplitude and the phase
of the ongoing EEG signal efficiently. The Fourier
component located in α and β rhythm are selected
for pre-processing and then the signal is reconstructed
by taking the inverse fast Fourier transform (IFFT).
It is quite obvious that the Fourier transform com-
ponents are well localized in frequency but not in
time. Wavelet coefficients provide a trade-off in time-
frequency localization. This technique is successfully
used for removing the undesirable signals as long as the
SNR is maintained above 10 dB. The wavelet technique
does not provide a good de-noising of the EEG signals
contaminated with noise especially in high frequency
[21].

• Subtracting artifacts from the acquired signal: this tech-
nique requires an average artifacts template estimation
to be subtracted from the original EEG signal. For
instance, the average artifacts subtraction techniques
(AAS) require a high sampling frequency and are just
capable of eliminating repetitive artifact patterns [22].
Independent component analysis (ICA) can also be
applied on multichannel EEG signal by decompos-
ing the original one into multiple source components.
Some of them which are related to the ocular activ-
ity can be discarded to remove the main ocular arti-
facts. Unfortunately, some non-ocular data can also be
removed and still, the classification accuracy remains
limited [23].

• Using the same static filtering for all subjects like finite
impulse response (FIR) and infinite impulse response
(IIR) filters: FIR filters like Equiripple (FFe) and
Kaiserwin (FFk) are based on Parks-McClellan algo-
rithm using the Remez exchange algorithm and Cheby-
shev approximation theory to design filters with an
optimal fit between the desired and the actual frequency

responses [24]. The main classical IIR filters are But-
terworth (FIc1), Chebyshev type I, type II (FIc2) and
elliptic (FIec1), where each one is optimal for a specific
context. For example, Butterworth based on the Taylor
series approximation provides the best representation
of an ideal band-pass filter response where elliptic fil-
ters allow to get equal ripples in both the pass-band and
stop-band filter limits. The Chebyshev technique min-
imizes the absolute difference between the ideal and
the actual frequency responses over the entire pass-band
by incorporating an equal ripple in the pass-band for
the type I filter, and equal ripple in the stop-band for
type II. The above-mentioned filters are frequently used
with an order less or equal than eight providing a steep
transition band and uniform ripples in the pass-band
and stop-band regions. Consequently, the attenuation of
the EEG signal in the stop-band region is limited to -
6 dB and cannot be pushed to a greater value like -80
dB [24].

• Using adaptive filtering techniques: the electrooculo-
graphic (EOG) artifacts are removed from EEG signal
using the independent component analysis (ICA) that
allowing to extract information from electrodes close to
eyes [25]. Then the interference of EOG with EEG is
estimated using the recursive least squares (RLS) algo-
rithm based on the adaptive adjustment of all filters for
each ICA by modifying the offset of the total band from
8 to 30 Hz to get higher accuracy. Similar, adaptive fil-
tering techniques are used in [26] where the best band
is retained by optimizing the objective function of the
common spatial pattern (CSP). This technique depends
on the CSP outputs and can lead to failure when the CSP
does not succeed in providing the feature vector and
the filtering approach becomes useless. The so called
adaptive signal enhancer (ASE) is defined as an adap-
tive filter capable of adjusting its parameters in order
to minimize the mean square error (MSE). This method
is used to detect a single sweep event related potential
in EEG record [27]. Adaptive recursive band-pass fil-
ter (ARBF) is employed to estimate and track the center
frequency of the dominant signal of each EEG chan-
nel. The main disadvantage of the ARBF is that it only
updates one coefficient in order to adjust the center fre-
quency of the band pass filter to match the noise signal
provided as an input. Thus, this technique is not suitable
for unpredictable noise [28]. Even if these techniques
are suitable for some subjects and for a specific data set,
they cannot provide the same accuracy for other sub-
jects belonging to other data sets [26]. To address this
issue, an exploration of filter design is proposed to find
an appropriate filter for each candidate based on the
SNR maxima. Given a set of FIR and IIR filters, the fil-
ter type, their orders and coefficients are defined during
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the training phase. Furthermore, a customizable vali-
dated filtering architecture is also proposed, designed
and validated using data sets from the BCI competi-
tion. In fact, the SNR providing the maximum accuracy
for each subject is identified. This parameter is then
used as an input for the filter design, which calculates
the filter order and their coefficients accordingly. Con-
sequently, each subject has its own filter to guarantee
the maximum accuracy based on the filter design tech-
nique applied during the training phase using 5-fold
cross-validation approach [29]. Then, the test can be
processed for any data set.

