
J Sign Process Syst (2017) 89:243–262
DOI 10.1007/s11265-016-1190-x

Hybrid Domain Analysis of Noise-Aided Contrast
Enhancement Using Stochastic Resonance

Rajlaxmi Chouhan1 ·R. K. Jha2 · P. K. Biswas3

Received: 25 July 2014 / Revised: 30 September 2016 / Accepted: 4 October 2016 / Published online: 21 October 2016
© Springer Science+Business Media New York 2016

Abstract This paper aims to present an analysis of a noise-
aided contrast enhancement algorithm in hybrid transform
domains. The performance of our earlier noise-enhanced
iterative algorithm, formulated from the motion dynamics
of a double-well system exhibiting dynamic stochastic res-
onance, has been investigated here on hybrid coefficients,
viz. singular values (SVs) of wavelet coefficients, SVs of
discrete cosine transform (DCT) coefficients, and DCT of
wavelet coefficients, of a dark image. The performance of
the algorithm is gauged using metrics indicating relative
contrast enhancement and perceptual quality. Colorfulness,
subjective visual scores and logarithmic contrast metrics
for outputs are also observed. Experimental results dis-
play noteworthy enhancement of contrast on both natural
and synthetically-darkened images. It can be inferred from
comparative analysis with respect to other conventional
methods that while the algorithm is observed to work well
in all three hybrid domains, the SV-DCT domain performs
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better in terms of iteration count, while DCT-DWT is found
to outperform others in terms of perceptual quality.
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1 Introduction

Research in noise-enhanced image processing has gained
widespread momentum in the past two decades. Particu-
larly, the use of stochastic resonance (SR) – a counterin-
tuitive phenomenon, where addition of optimal amount of
noise leads to enhanced sensitivity of a non-linear system
towards a weak subthreshold signal - has been widely used
in signal and image processing applications. In the past
decade, several works on application of stochastic resonance
for grayscale image or edge enhancement that have been
reported in literature [1–14]. The broad framework of each
of these works is to add controlled amounts of noise to the
image (values or coefficients) so as to increase its contrast
or comprehension.

A common problem when addressing dark images is the
implicit presence of noise in the enhanced image. Most of
the algorithms available in literature produce remarkable
increase in contrast of the images, but the use of an iterative
approach utilizing internal degradation and focus on per-
ceptual quality of enhanced images had been little explored.
Since the noise-aided iterative algorithm of [9] was found
to perform well in individual domains [9, 10, 12, 13],
we found it interesting to study its performance in hybrid
domains, where the advantages of individual domains may
be combined to produce enhancement with fewer iteration.
The unique feature of the SR-based approach is the use of
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internal noise, instead of externally added noise to induce
resonance, and the selection of parameters by Signal-to-
Noise Ratio (SNR) maximization, as described in details
in [9, 13]. Apart from noise-aided algorithms, literature
is abundant in various remarkable algorithms of image
enhancement in a wide range of processing domains.

Spatial domain processing is usually popular amongst
researchers working on dark images due to its low com-
putation requirements. Jobson et al. [15] have reported the
retinex theory that requires filtering with multiscale Gaus-
sian kernels and post-processing stages for adjusting colors.
They have also reported an extension of the previously
designed single-scale center/surround retinex to a multi-
scale version that achieves simultaneous dynamic range
compression, color consistency and lightness rendition [16].
A modified high-pass filtering has been described in [17],
where some specific spatial frequencies are selectively mag-
nified by exaggerating the local visibility of an image,
followed by high-pass filter to adjust those critical frequen-
cies. Since singular values of an image hold luminance
information on an image, nonlinear scaling of these values
also leads to increase in overall luminance of the image [9].
Older algorithms like histogram equalization and gamma
correction are already well-known to the image processing
community.

The above mentioned enhancement techniques are based
on spatial-domain operations. However, DFT and DCT
domains provide spectral separation, and due to this prop-
erty it is possible to enhance features by treating differ-
ent frequency components differently. A popular technique
called alpha-rooting [18] produces an increase in contrast of
the image when the magnitude of each transform coefficient
is raised to a power α, 0 < α < 1, and the sign or the phase
of the coefficient is unchanged. Many algorithms reported in
literature have been designed for both colored and grayscale
images in block DCT domain [10, 19, 20]. However, prob-
lems of blocking artifacts occur when operating in block
neighborhood. Wavelet domain is another promising plat-
form for image enhancement due to its multiresolutional
characteristics. As the approximation band consists of illu-
mination content, while the other subbands contain edge
information, processing of this approximation band may,
therefore, protect the edges and details from degradation.
Hybrid domains like singular values of wavelet transform
have been explored in [21, 22] where the broad mecha-
nism adopted is the equalization of singular values (of image
or approximation band) by a coefficient found by ratio of
largest singular values of the image and an equalized image.
Similar equalization of singular values of DCT coefficients
was reported in [23] for enhancement of low-contrast satel-
lite images. Note that in the proposed work, we aim to
explore three hybrid domains to study the performance of
an existing SR-based enhancement model.

The organization of the rest of the paper is as follows:
Section 3 describes the theory and mathematical formula-
tion of the approach. Section 4 explains the choice of chosen
hybrid domains for this study, and Section 5 describes the
mechanism of how the SR-based processing modifies the
coefficients or values of the respective hybrid domains to
produce contrast enhancement. Section 6 lists and briefly
explains the quantitative and qualitative metrics used for
characterizing the performance of the algorithm. Section 7
presents the general SR-based enhancement algorithm and
its description when the input dataset are the hybrid coef-
ficients/values. Section 8 presents and discusses in details,
various aspects of the performance of the SR-based algo-
rithm in hybrid domains. Inferences and concluding remarks
are summarized in Section 9.