The theoretical aspect of BCI systems have been well
developed, and a few attempts to implement the complete
hardware system have been reported in the literature. Lun-
DeLiao et al. [30] developed a wearable mobile EEG-based
brain computer interface system (WMEBCIS) for long-term
EEG required for drowsiness detection. Kuo-kaiShyu [4]
implemented a low-cost FPGA based architecture using the
SSVEP to develop a BCI multimedia control system. The
same architecture is applied to control a hospital bed nurs-
ing. Gao et al. [31] used SSVEP to control environmental
devices, such as TV or air-conditioners. It is worth noting
that the SSVEP systems need gaze movements. Hence, an
important effort is required from the user to acquire EEG
signals for such applications. Thus, the SSVEP approach
seems to be inappropriate for people with concentration
difficulties or with sight problems when the acquisition pro-
cess becomes unfeasible. Moreover, the SSVEP approach
needs fast actions from user who is directly in front of

the stimulation panel [32]. To be easily used by people
with severe disabilities, we propose to provide a EEG-based
control system operating only by thought instead of using
SSVEP approach. The proposed technique allows the user
to move freely and interact easily without any constraint
[33]. Our proposed design methodology is based on deep
software performance analysis to identify and extract crit-
ical functions and components to be moved as hardware
parts and integrated with the embedded software compo-
nent. The entire system is co-simulated and validated at
different abstraction levels and a performance evaluation is
conducted using an FPGA-based platform.

3 BCI Approach

To implement efficiently the EEG signal processing tech-
niques, a novel design approach is proposed as depicted in
Fig. 3.

In this respect, the main idea consists of finding the suit-
able filter with appropriate filtering parameters for each
subject. We perform the offline validation, where the EEG
data set is divided into training and validation components
distributed respectively into 60 % and 40 % based on several
experiments. For each subject, the EEG-data are filtered,
their features are extracted, and each EEG trial is linked to
its corresponding action. The filtering block is controlled by
multiplexer according to its type (from 1 to Np), where Np

is limited to 60 in our proposed system design. We explored
our filter design architecture for all SNR values from 10 to

Figure 3 The EEG filter design
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100 dB. Thus, for each subject sixty parameters have been
applied to their data to find the best filter. Once the filter
providing the best performance is well identified, the CSP is
applied to generate the feature vector. Eventually, the clas-
sification, based on Mahalanobis Distance (MD) technique,
is conducted.

3.1 Data Description

Two public data sets of the BCI competition, provided by
Graz University of Technology, are used in our experi-
ments. These data sets contain motor imagery EEG signals
recorded from twelve subjects performing two different
motor imagery tasks (Left Hand ’LH’ and Right Hand
’RH’). These data sets are organized as follows:

• Data set IIa [3], from BCI competition IV: It consists of
EEG data acquired from nine subjects performing four
different motor imagery data, i.e., LH, RH, foot and
tongue. The data have been recorded in two different
sessions using 25 electrodes where three of them con-
tain EOG artifacts. EEG signals were sampled with 250
Hz and filtered between 0.5 and 100 Hz. The recorded
data for each subject contain 288 trials. During this
study, we have only used EEG signals corresponding to
left-hand and right-hand motor imagery (MI) tasks.

• Data set IVa [2], from BCI competition III: This data
set contains EEG signals from three subjects integrat-
ing four different motor imagery data i.e., LH, RH, foot

and tongue. The data have been acquired through 60
electrodes sampled with 250 Hz and filtered between
1 and 50 Hz. The recorded data contain 80 trials for
each class. For our experiments, only EEG signals
corresponding to LH and RH were used.

In this respect, the data set IIa uses 25 electrodes and pro-
vides all frequency components between 0.5 and 100 Hz
where the data set IVa considers 60 electrodes with the fre-
quency components from 1 to 50 Hz only. The 25 electrodes
used in the data set IIa are represented in the Fig. 4 with grey
color where the 60 electrodes used in the data set IVa are
colored by grey and white (all electrodes). However, both
of the above-mentioned data sets have been sampled at the
same frequency of 250 Hz.

Prior to initiating the EEG signal analysis, all samples
are extracted from the recorded data according to the state
of their associated trigger through the acquisition process.
The trigger enables the beginning of each trial during the
acquisition step. Moreover, it serves as an indicator to start
the EEG signal analysis. The length of each trial is fixed to
500 samples (2 seconds), taken from the total period of 7
seconds representing motor imagery (MI) actions.

3.2 Filter Design

The EEG-based motor imagery classifier allows us to dis-
criminate between right and left hand movements by analyz-
ing particular frequency bands of brain activities. Existing

Figure 4 Position of EEG
Electrodes.
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methods cannot find multiple frequencies for different sub-
jects accurately [34]. The frequencies of the received data
are in the range of 0.5-100 Hz where frequencies outside
α-rhythm and β-rhythm bands are removed to make sure
that the detected MI is not due to any muscular activity
of the arm [35]. It is essential that pre-processing steps
don’t introduce any spurious information while preserving
all useful data. However, if the pre-processing is inappropri-
ately conducted, the classification accuracy will be strictly
impaired. To address these issues, a new auto-selection-
based approach of the best filters parameters is suggested.
An automatic selection of the most suitable filter for each
subject is proposed. Six types of filters are used: Equiripple
and Kaiserwin as FIR filters and Butterworth, Chebyshev
1 & 2 and elliptic as IIR filters. The filter parameters used
in our design are: stop band (SB), pass band (PB), band-
width (BW) and transition width (TW), where the filter
order highly depends on the above mentioned parameters.
All coefficients and filter orders are identified through a fil-
ter design process so that the SNR is optimized for each
subject during the training phase. Increasing the SNR in
the stop-band will automatically increase the filter order as
illustrated in Fig. 5A providing an accurate filter and the
EEG signal will be well filtered. Subsequently, the transi-
tion width is decreased so that adjacent bands to α and β are
removed [36].

The filter design is applied for each subject during the
training process, where the SNR providing the best accuracy
is identified. This value of SNR is used as an input value for
the filter design to calculate both the filter order, as well as
their coefficients for all the proposed type of filters. Among

these six different types of filters, we select the best one for
the current subject and we iterate the process for all subjects.
Fig. 5B presents the execution time for each filter according
to the filter order. It is worth noting that more increasing
the filter order, the more efficient it becomes and the more
accurate its selectivity becomes too. Hence, this occurs at
the expense of an increase in the execution time. Figure 5A
shows the complexity of each filter as the SNR increases
from 10 to 100 dB. The worst case in term of filtering delays
is found for the Kaiserwin filter. The proposed EEG filter
design takes 12.31 seconds to process 144 EEG trials, which
is equivalent to 0.08 seconds by trial. This execution time
was measured from Matlab tool running on a Laptop with a
2.4 GHz CPU.

3.3 Feature Extraction

The feature extraction represents the second step in
the signal processing chain combining time-domain and
frequency-domain signal features. One of the widely
used algorithms to extract useful information from motor
imagery data is the CSP [37]. It is applied to reduce the
dimension of the feature set by selecting a subset of features
to offload the work of the classifier. Formally, CSP com-
putes the normalized covariance matrices by applying the
following equation:

Ci = EET

trace(EET )
(1)

where trace(x) is the sum of diagonal elements of x, i is
the index of class (LH, RH) and E is the data of each trials

Figure 5 The order and the execution time of the pre-processing filters depending on their SNR values.
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Figure 6 The order and the execution time of the pre-processing
filters depending on their SNR values.

of dimension Ns × NCh, where NCh is given by the num-
ber of channels and Ns represents the number of samples.
Then, the overall composite spatial covariance matrix is cal-
culated by adding the covariance matrices of each classes.
In the next step, the composite matrix (Cc) is decomposed
according to the following equation:

Cc = UcλcU
T
c (2)

where Uc is the matrix containing eigenvectors and λc is
the diagonal matrix containing the eigenvalues sorted in
the ascending order. According to the Eq. 3, the whitening
transform will be computed to equalize the variance in the
space that is created by Uc.

P =
√

λ−1
c Uc (3)

The transformed covariance matrix Si∈{1,2} is obtained
according to the following equation:

Si = PCiP
T = BλiB

T (4)

Then, the projection matrix W is obtained through to the
following equation:

W = BT P (5)

The feature vector which optimally discriminates the two
classes is the Nf /2 smallest and Nf /2 largest eigenvectors
of Z (see Eq. 6), where Nf is the number of the selected
features. In our case, the number of features is fixed to six.

Z = WE (6)

Finally, the returned feature vectors are calculated based on
the following equation:

Fi = log(
var(Zi)

var(Z1) + var(Z2)
) (7)

CSP is complex in terms of computational loading, espe-
cially during the computation of the eigenvalues and the
covariance matrix. The processing time is highly dependent
on two parameters: the number of trials and the number
of channels NCh. For instance, the time elapsed during the
feature extraction vector calculation from EEG trials with
a dimension 500 × 22 is close to 75 ms measured on the
aforementioned platform.

Figure 6 shows an example of ERD/ERS maps for one
subject from the IIa data set on which we applied our fil-
tering techniques, as well as the local average reference
(LAR) filtering techniques. We remark that our best filtering
technique offers a better segregation of the ERD/ERS dis-
tribution. For example the ERS distribution in red color is
neatly localized in the motor cortex area [16, 38] increasing
its classification. Furthermore, the LAR-based distribution
seems to be in the middle of the color which indicates that
their feature-overlapping is high.