2 Key Contribution

As stated before, this paper explores the combined advan-
tage of various transform domains for contrast enhancement
of dark images using dynamic stochastic resonance. An
established input statistics-dependent dynamic SR (DSR)
model for contrast enhancement [13], is investigated here
in various hybrid domains, such as singular values of
wavelet transform (SV-DWT), singular values of discrete
cosine transform (SV-DCT), and discrete cosine transform
of wavelet transform (DCT-DWT). The choice of these
hybrid domains and the mechanism of enhancement through
iterative processing on each of these domains is analyzed.
The use of internal degradation (due to lack of illumina-
tion) to induce stochastic resonance and use of perceptual
quality to participate in the termination of the iterative
algorithm are some unique features of employed approach.
The performance is characterized using quantitative metrics
of contrast, color, perceptual quality, as well as qualita-
tively through subjective evaluations. Various aspects of the
performance, such as quality, artifacts, computation, param-
eter selection are also discussed in details. After careful
study of the algorithm on several test images and com-
parisons with several enhancement algorithms, the note-
worthy performance of the hybrid-SR domain is validated.
More importantly, the superior performance of the SR-
based enhancement model in hybrid domains is established
through rigorous experimentations and analyses.

3 Mathematical Formulation of SR-Based
Enhancement Algorithm

Stochastic resonance is a phenomenon in which a system
(embedded in a noisy environment) acquires an enhanced
sensitivity towards a small external periodic forcing, when
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the noise intensity reaches some finite level [24]. The under-
lying mechanism of stochastic resonance may be under-
stood using the double-well model proposed by Benzi et
al. [25, 26] as follows: If a particle (image) is placed in a
double-well potential system having two stable states (or
wells), and a weak force is exerted on the system, the
double-well would oscillate asymmetrically. The particle
may also oscillate, but may not have sufficient force to tran-
sit into the other well, even after application of a random
noise fluctuation on the particle. However, at some opti-
mum amount of noise intensity, the particle may make the
transition to the other well due to constructive cooperation
between the weak force and the noise. This periodic inter-
well transition occurs when the noise is tuned to the signal
using the Kramer’s equation [27]. If the position of the parti-
cle is considered as output at any instant, the periodic nature
of the weak subthreshold signal is amplified and exhibited at
the output. The above analogy in the context of images and
following mathematical formulation has been extensively
explained in our earlier works in SVD [9], and intensity [13]
domains respectively. It is important to note that the present
paper presents an extension of the application of this SR
model into hybrid domains. As the focus of the paper is the
application of the model, its mathematical formulation has
been briefly included in the interest of reading continuity.

The dynamics of the motion of this particle is governed
by Langevin equation of motion [27] as follows:

dx(t)

dt
= −dU(x)

dx
+ B sin(ωt) + √

Dξ(t) (1)

where B and ω are respectively, the amplitude and fre-
quency of the weak periodic signal. Here, ξ(t) is the
additional stochastic force (noise) of intensity D.

Here, U(x) is a bistable quartic potential given by:

U(x) = −a
x2

2
+ b

x4

4
(2)

Here, a and b are positive bistable double-well parameters.
The double-well system is stable at xm = ±√

a/b separated
by a barrier of height �U = a2/4b when the ξ(t) is zero.

In the context of images, the double-well represents
image quality, while the dark input image serves as the
weak input signal due to its low excursion about mean
intensity. Similarly, some transform coefficients, or hybrid
transformed coefficients of a dark image may also qual-
ify as a weak signal input to the SR system. Therefore, if
stochastic resonance is induced in the hybrid coefficients or
values (to be called as SV-DWT or SV-DCT or DCT-DWT
in this paper), each of the hybrid values may be non-linearly
scaled up. The position of the particle along x-axis repre-
sents the state of image coefficients at any instant (iteration).
If one stable well represents the low-contrast state, and the
other the final enhanced state, we consider iteration until

single hopping of the image from the low-contrast state to
high-contrast state.

Equation 1, when discretized for this bistable double-
well (as described in [9], [13]), produces the following
iterative equation:

x(n + 1) = x(n) + �t
[
ax(n) − bx3(n) + Input

]
(3)

Note that Input = B sin(ωt) + √
Dξ(t) denotes the

sequence of input signal + noise. We assume that the noise
is due to degradation arising out of insufficient illumination,
and the signal is the image information. Therefore, both
signal and noise are inseparable and inherently present in
the image, or the image’s transformed coefficients. Hence,
here the term Input assumes the value of the transformed
coefficients.

�t is the sampling step size for discretization, and a and
b are the double-well parameters as described before. x(0)
is a zero matrix for mathematical convenience. x(n + 1) are
the tuned (iterated) transform coefficient matrices.

By differentiation of the SNR equation for dynamic
stochastic resonance w.r.t a, the optimum value of a for
maximum SNR is found to be a=2σ02 (as derived in [9]).
Another condition is needed to ensure that the maximum
allowable force on the bistable well maintains its stability,
i.e. the periodic input signal is less than or equal to maxi-
mum restoring force or gradient of potential function. This
is ensured by the condition b < 4a3/27.

4 Choice of Hybrid Domains

Our earlier studies on SR-based processing on singular val-
ues [9], DWT coefficients [12], and DCT coefficients [10]
indicated the advantage of operating in these domains. In
context of a dark or low-contrast image, the intensity val-
ues constitute a weak signal due to their low excursion
about the mean. Similarly, the wavelet approximation band
(which is a coarse representation of such an image) also
qualifies as a weak signal. Note that using singular value
decomposition an image can be represented as a weighted
summation of image layers such that the weight of each
layer is represented by the corresponding singular value
that denotes the luminance of that layer. Since SR process-
ing on SVs and wavelet coefficients individually produced
contrast enhancement, we were interested to explore their
hybrid combination. As the approximation subband of the
DWT decomposition of an image simply represents a coarse
(low-pass) version of the image itself, the singular values of
such a subband can also indicate luminance values. How-
ever, due to the lower resolution of the approximation band,
its singular values would denote coarse and more compact
luminance information.



246 J Sign Process Syst (2017) 89:243–262

Similarly, as derived in [20], if the normalized DC and
AC coefficients of an image are scaled by certain value, the
contrast of the processed image also gets similarly scaled.
Since SR processing on DCT coefficients of a dark image
produced a non-linear scaling and multifold enhancement in
image contrast [10], and singular value decomposition of
DCT coefficients denotes a weighted representation of the
same, we chose to study the effect of SR processing in this
hybrid SV-DCT domain. Also, since wavelet approximation
is a coarse representation of the original image, we also stud-
ied the effect of SRprocessing onDCTof thesewavelet coef-
ficients, hence, the choice of DCT-DWT hybrid domain.