3.4 Classification

The obtained feature vectors are then classified using the
Mahalanobis distance (MD). Thus, the statistical distance
function MD is minimized to classify the EEG pattern for
one of two classes. The MD avoids the limitation of the
linear classifiers based on Euclidean metric, since it auto-
matically computes the correlation between two different
features [17, 39]. The training phase starts by calculating the
mean vector μR and μL corresponding to the average of the

Figure 7 The execution time of
the classifier under Matlab.
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features for right hand and left hand respectively. The MD
is computed according to the following equation:

d2
i = (Fv − μi)

T �−1
i (Fv − μi); i = {R, L} (8)

where �i is the covariance matrix for the imagined move-
ment under consideration (left or right hands) and T is the
transposition operator. Thus, to classify the incoming new
feature vector Fv , the Mahalanobis distance di from the
mean of Fv is measured and the current feature vector is
assigned to the class with the minimal distance. The pro-
cessing time of the MD algorithm is highly depending on
the number of trials and the number of features provided by
CSP. The execution time of the classifier is highly correlated
with the number of features as shown in Fig. 7.

Our proposed adaptive filter approach recognizes the best
filters parameters based on the class label available only
during training. Indeed, the system performance is mea-
sured during the training phase according to the 60 filter
parameters as mentioned in Fig. 3. The maximum accuracy
Pa(maxin%) for each subject is obtained after selecting the
best filter, where their selected parameters are used during
the run-time for each subject. We notify that the proposed
system can be self adjusted by the user when the system pro-
vides many wrong classifications during the test phase by
re-initiating the training phase.

4 Embedded EEG-based BCI System (3EGBCI)

To build the design, the Altera environment organized
around the Nios-II soft-core processor has been used
according to the work flow presented in Fig. 8. We started
with high level programming of the EEG-based signal pro-
cessing techniques using the Matlab environment to validate
the system. A multi-subject data set was used to check the
accuracy of the proposed architecture after interconnecting
all filtering, feature extraction and classification compo-
nents. Then, the EEG-based BCI Matlab-code has been
migrated to an embedded system architecture integrating

BCI Matlab simulation and system requirement 

BCI system Hardware BCI system Software

FPGA-download design Execute C-code

Refine Hardware and Software

Home device controller-based SOC definition

Figure 8 The proposed design flow for the 3EGBCI system.

both hardware and software components, with the hardware
part developed using Verilog language and the software
component built according to the ANSI-C language. The
design and implementation of a BCI system in the context
of SoC architecture requires considering several issues with
reference to the following design flow:

• Hardware design step: in this step, the embedded
system-based hardware architecture is defined. The
available Nios-II family of the embedded core pro-
cessors implements a common instruction set archi-
tecture. Moreover, each instruction is optimized for a
specific price/performance point and supported by the
same software tool chain. Altera provides three versions
of core processors: Nios-II/s standard implementing a
smaller processor with a limited performance, a Nios-
II/e economic version designed to use the fewest FPGA
logic memory resources and the Nios-II/f fast version
with high performance over 300 MIPS. Our proposed
architecture incorporates a fast version of the Nios-II
core processor with on-chip memories and an appro-
priate interfaces to interconnect co-processors to the
standard bus interface provided by Altera. This inter-
face is exclusively used to build all Altera system design
to simplify the interconnection and to manage the com-
munication within a complex architecture including a
multiprocessor organization.

• Software design step: this step consists of the design of
the embedded software. The BCI soft-core application
is developed using ANSI-C language and is primarily
developed on the Instruction Set Simulator (NiosII-
ISS) via the Nios-II IDE environment of Altera. Once
simulated and checked, the code is integrated on the
FPGA to be executed by the Nios-II processor within
the FPGA. Since the proposed system is designed to
work in real time, it is important to have a powerful
software real-time package to accelerate the execution
time of the embedded software. Indeed, the developed
ANSI-C code is combined with GNU Scientific Library
(GSL) within our embedded architecture. In fact, GSL
is an open and free C library providing a wide range of
mathematical routines that help us to encode complex
operators such as covariance, eigenvalues, generalized
eigenvectors and inverse matrix. All the 3EGBCI blocks
have been implemented using ANSI-C. Prior to export-
ing the code into the embedded system, it has been
checked on an Intel-based processor platform and its
performance was evaluated in terms of the execution
time and its classification accuracy.

• System integration step: both the FPGA-based hard-
ware architecture and the software code have been
integrated within the same platform. The code runs on
the Nios-II processor within the FPGA. The critical
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Figure 9 The embedded software solution.

parts of the proposed embedded system are identi-
fied and subsequently exported as hardware modules or
co-processors to improve the performance of the sys-
tem. Further optimizations have been performed on the
system level architecture (memory organization, cache
optimization) to provide the best accuracy and timing
performances. The cache optimization is done during
the configuration of the Nios-II processor. Thus, the
size of the cache memory have been increased from 16
to 64 KB to ensure that all program data are manage
correctly on the Nios II processor. This management
is done using the data cache flushing and bypassing
facilities to move data between the shared memory and
the data cache as required. For our system architec-
ture, we fixed the size of the cache memory to 64 KB
and we enabled the burst transfer option to accelerate
the data transfer between the Nios-II and all remaining
components of the architecture.