5 Mechanism of Contrast Stretching in Hybrid
Domains by Noise-Enhanced Iterations

The effect of noise-enhanced iterations on hybrid domain
values or coefficients has been discussed in the following
section.

5.1 Singular Values of Wavelet Coefficients (SV-DWT)

From an investigative point of view, the effect of dynamic
SR (DSR) iterations has been observed on singular values

(SV) of all four wavelet subbands. The effect of iterative
processing on distribution of singular values of DWT (SV-
DWT) has been shown in Fig. 1. Note that the range of
input values is significantly different from the tuned val-
ues, and thus the axes of the input distribution are scaled
differently to ensure that characteristics of the input are
clearly visible. It can be observed that each of the distri-
butions shifts and gets skewed towards the larger end. This
would mean that the count of smaller SVs, that was higher
before DSR, has now decreased, while count of larger SVs
which were very few has now increased. Also, the rate
of distribution flattening is much more for the approxima-
tion coefficients. Since singular values denote weights of
image luminance, as the number of larger SVs increase,
this can be attributed to increase the overall luminance
of the image in question. The variance of the SV-DWT
distribution also displays a resonant nature, for instance,
giving a peak at around iteration count, n=60 (for the Lena
test image in question) as shown in Fig. 2 that also cor-
responds to the best contrast image as shown in Fig. 1.
Processing of SVs of all subbands produced more block-
ing effects than processing of only approximation subband
[28]. Since only approximation band contains luminance
information, we choose to process only SV-Approximation
subband.

Figure 1 a shows distribution of SV-DWT values of a dark input
image. b-e show the probability density function (pdf) of SV-DWT
values (approximation, horizontal, vertical, diagonal details) of a dark

low contrast image after 20, 40, 60 and 80 iterations respectively. f
shows the input dark low-contrast image. g-j show output image after
20, 40, 60 and 80 iterations respectively (for �t = 0.01).
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5.2 Singular Values of DCT Coefficients (SV-DCT)

As discussed in Section 5.1, the singular values of an image
represent luminance values of individual image layers. Also,
DCT of an image signifies distribution of frequencies over
the entire image. The DCT magnitude spectrum (squared)
denotes the power (or energy) of the image. Singular value
decomposition of these coefficients implies that the DCT
coefficients distribution is now represented as a sum of lay-
ers with different weights (now denoted by the singular
values of the DCT coefficients).

Similar to our earlier observation on SV-DWT, it can
be observed here (in Fig. 3) that the distribution of SV-
DCT, is exponential in nature, and shifts and gets skewed
towards the larger end with iteration. This change in skew-
ness and increase in variance is validated by Fig. 4a, b.
This would again mean that the count of smaller SVs, that
was higher before DSR, has now decreased, while count
of larger SVs, which was very less, has now increased.
It should be noted here that these are the SVs of DCT
coefficients, and denote the weights if the DCT matrix is
represented as a summation of several matrices. Since the
number of high-valued SVs increases with DSR, this can
be related to increase of larger weights of DCT summa-
tion matrix. The larger weights of DCT summation matrix
in turn denote the contribution of larger DCT values which
surround the DC coefficient (denoting average brightness).
In this way, an increase in high-valued SV of DCT coef-
ficients can be attributed to increase the overall brightness
of a dark image, and the increase in energy (magnitude
squared) of DCT coefficients leads to an increase in contrast

Figure 2 Characteristics of variance of the SV-DWT distribution with
respect to iteration.

with iteration. Another observation from Fig. 3 is that too
much iteration after optimal count leads to a textured and
over-bright image due to increased weights (SVs) of lower
ordered layers.

5.3 DCT of DWT Coefficients (DCT-DWT)

While there are several representation for the nature of
DCT coefficient distribution, in totality, it may be consid-
ered to follow general gaussian normal distribution [29].
When both DC and AC coefficients are tuned using itera-
tive dynamic stochastic resonance equation, the variance of
the DCT coefficient distribution is found to increase with
iterations. It is known that the DC coefficient represents the
average brightness of an image, while the sum of squares
of the normalized AC coefficients gives the variance of an
image [20]. Thus, modification of DC coefficient of the
DCT matrix would increase the overall image brightness
(and this would be very useful for enhancement of dark
images) [10]. As already stated, since the approximation
coefficients emulate the behavior of image intensity values
[12], the DCT of approximation coefficients may also be
modified for producing contrast enhancement.

In Fig. 5, the distribution of DCT of wavelet subband
coefficients is also observed to be close to gaussian dis-
tribution (by curve fitting). For a dark input image, the
transformed (DCT) coefficient distribution (as observed in
[10]) as well as is DCT-DWT coefficient distribution is
observed to be of low spread. Since squared magnitude
of the coefficients implies energy, a low-variance distri-
bution implies that the energy distribution is concentrated
in only certain areas, confirming that the image in ques-
tion is of low-contrast. Iterative processing is observed (in
Fig. 5) to increase the variance of all DCT-DWT coefficient
sets, and therefore, can be attributed to increase the con-
trast and brightness of the image in question. This increase
in variance is also reflected in the characteristics shown
in Fig. 6, that clearly shows that the increase in variance
of approximation is multifold times that of other details
subbands.

During experiments, no visible difference was observed
in outputs obtained from SR-processing on DCT of all sub-
bands and DCT of approximation subband. Therefore, to
omit unnecessary computation, we have continued our study
only on DCT of approximation band.

6 Performance Characterization

The performance of the algorithm is gauged in terms of
metrics of contrast enhancement and visual quality. The
following metrics of performance are used in the iterative
algorithm to serve as termination criteria.
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(a) Input Distribution (SV
of DCT)

(b) (c) (d) (e)

(f) Input Image (g) (h) (i) (j)

Figure 3 a shows distribution of SV-DCT values of a dark input
image. b- e show the probability density function (pdf) of singular
values of DCT coefficients of a dark low-contrast image after 18,

22, 26 and 30 iterations respectively. f shows the input dark low-
contrast image. g-j show output image after 18, 22, 26 and 30 iterations
respectively (for �t = 0.005).