According to our design flow, after validating the devel-
oped code, the compiled GSL library and the developed
ANSI-C code are then integrated into the Eclipse environ-
ment of Altera to be uploaded onto the Stratix-IV Altera

platform. To demonstrate the interaction between the hard-
ware and the embedded code, the Stratix-IV EP4SGX230-
KF40C2 has been configured to support our system-on-chip
design.

5 Experimental Results and Discussion

The target architecture is based on the FPGA technology
built with the Altera environment and dedicated integrated
tools such as: Qsys for the hardware design components and
Eclipse for the embedded software development. Figure 9
shows the organization of the proposed embedded system
which includes:

• The fastest version of the Nios-II, data cache with a size
of 64 Kbytes and 4 Kbytes instruction cache.

• A timer to measure the execution time, with 32-bit
counter, and timeout period of 10 microseconds.

• JTAG-UART to establish communication between
Eclipse and the Stratix-IV board.

• DDR2 memory with 1 GB size.
• DMA (Direct Memory Access) transfer data as effi-

ciently as possible, reading and writing data in the
maximum space allocated by the source or destination.

• On-chip memory with a size of 4 KB to synchronize
data transfer between source and destination through
the DMA interface.

• PLL for clock generation and synchronize system
design.

Once the components and their connection are added in
Qsys, the HDL files have been generated to implement the
instances of each IPs in the SoC. Thereafter, the Quartus-
II tool has been used, which is an integrated synthesis

Figure 10 The Nios-II
accuracy for subject 1.
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Table 1 Summary of accuracy (%) by subject for different filters

S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean STD Specificity (%)

(a) Data set IIa

FFe 97.36 89.47 89.47 92.1 97.36 92.1 84.22 94.73 92.1 92.10 4.15 90 ± 2.31

FFk 97.36 84.22 94.73 89.47 89.47 89.47 97.36 89.47 92.1 91.51 4.31 89.47± 1.97

FIb 94.73 81.58 78.95 78.96 89.47 81.59 81.59 84.22 78.96 83.33 5.41 80 ± 1.80

FIc1 84.21 78.90 89.47 81.59 97.36 84.22 92.10 100 89.48 88.59 7.07 85 ± 1.94

FIc2 89.47 81.58 84.22 89.48 84.22 86.85 84.22 97.36 86.85 87.14 4.63 84.21± 1.89

FIe 92.10 81.58 97.36 89.47 94.74 89.47 81.59 97.37 92.10 90.64 5.89 89.47± 2.31

(b)Data set IVa

FFe 95.45 81.81 90.90 89.38 6.94 90.60± 2.8

FFk 90.90 86.36 77.27 84.84 6.94 82.83± 2.57

FIb 90.90 72.72 95.45 86.35 12.02 83.08± 2.64

FIc1 81.81 86.36 90.90 86.35 4.54 85.86± 2.21

FIc2 86.36 81.81 90.90 86.35 4.54 88.64± 2.73

FIe 77.27 90.90 81.81 83.32 6.94 80.05± 2.34

and place & route engine to get the virtual EEG-System
prototype.

As previously mentioned, the 3EGBCI system is trained
with BCI competition data sets [2, 3] to customize pre-
processing techniques for each subject and provide high
accuracy for all LH class or RH class samples. The system
is validated on both nine subjects and three subjects data
sets. The EEG signals of each subject are applied to the pro-
totyping EEG-based system, whereby each trial is classified
according to a two-label approach. The accuracy is com-
puted as the ratio of test samples classified correctly by the
algorithm over the total number of trials with respect to the
given data set [40].

5.1 Software Results

The EEG data set is uploaded into the DDR2 of 3EGBCI
system using a 16-bits format. Therefore, the procedures

for real-time signal processing of the home device system
controller are as follows: all trials are extracted from the
data set based on the trigger for the duration of 2 sec-
onds. The 500 uploaded EEG-samples belonging to one out
of 144 trials are filtered by the appropriate filter before
building the feature extraction vector using the CSP tech-
nique. It is worth noting that all coefficients of the adaptive
filters are stored in the cache memory of the Nios-II pro-
cessor. For comparison purposes, the outputs of the feature
extraction block have been checked and compared with the
Matlab tools results. An evaluation based on statistical fea-
ture analysis is conducted for both Matlab and C codes.
The above mentioned statistical features are: standard devi-
ation, mean and smoothness. Thus, all these measurements
provided approximately the same values (with an error of
10−3) for both Matlab and C code. Finally, the extracted
features are used to estimate the physiological state index
for sending out the appropriate command to control home

Table 2 ITR comparison of different applications in BCI competition [42].