Contrast Enhancement Factor (F) Metric of contrast
enhancement (F ) is based on global variance and mean of
original and enhanced images [6]. Therefore, a descriptor
called contrast quality index, Q, has been used such that
Q = σ 2/μ where σ and μ are, respectively, the standard
deviation and mean of the image intensity values. Relative
contrast enhancement factor, F , is computed as the ratio of
values of contrast quality indices post-enhancement, (QB),
and pre-enhancement, (QA).

Perceptual Quality Measure (PQM) There is no univer-
sal measure that can specify both objective and subjective
validation for any enhancement technique. Therefore, for
quantitative evaluation of perceptual quality, a no-reference
metric of image quality, PQM , is used that takes into
account visible blurring or blocking artifacts (if any) present

in the enhanced image [30]. According to [20], PQM

should be close to 10 for good perceptual quality (digression
away from 10 on either direction is an indication of decrease
in perceptual quality). The code available at [31] has been
used to compute PQM .

Some other metrics of enhancement are also observed to
characterize the quality of the enhanced images.

Measure of image enhancement (EME) and measure of
enhancement based on entropy (EMEEntropy) [32, 33]:
Agaian et al. [32, 33] have proposed logarithmic metrics of
image enhancement related to the concepts of the Weber’s
Law of the human visual system (HVS). Though the metrics
are particular useful for selection of optimal parameter and
transform in frequency-based enhancement algorithms, here
a simpler version of the metrics, EME and EMEE, has been

Figure 4 a shows the characteristics of skewness and b variance of the SV-DCT distribution with respect to iteration.
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(a) Input Distribution
(DCT of DWT)

(b) =100 (c) =200 (d) =400 (e) =500

(f) Input Image (g) =100 (h) =200 (i) =400 (j) =500

Figure 5 a shows distribution of DCT of DWT coefficients of a
dark input image. b-e show the probability density function (pdf) of
DCT-DWT coefficients (i.e. DCT of approximation, horizontal, verti-
cal, diagonal details) of a dark low-contrast image after 100, 200, 400

and 500 iterations respectively. f shows the input dark low-contrast
image. g-j show output image after 100, 200, 400 and 500 iterations
respectively (for �t = 0.001).

Figure 6 Characteristics of
variance of the DCT of DWT
(approximation, vertical,
horizontal and diagonal details)
coefficients distribution with
respect to iteration.
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used to obtain and observe an empirical HVS-based perfor-
mance value. The basis of these metrics is the logarithmic
relationship between stimulus and perception.

Let an image, I , be split into k1 × k2 blocks B(k, l) with
center (k, l) of size M1 × M2,

EMEk1,k2 = 1

k1k2

k1∑
l=1

k2∑
k=1

20 ln
Iw
max;k,l

Iw
min;k,l

+ c

where Iw
max;k,l

and Iw
min;k,l

are the maximum and minimum
in a given block, B(k, l); c is a small constant (experimen-
tally) set to 0.0001 to avoid dividing by 0.
Measure of enhancement based on entropy (EMEE) [33],

EMEEα,k1,k2 = 1

k1k2

k1∑
l=1

k2∑
k=1

α

(
Iw
max;k,l

Iw
min;k,l

+ c

)α

ln
Iw
max;k,l

Iw
min;k,l

+ c

where α is an enhancement parameter, here set to 1.

Color Enhancement Factor (CEF) Though our process-
ing leaves the chromatic components undisturbed, the
reverse mapping of the enhanced value vector (of HSV

color space) into RGB space may cause some change in
overall colorfulness. To observe the colorfulness of the
enhanced image, we have considered a colorfulness metric,
(CM) [34]. The color enhancement factor (CEF ) has been
defined as ratio of colorfulness of output to input image.
For good color and contrast enhancement, respective values
CEF and F should be greater than 1.

Mean Opinion Score (MOS) of subjective visual quality
of enhanced images is also observed for a representative
size of 20 subjects. The subjects were asked to score the test
images following the code: 0 - Very poor, 1 - Poor, 2 - Aver-
age, 3 - Good, 4 - Very good, 5 - Excellent. Eight images
were presented to twenty subjects. Thirteen of the subjects
were image processing graduate students, while seven were
naive, all belonging to age group of 22 - 40 years, and with
normal vision. Scores were obtained by showing (blind)
enhanced images on a LED screen (resolution 1366 × 768,
Distance from subject: approx. 1.5 feet, Ambience - 33 by
16 feet room illuminated with eight fluorescent lights) with
paired comparisons w.r.t. input.

7 General SR-Based Enhancement Algorithm

The basic steps of our noise-enhanced contrast stretching
algorithm are as follows:

Step 1 - Color model conversion, followed by transfor-
mations The input image is projected into H-S-V
color space to process only luminance vector (so as
to leave chromatic components undisturbed). DCT

transformation, here, implies global transforma-
tion, unless mentioned otherwise. Depending on
the domain of transformation, the value vector is
then

– decomposed into approximation (LL) and
detail (HL, LH , HH ) coefficients using 1-
level discrete wavelet transform (here, the
Haar or Biorthogonal CDF wavelet). Singu-
lar value decomposition of the approximation
(LL) band is done using

LL = U SVLL V T (4)

where U and V are left and right singular
matrices. Here, the data to be processed are the
SV-DWT values, SVLL.
or

– DCT transformation of the value component
is computed, and singular values of the DCT
coefficients is found, thereby producing the
data set to be processed as SV-DCT coeffi-
cients, SVDCT .
or

– Discrete cosine transformation of the (LL)
band is computed, producing data to be pro-
cessed as DCTLL.

Let us call the general set of hybrid domain
coefficient or values as a vector, H , such that
H={SVLL, SVDCT , DCTLL}.