Team System Type Paradigm P(%) T(sec/sym) Score ITR(bits/min)

1 Neurosan-40 synchronous P300 98.61 5 70 61.7

2 BrainProducts synchronous P300 95.92 7.34 45 39.7

3 Biosemi synchronous Motion 82 7.2 32 30.8

4 Neurosan-40 synchronous P300 85.71 8.57 30 27.8

5 TsinghuaMiPower synchronous SSVEP 80.491 8.78 25 24.5

6 TsinghuaMiPower synchronous SSVEP 87.88 10.9 25 23.8

7 G-Tec synchronous SSVEP 55.32 7.66 5 15.4

8 SYMTOP synchronous P300 56.67 12 4 10.2

9 g.USBamp [12] asynchronous MI 92.17 2 32 18.11

10 3EGBCI synchronous MI 94.47 2 36 20.74
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Table 3 Summary of the best filter parameters and accuracy for different subjects

S1 S2 S3 S4 S5 S6 S7 S8 S9

(a) Data set IIa

Filter FFk FFe FIe FFe FIc1 FFe FFk FIc1 FIe

SNR 10 20 10 10 70 50 10 80 50

order 194 221 8 146 54 442 194 62 16

Accuracy 97.36±1.7 89.47±1.7 97.36±1.7 92.1±1.7 97.36±1.7 92.10±1.7 97.36±1.7 100±1.7 92.10±1.7

Specificity 100±0.1 86.04±2 95.34±2.2 90.69±1.9 97.67±2.2 93.23±2.1 95.34±2.2 100± 0.15 90.69±1.9

ITR 24.7±2.7 15.43±1.5 24.7±2.7 18.04±1.8 24.7±2.7 18.04±1.8 24.7±2.7 29.99±2.7 24.7±1.8

(b) Data set IVa

Filter FFe FIe FIb

SNR 10 40 20

Order 146 14 100

Accuracy 95.45±1.56 90.90±1.56 95.45±1.56

Specificity 93.75±2.93 87.50±2.74 90.90±2.75

ITR 21.99±2.7 16.80±1.5 21.99±2.7

devices. The interaction between the hardware Stratix-IV
platform and the software is used via the Nios-II Software
Build Tools provided by Altera. We have also used the GCC
compiler dedicated for Nios-II to compile both GSL library
and ANSI-C code. Communication between the embed-
ded system and the Eclipse console is performed through
the JTAG interface to show: the results of the classifier,
the system accuracy and the time spent for each 3EGBCI
block. For instance, classification results obtained with sub-
ject number-1 are presented in Fig. 10 for different filters.
All accuracy values fluctuate according to the filtering tech-
nique, and its best value is obtained with the Kaiserwin
filter. Additional results are shown in Table 1 representing
the evaluation of the adaptive filtering technique effects for
each subject to reach the required predefined SNR value to
maximize accuracy. These results confirm the variability of
the bandwidth limits due to the intrinsic characteristics of
subject’s EEG signals [15].

To complete the proposed classification system evalua-
tion, the information transfer rate (ITR) has been measured

Table 4 Resource utilization of the Stratix IV FPGA using pure
software approach

Selected device EP4SGX230KF40

Features Utilized Present (%)

Combinational ALUTs 8809 182400 5

Total register 10922 182400 6

Total pins 156 888 18

Total block memory 818624 14625792 <6

DSP block 4 1288 <1

for all EEG signal processing of the system during the off-
line validation process. The ITR can be expressed by Eq. 9
as in [41]:

IT R = L[pslog2(ps)+ log2(Nt )+ (1−ps)log2(
1 − ps

Nt − 1
)]
(9)

where L is the number of decisions per minute, and pS

the accuracy of the decision made for the Nt targets. A
set of metrics are used to evaluate the performance of our
proposed system, as well as similar architectures based on
P300, SSVEP and motion paradigms, including: ITR, and
scores incremented by one when the symbol selected by
the system matches with the target symbol. As depicted in
Table 2, our solution provide about 94.47 % for the average
accuracy of twelve subjects with ITR close to 20.74bit/min.
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Figure 11 Communication protocol between Nios and FIR/IIR IPs.
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Figure 12 The 3EGBCI Nios-II-based embedded system.

Table 3 presents the best filter for each subject providing
the highest classification accuracy. These parameters are
obtained during the training phase to be fixed when test-
ing the remaining data. Furthermore, the ITR seems to be
reasonable compared with values reported in similar works
[42, 43]. The execution time is evaluated on the embedded
software solution running on the Nios-II soft-core proces-
sor operating at the clock frequency of 250 MHz. As shown
in Table 5, the execution time for both feature extraction
and classification are quite similar where the pre-processing
is time consuming and can be considered as a critical part
which can be potentially reduced to enhance interaction
between the proposed embedded system and its environ-
ment. For this purpose, a highly accurate internal timer of
the Stratix IV board has been used to achieve accurate eval-
uation of the EEG-based embedded system execution time.
For a given EEG sample, the system takes about 0.941
seconds to decide if the current sample belongs to LH or
RH class, where the critical path is given by the filtering
block. To reduce the above mentioned execution time, the
filter block is implemented in HW as a co-processor. The
complexity of the design in terms of hardware resources is
shown in Table 4 after synthesizing the design by Quartus II
tools. The consumed look up table resources (LUTs) is close
to 5 %, whereby only 4 % of block memories have been
used. In addition, about 1 % of DSP blocks have been used,
leading to a low complexity embedded software solution.
This has allowed us to integrate hardware IP to accelerate
the execution time presented above.

5.2 Hardware/Software Issues

To accelerate the system, EEG filters have been imple-
mented in HW as a co-processor of the Nios-II. The FPGA
hardware accelerator requires the transfer of many kilobytes
of EEG data between the Nios-II processor and IP accelera-
tor. To address this issue, a DMA on the FPGA accelerator
has been designed to increase data transfers. With one DMA
interface, additional on-chip memories were needed to syn-
chronize data transfer and avoid any loss of data [44]. The
data transfer is done according to a specific protocol, as
shown in Fig. 11, to synchronize data transfer between the
processor and the slave FIR and IIR components.

In order to obtain a compact implementation, intensive
computations are conducted using the fixed point coding.
The bit length of the filter coefficients and EEG signals is
16 bits, providing a fixed-point representation with 4 bits for
the integer part (the amplitude values of the EEG signals are
very small) where the remaining 12 bits are dedicated for
the fractional one. Consequently, the error measured with
this encoded data is close to 10−5, which is quite reasonable
for our application. Thus, the design has been extended by
adding new hardware components which are FIR and IIR
filters as shown in Fig. 12.

FIR and IIR filters are widely used in EEG processing. A
FIR filters with T taps is given according to the Eq. 10 and
IIR filters with T taps represented by the Eq. 11:

y[i] =
T −1∑
k=0

b[k]x[i − k] (10)

y[i] =
T −1∑
k=0

b[k]x[i − k] −
N−1∑
k=1

a[k]y[i − k] (11)

where x[i] is the ith value of the EEG signal, a[k] and
b[k] are the kth coefficient and y is the output. All filter
parameters such as the number of taps, the sampling fre-
quencies, the size of the time window of the trials and the
SNR on the stop-band, have been considered and adjusted

A1 A2

D1 D2

. An

.. Dn

B1 B2

Y1 Y2

. Bn-1

. Yn

DDR2

C
oefi

D
atai

DDR2

IIR filter FIR filter

A1 A2

D1 D2

. An

.. Dn

C
oefi

D
atai

a b

Figure 13 Internal architecture of adaptive filter.
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Table 5 Processing time (ms)
and power consumption (W) by
trial using embedded software
and Matlab tools.

Matlab Code SW (INTEL) SW (Nios-II) HW/SW

Filtering 11.2 0.002 550 8

Feature Extraction 0.75 0.6 189 189

Classification 0.5019 0.018 202 202

Total time 12.5 0.62 941 399

Total power - - 1.77 1.067

adaptively to enhance their performance. The number of
taps of the FIR filter is fixed to 500 according to trial
length, while the number of taps of the IIR filter is main-
tained at 128. When the EEG signal requires a filter with an
order less than 128, all upper coefficients are completed by
zeros using the same architecture. The hardware accelerator
FIR and IIR have been designed in Verilog. The Model-
Sim tool has been used to verify whether the design behaves
correctly. Figure 13 shows the internal architecture of the
two proposed filter banks. During the initialization phase,
the two accelerators receive Nc coefficients during the Nc

first clock cycles. These filters are then launched in par-
allel to take full advantage of the FPGA resources. Once
the synchronization process of the design is successfully
completed, a software-related development that involves the
design of a frontend and backend driver along with a real
device driver for the FPGA accelerator is conducted [44].
Communication between the Nios-II processor and the filter
accelerator is improved using an integrated DMA interface,
which allows a direct access to the DDR2 memory for EEG
data retrieval and storage. Through these actions, the Nios
embedded system has been offloaded so that it can perform
others tasks.