Step 2 - Computing SR parameters Assume a small value
of �t , say 0.01 or 0.005, a = k × 2σ02, b =
m × (4a3)/27, where σ0 is the standard deviation
of hybrid coefficient or value set, H .
Here, k is a factor denoting image dullness

(given by inverse of (variance × dynamic range))
and m is a factor much less than 1 (so that b <

4a3/27).
Step 3 - SR processing of hybrid coefficients or values,

H , viz. SVLL or SV DCT or DCT LL Initialize a
zero vector, x, such that x(0)=0. Using the bistable
dynamic SR parameters tune the hybrid coefficient
sets (or values) according to Eq. 3 as follows:

x(n + 1) = x(n) + �t
[

ax(n) − bx3(n) + H
]
(5)

Inverse transformation and back-projection (to R-G-B) is
performed on each SR-processed data set, and perfor-
mance metrics, F , and PQM are computed for each back-
projected image after every iteration. Iteration is terminated
at count, n0, such that the sum of F(n) becomes maxi-
mum in the nearest possible vicinity of PQM = 10, (say
PQM ± 2.5) for this n=n0. This termination criterion is
chosen so as to give primary importance to contrast as well
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as perceptual qualities. This would ensure that the opti-
mal output has high contrast quality as well as acceptable
perceptual quality.

Note Experiments have shown that human visual pref-
erence of good quality may not always be in identical
accordance with the empirical value of PQM . For instance,
contrast enhancement factor may be to too low at PQM

= 10, but may increase till PQM = 9 or 8. This is why,
a flexible window of PQM observation is considered. If
this window is too constrained, the enhanced image may
quantitatively display high values, but may lack visually and
contrast-wise. Therefore, an allowance of ± 2.5 has been
allowed in this paper so that higher contrast qualities may
be reached with acceptable visual quality.

8 Results and Discussion

Iterative algorithms offer the advantage of allowing obser-
vation of incremental refinement with each iteration, and as
a result allow us to monitor multiple performance measure
so that an optimal combination of the two can be achieved.
Note that an inherent challenge while trying to enhance dark
images is the implicit graininess (noisy) present in the very
dark regions of enhanced image. This is because non-linear
processing of values tending to zero (dark intensities) leads
to spurious artifacts. This is a common observation when
any enhancement algorithm is used to enhance a very dark
image. For example, the output of histogram equalization of
a dark input image would give a high contrast quality, but
poor perceptual quality measure. An iterative algorithm, on
the other hand, allows us to monitor the perceptual quality

Figure 7 Results on the
proposed SR-based algorithm in
hybrid domains for various test
images.

Input SV-DWT SV-DWT DCT-DWT

Flowers, PQM =11.9 n=8, F =2.2, PQM =8.9 n=3, F =2.6, PQM =5.9 n=22, F =2.6, PQM =10.8

Grass, PQM =9.0 n=10, F =4.5, PQM =8.0 n=3, F =4.7, PQM =5.8 n=23, F =3.8, PQM =8.2

Pencil, PQM =11.9 n=15, F =4.6, PQM =8.0 n=3, F =4.7, PQM =8.6 n=16, F =3.9, PQM =9.4

Brushes, PQM =11.8 n=36, F =3.2, PQM =7.8 n=6, F =3.5, PQM =7.5 n=18, F =3.3, PQM =9.0

Watch, PQM =12.1 n=36, F =4.1, PQM =7.5 n=8, F =5.3, PQM =7.6 n=20, F =5.1, PQM =9.0
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Figure 8 Results on the
proposed SR-based algorithm in
hybrid domains for various test
images.

Input SV-DWT SV-DWT DCT-DWT

Cameraman, PQM =13.1 n=4, F =11.5, PQM =4.5 n=2, F =10.1, PQM =8.4 n=100, F =9.9, PQM =10.9

Pepper, PQM =12.9 n=16, F =3.1, PQM =8.5 n=4, F =5.9, PQM =8.9 n=75, F =4.9, PQM =10.08

with each iteration so that a constraint may be employed
to limit perceptual quality within an acceptable range (not
allowing it to deteriorate in order to increase contrast).
This helps ensure that the optimal output has meaningful
enhancement and smooth natural appearance.

The iterative processing using domain-specific double-
well parameters was performed on several test images, and
some of those results are displayed and discussed in this
paper. Figures 7 and 8 show the SR-enhanced outputs for
SV-DWT, SV-DCT and DCT-DCT domains, along with
their optimal iteration counts and performance metrics. Test
images, Flowers and Grass are made low-contrast by ran-
dommanipulation of original good-contrast colored images.
Test images, Pencil, Brushes,Watch, andChair are naturally
dark colored images, captured indoor under very poor illu-
mination. Test images, Cameraman and Pepper have been
made dark by random (nonlinear) manipulation on original
standard grayscale images. Therefore, the test image dataset
contains equal distribution of phantom and naturally dark
images.

Figure 9 display characteristic of performance metrics,
F and PQM , with respect to iteration in all three hybrid
domains, for a test image Chair. The termination crite-
rion has also been illustrated to clarify how the output is
obtained. The iteration count, n0, as marked in the graphs
is the terminating iteration that is found when F is maxi-
mum in the vicinity of PQM ∼ 10 (here, 10 ± 2.5). This
relaxation in value of PQM may be made taut for better
empirical visual quality, but here it has been kept as a wide
window of 5 units about 10 so that contrast enhancement
factor (F ) may be allowed to reach higher values.

The proposed noise-enhanced iterative algorithm is
observed to give noteworthy enhancement in contrast, per-
ceptual quality and colorfulness. The important aspects of
the performance shall be discussed in this section.

8.1 Observations and Analysis

The application of SR-based iterative processing is observed
to give remarkable increase in contrast quality of the image

(a) SV-DWT, =23 (b) SV-DCT, =6 (c) DCT-DWT, =44

Figure 9 Characteristic of performance metrics, F and PQMwith respect to iteration count, showing the point of termination for test image, Chair.
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while ascertaining good perceptual quality. The empirical
performance metrics for three test images have been tab-
ulated in Table 1, showing comparison of SR in various
hybrid and other domains, along with some non-SR based
enhancement algorithms. For the purpose of comparison
among enhancement algorithms, the results of DSR on the
three tested hybrid domains shall be referred to as SV-DWT-
DSR, SV-DCT-DSR, and DCT-DWT-DSR, corresponding to
SV-DWT, SV-DCT and DCT-DWT domains, respectively.
The following may be observed from the visual outputs and
quantitative metrics.

– The perceptual quality metrics (PQM) of some of the
input test images is less than or greater than 10, indi-
cating its (quantitatively) poor visual quality. However,
since the input image is poor only in terms of con-
trast, brightness and illumination but not with respect to
blurring, blocking artifacts, grains and noise, the PQM

value is similar to (and in some cases as high as) that
for enhanced images. The main aspect to study PQM is
in comparison with enhanced images, because enhance-
ment of very dark images produces implicit noise in the
enhanced images.

– Contrast and visual quality: In each of the three
hybrid domains, the contrast enhancement factor of the
enhanced image is observed to be nearly the same. In
other words, the contrast enhancement observed in each
of the hybrid domains is comparable. However, the per-
ceptual quality obtained for similar contrast quality is
higher (closer to 10) for DCT-DWT domain than other
two domains (due to less artifacts).

– Blocking Artifacts: The zoomed-in portions of images
enhanced in SV-DWT, SV-DCT and DCT-DWT
domains for two test images are shown in Figs. 10
and 11. A stark observation is the presence of block-
ing artifacts in images enhanced in SV-DWT domains.
Note that it is the collective contribution of both SVD
and approximation coefficients that cause the block-
ing artifacts in SV-DWT processing. Singular values,
representing descending order weights of low resolu-
tion coarse (emulating the nature of intensity values),
are scaled up by non-linear iterative processing. As a
result, after back-projection (IDWT) and upsampling,
the boundaries and details appear pixelated. In other
words, singular values inherently represent coarse infor-
mation about an image. Therefore, SV of the LL sub-
band implies incorporating double coarseness, once due
to the approximation subband, and then by taking SVs
of that band.

SV-DCT, sometimes produces over-brightening of
details, but preserves the smoothness of boundaries to a
great extent. It is important to note that SV-DCT does
not display significant blocking as we do not operate

on block neighborhood, but on entire image. Though,
we are still processing the SVs, but here they repre-
sent weights of frequency coefficients of the original
image (and not a low resolution intensity image). Thus,
more information is being processed, leading to lesser
possibilities of blocking/pixelating effects.

DCT-DWT, on the other hand, remarkably preserves
the quality of output with negligible artifacts, due
to non-linear scaling of normalized DCT coefficients
instead of layer weights. Note that here, the frequency
components (and not layer weights) of low resolution
subband are processed. All the frequency components
are processed unlike coarse weights in case of SV-DWT.
For example, for a 512×512 image with an approxima-
tion subband of 256 × 256, the DCT-DWT processing
iterates on (256×256 matrix of DCT of the approxima-
tion band), unlike coarse weight array (1× 256 array of
SV of the approximation band).

– Iteration: According to Table 1, SV-DCT-DSR requires
least iteration count among the three hybrid domains
in question, while DCT-DWT-DSR requires maxi-
mum iteration to reach target output. Despite hav-
ing similar computation complexity (discussed later in
Section 8.4), SV-DCT gives faster performance than
SV-DWT because the SR-enhanced iterative process-
ing on singular values of DCT coefficients causes the
image energy (or variance of distribution) to increase
more rapidly (as shown in Fig. 4) than that of SV-DWT
(as shown in Fig. 2).

– Choice of�t in relation with iteration count: Since the
algorithm is iterative in nature, and the term, �t , or the
sampling time acts as a multiplicative step-size in the
iterative equation, larger values of �t would naturally
lead to similar performance metrics in lesser iteration.
However, large values of �t would not allow incremen-
tal observation of performance, and might sometimes
cause situations where the perceptual quality might
overshoot the desired window centered about value 10.
Moreover, a large value would also significantly mod-
ify the dynamics – it would no longer approximate the
dynamics of the continuous time system and would
become something quite different i.e. a nonlinear map-
ping/filter with distinct properties that depend directly
on the choice of time step. Hence, �t should be chosen
such that its value is small enough to allow incre-
mental observation of refinement but does not require
excessively large number of iterations.

In the current case of hybrid domains, initial experi-
ments and performance was observed for 50 iterations.
Values of �t chosen for SV-DWT was around 0.01, for
SV-DCT was 0.001 to 0.005, and for DCT-DWT was
0.01 to 0.05. The choice of these values was a result of
initial experimental observations. It can be noted that
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Figure 10 Zoomed-in regions
of DSR-enhanced Flower image
for each hybrid domain,
highlighting the extent of
blocking effects at
discontinuities for SV-DWT.

(a) SV-DWT (b) SV-DCT (c) DCT-DWT

despite having higher operating values of �t for DCT-
DWT, the iteration count for still the highest for this
hybrid domain. Our earlier work on DCT of images
showed an nominal iteration count of 15 - 50 iterations.
Since, here processing is being done on DCT of approx-
imation band, the iteration count is comparable to that
of DCT alone.

Note that the algorithm iteratively processes each
input image using the parameters that are computed
from the global statistics of the coefficients or values
of the input itself. Therefore, computation of optimal
iteration count, n0 cannot be generalized because differ-
ent input images would give rise to different parameter
values that, in turn, would lead to different optimal iter-
ation counts for each image. However, parameters a, b
and �t could be adaptively tuned and further studied
to ensure that algorithm converges within a predefined
number of iterations.