Furthermore, to reduce the power consumption, the over-
all design frequency has been reduced. Moreover, the sys-
tem has been accelerated by hardware IPs in parallel with
Nios-II to make a fast decision for each trial. The new
design organization provides hardware (HW) and software
(SW) components running over the master Nios-II proces-
sor [45]. The new HW/SW design has been downloaded on
the Stratix-IV board to measure timing enhancement and
evaluate all BCI functionality using adaptive filtering. The
results, presented in Table 5 show that the system spent
approximately 0.4 seconds instead of 0.941 seconds in full
software implementation case. Furthermore, the delay asso-
ciated with the filtering module is decreased by a factor of
80. Despite smooth timing constraints for real-time appli-
cation, system on chip processing time is shorter than the
execution time of several other embedded BCI systems.

As shown in Table 6, an EEG-based smart living envi-
ronmental control system takes about 2 seconds to estimate
the physiological state [46]. Second, to control hospital bed
nursing system, the system proposed in [47] takes about
5.2 seconds to process one trial while it is based-on a very

simple algorithm and uses only 3 channels. Furthermore,
other works mentioned that the timing spanning to process
one EEG trial based-on 5 channels is about 3 seconds [48].
For comparison purposes and to show the benefits of BCI
embedded implementation, the system has been launched
on an Intel platform running with a clock frequency of 2.4
GHz. Table 5 shows neatly the advantage of the embedded
implementation by comparing the execution time of Mat-
lab and C-code that are running on the same environment.
With the ANSI-C version, our system is 21 times faster than
the previous solution, despite a small decreasing of system
accuracy caused by the CSP algorithm when its eigenvalues
have been calculated. As shown in Table 5, the execu-
tion time of the 3EGBCI system based-on Nios-II increases
rapidly up to 1500 times more than using Intel-based plat-
form. This cost is primarily due to the difference in the
clock frequency, with a factor of 16 between them. Further-
more, the architectures of the two processors are completely
different, which can be evaluated based on the number in
millions of instructions per second (MIPS), The Nios-II has
300 MIPS, while the Intel has 145700 MIPS. Finally, the
HW/SW implementation decreases the time of the software
version leading to a reduction in the power consumption
of the system. Thus, the 3EGBCI based HW/SW version
runs with a clock frequency of 150 MHz and the estimated
static power consumption is about 1.067 Watt, where the
software implementation running at 250 MHz clock rate
provides an estimation of the power consumption close to
1.77 W. However, these accelerations are done at the cost of
an increase in the FPGA resources as presented in Table 7.
We notify that for the HW/SW solution, the resources in
term of ALUTs, registers and DSPs are 15.29 %, 22.15 %
and 50% respectively compared with pure software solution
resources presented in Table 4. The effect of this increase is

Table 6 Comparison with existing BCI application.

System Execution time (ms) Number of Channels

Lin et al. [46] 2000 3

Shyu et al. [47] 5200 3

Miao et al. [48] 3000 5

3EGBCI system 399 22
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Table 7 Resources utilization of the embedded 3EGBCI system.

Selected device EP4SGX230KF40

Features Utilized Present (%)

Combinational ALUTs 27906 182400 15.29

Total register 40402 182400 22.15

Total pins 156 888 18

Total block memory 818624 14625792 6

DSP block 644 1288 50

limited since the design does not exceed 50 % of the overall
FPGA resources.

6 Conclusion

In this paper, we have proposed a HW/SW implemen-
tation of entire brain computer interface chain including
training and classification steps. The design exploration is
performed for a home-self application allowing people to
control home devices by thought using two motor imagery
actions. Our results show a clear improvement in the system
performance by integrating adaptive filters controlled by an
adaptive process to select the appropriate filters parameters.
We have considered the co-processor approach to export
this component as hardware due to its critical time in the
Nios-II processor. The proposed system is verified and vali-
dated on public data set from the BCI competition executed
on the Stratix-IV development kit (EP4SGX230KF40c2).
The timing evaluation shows that the processing delay
of one trial is approximately 0.399 seconds after integra-
tion of the adapted filter as a hardware component instead
of 0.94 seconds as a software component. Thanks to its
significant improvement of the classification accuracy, pro-
cessing speed and embedded and low development cost, this
programmable hardware makes a good BCI platform and
creates new research opportunities and interests in further
useful applications related to disabled or severe impairment
people.

As a future work, we will extend the 3EGBCI system
to support three classes instead of two by adding foot or
tongue thought. This will facilitate the navigation on the
state machine and will allow a better control (multiple
parameters) of home devices such as: HDTV, AC, etc. Fur-
thermore, the proposed HW design could be exported as
an ASIC to minimize the size of the system, as well as to
decrease its power consumption. Finally, an on-line evalua-
tion will be done on the proposed system by connecting an
acquisition board and measure the system performance on
many subjects.
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