8.2 Comparative Analysis

Comparison of the proposed work in hybrid domains
has been performed with our earlier work on stochastic
resonance-based enhancement, along with some other non-
SR-based techniques. Though there are several enhance-
ment algorithms available in literature, we have presented
a comparative analysis for only those that can be used for
contrast enhancement of dark images. As stated before, for
the purpose of comparison among enhancement algorithms,
the results of DSR on the three tested hybrid domains shall
be respectively referred to as SV-DWT-DSR, SV-DCT-DSR,
and DCT-DWT-DSR, corresponding to SV-DWT, SV-DCT
and DCT-DWT domains. Table 1 and Figs. 12, 13 and 14
display the quantitative and qualitative results for three test
images in comparison with the following:

– Dynamic SR-based contrast enhancement in individual
SVD (SVD-DSR) [9], DWT (DWT-DSR) [12], DCT
(DCT-DSR) [10], intensity values (Intensity-DSR) [13]

– Non-dynamic Suprathreshold SR-based contrast
enhancement (SSR) [8]

– Spatial domain algorithms - adaptive histogram equal-
ization (AHE) [36] and Gamma correction (for γ=1.5).
Note: Since histogram equalization is known to be
unsuitable for very dark images [37], adaptive his-
togram equalization has been used for comparison
here.

– ‘Auto Contrast’ control of Adobe Photoshop (Auto-
matic)

– Spatial domain algorithms, Modified High-Pass Filter-
ing (MHPF) [17], Single-scale Retinex (Retinex) [15],
and Multiscale Retinex (MSR) [16]

– Frequency and hybrid domain enhancement techniques:
Alpha rooting (AR) [18], Equalization of singular value
of DWT (E-SVD-DWT) [22] coefficient and DCT coef-
ficients (E-SVD-DWT) [23].

In comparison with SR-based algorithms in other
domains, the contrast and visual qualities obtained in hybrid
domains are comparable (except SV-DWT-DSR where F

is high, but PQM lower than other SR-based algorithms).
Iteration-wise, SV-DCT-DSR appears to give minimum iter-
ation count amongst the SR-based algorithms. For Flower
image, the performance in comparable with some algo-
rithms, but better than Gamma correction, MHPF, Retinex,
MSR and Alpha rooting. For Grass and Chair, the out-
puts are inferior to Photoshop and MSR, but better than
most of the other algorithms. Overall, the DCT-DWT-DSR
domain appears to perform better than most of the compared
algorithms in terms of F. SV-DWT-DSR performs well indi-
vidually, but appears unsuitable for further application on
comparison with other domains. Over all, for comparable

Figure 11 Zoomed-in regions
of DSR-enhanced Grass image
for each hybrid domain,
highlighting the extent of
blocking effects at
discontinuities for SV-DWT.

(a) SV-DWT (b) SV-DCT (c) DCT-DWT
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(a) Input, Flower (b) SV-DWT-DSR,
=8

(c) SV-DCT-DSR, =3 (d) DCT-DWT-DSR,
=22

(e) SVD-DSR, =18
[9]

(f) DCT-DSR, =17
[10]

(g) DWT-DSR, =
[12]

(h) Intensity-DSR [13] (i) SSR [8] (j) AHE [36] (k) Gamma Correction
( =1.5)

(l) Adobe Photoshop

(m) MHPF [17] (n) Retinex [15] (o) MSR [16] (p) Alpha Rooting
( . ) [18]

(q) E-SVD-DWT [22] (r) E-SVD-DCT [23]

Figure 12 Proposed hybrid domain enhancement results on a low-contrast input image in comparison with other existing enhancement
techniques.

contrast metrics, the perceptual quality of SR-based algo-
rithms is next to Photoshop. Non-SR-based hybrid domain
algorithms reach good contrast qualities, but have very low
PQM for most of the test images.

In other words, DCT-DWT-DSR is observed to give
noteworthy performance when compared with other exist-
ing non-SR-based enhancement techniques in terms of

perceptual and contrast qualities. Among the SR-based
algorithms, the DCT-DWT-DSR displays comparable per-
ceptual quality but requires significantly fewer number
of iterations than individual DWT-DSR. On the other
hand, SV-DCT-DSR requires the least number of itera-
tion counts and computation time among all SR-based
algorithms.

(a) Input, Grass (b) SV-DWT-DSR,

=10

(c) SV-DCT-DSR, =3 (d) DCT-DWT-DSR,

=23

(e) SVD-DSR,

[9]

(f) DCT-DSR,

[10]

(g) DWT-DSR,

[12]

(h) Intensity-DSR,

[13]

(i) SSR [8] (j) AHE [36] (k) Gamma Correction

( =1.5)

(l) Adobe Photoshop

(m) MHPF [17] (n) Retinex [15] (o) MSR [16] (p) Alpha Rooting

( ) [18]

(q) E-SVD-DWT [22] (r) E-SVD-DCT [23]

Figure 13 Proposed hybrid domain enhancement results on a low-contrast input image in comparison with other existing enhancement
techniques.
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(a) Input,
Chair

(b) SV-DWT-
DSR, =20

(c) SV-DCT-
DSR, =6

(d) DCT-
DWT-DSR,

=44

(e) SVD-DSR,
[9]

(f) DCT-DSR,
[10]

(g) DWT-DSR,
[12]

(h) Intensity-
DSR,
[13]

(i) SSR [8]

(j) AHE [36] (k) Gamma
Correction
( =1.5)

(l) Adobe Pho-
toshop

(m) MHPF
[17]

(n) Retinex
[15]

(o) MSR [16] (p) Alpha
Rooting (

) [18]

(q) E-SVD-
DWT [22]

(r) E-SVD-
DCT [23]

Figure 14 Proposed hybrid domain enhancement results on a low-contrast input image in comparison with other existing enhancement
techniques.

Also, if the relaxation on PQM is loosened a little,
higher contrast metrics may be obtained for all SR-based
algorithms.

8.3 Observations on Colorfulness, HVS-Based
Logarithmic Metrics and Subjective Scores

We have also attempted to present an initial analysis of other
quality metrics for the enhanced images, in particular, some
human visual system (HVS)-based metrics, colorfulness,
and subjective visual quality.

8.3.1 Enhancement of Colorfulness

Though our entire processing is only on luminance vectors
so as to leave the chromatic components undisturbed, the
back-projection of H-S-V color space to R-G-B produces

noticeable enhancement in colorfulness of the image. This
primary reason behind this enhancement is the increased
value of component V, and the resultant corresponding map-
ping into R-G-B. An interesting observation (as shown in
Fig. 15 for seven test images) is that the color enhancement
factor (CEF ) is also observed to increase with SR itera-
tions, and displays a resonant nature (giving peak at certain
iteration count). In many cases this peak either corresponds
to the peak in contrast enhancement factor, F , or is located
nearby.

8.3.2 Logarithmic Contrast Metrics

Table 2 displays logarithmic metrics, EME and EMEE, for
four test images and their hybrid-domain enhanced out-
puts. As stated earlier in Section 6, the logarithmic metrics
have been observed just to present an initial reading of

(a) SV-DWT (b) SV-DCT (c) DCT-DWT

Figure 15 Characteristic of colorfulness performance metrics, CEF, with respect to iteration count for seven test images. Note the semi-resonant
nature of the curves.
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Table 2 Logarithmic contrast metrics: EME and EMEE (EME based on entropy), and subjective visual quality: Mean Opinion Score, (MOS)
along with their standard deviation (SD).

Cameraman Brushes Flowers Chair

EME EMEE MOS EME EMEE MOS EME EMEE MOS EME EMEE MOS

(SD) (SD) (SD) (SD)

Input 7.5 0.9 0.1 52.4 100.5 0.1 30.5 353.7 0.9 35.9 355.2 0.5

(0.3) (0.3) (0.8) (1.0)

SV-DWT 6.6 0.8 2.5 35.9 8.4 1.7 29.8 883.9 2.0 18.6 4.8 2.2

(0.9) (0.8) (1.0) (1.5)

SV-DCT 7.4 0.9 2.5 54.4 891.2 2.2 29.1 2093.0 2.0 40.2 4225.4 2.3

(1.1) (1.0) (1.2) (1.4)

DCT-DWT 7.9 1 2.6 47.7 973.5 2.3 30.7 1222.8 2.4 26.9 549.3 2.4

(0.8) (1.0) (1.1) (1.3)

HVS aspects of the SR-based algorithm in hybrid domains.
With respect to the EME and EMEE values of the low-
contrast input images, the EME for DCT-DWT seems to
be comparable and in some cases better than input. This
is due to the absence of blocking artifacts in the DCT-
DWT results. SV-DCT also appears to give sometimes
better and some times lesser EME. On the other hand,
EME for SV-DWT, however, is always less than that of
input. This is due to the blocking artifacts that is clearly
discerned by the human visual system in terms of visual
quality.

EMEE (EME based on Entropy), is a entropy-based ver-
sion of EME. Since entropy denotes average information,
and maximum entropy denotes most uniform distribution of
intensities, EMEE values appear to more closely be associ-
ated with the contrast-specific aspect of the human vision.
This is why the EMEE metrics for both SV-DWT and DCT-
DWT are (on an average) much higher for most of the test
images. SV-DWT is observed to give lower EMEE than
input.

8.3.3 Mean Opinion Score (MOS)

Tables 1 and 2 also display the Mean Opinion Score (MOS)
of subjective visual quality provided by twenty subjects
for some of the test images. Scores on a scale of 0 to 5
were provided to each test image and their enhanced results
(code explained in Table 1). As expected, the dark and
low-contrast inputs scored a minimum (between 0 and 1)
denoting poor visual presence. The confidence of subjective
scores (denoted by their standard deviations) are also within
satisfactory range. The dynamic range of this scale is 5, and
nearly all SD values (with very few exceptions) lie within a
margin of 25 % (≤ 1.25).

On an average all dynamic SR-based algorithms, Photo-
shop and plain SVD-DCT scored the highest (between 2 to

3, signifying Average to Good visual quality), with com-
parable performance of hybrid domain SR algorithms with
respect to the results of Photoshop.

It can be noted from both tables that overall, dynamic
SR-based algorithms (and Photoshop) results have been
rated best subjective visual quality (especially for natu-
rally dark images, like Chair and Brushes). Also, at an
average, the SR-based SV-DWT scored lower than other
SR-based hybrid domain (and individual domain) results
due to reasons discussed before.

8.4 Computational Complexity

The computation time of the algorithm is guided by two fac-
tors: the iteration count and complexity of transformation.
Let the size of an image be M × N , and optimal iteration
count by n0. Let c(T ) denote the cost of transformation, and
c(T −1) denote the cost of inverse transformation. Therefore,
the cost of computation of an SR-based iterative algorithm
in transformed domains is:

c(T ) + n0 ·
[
Cost of an iterative (SR) step + c(T −1)

]

The SR-iterative step requires a cost of O(N) for hybrid
domains SV-DWT and SV-DCT (since only singular values
of approximation of DCT coefficients are being processed).
For domains DCT-DWT, the cost of a single SR step is
O(MN). The individual and total costs of computation for
each of the hybrid domains (excluding calculation of per-
formance metrics) is tabulated in Table 3. Experiments were
performed using on MATLABT M (v.7.10) on an Intel (R)
Core (TM) i5-3210 CPU working at 2.5 GHz and 4GB
RAM.

To serve as a platform-independent comparison in com-
putation speeds, Table 3 displays computation costs of
various DSR-based algorithms in big-O notation for a stan-
dard 512× 512 grayscale image. It is important to note that
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there is no deterministic guarantee that the same F value
shall be reached for each individual DSR-based method,
because the optimal output of each algorithm is bound by
constraints of both perceptual quality and enhancement fac-
tors. Therefore, gauging speed via only one constraint will
not adequately represent the speed of the algorithm (which
is also image-dependent). We call it ‘image-dependent’
because the selection of parameters, a and b are derived
from input image statistics.

The time to reach optimal output in seconds for a sam-
ple 512 × 512 grayscale (Pepper) image is also displayed.
Due to different underlying transformations, an iteration of
one method may take longer/shorter than one iteration of
another method. For example, while SVD-DSR gives an
optimal iteration count of 5, it takes a massive 12 seconds
to reach it. As apparent, the intensity based and SV-DCT
domain processing are the top scorers in terms of processing
time.

9 Conclusions

A study of noise-enhanced stochastic resonance-based iter-
ative algorithm in hybrid domains was presented in this
paper. An iterative equation, derived from the motion
dynamics of a particle moving under weak force and noise
in a bistable system, has been used here to induce resonance
in the hybrid SV-DWT, SV-DCT and DCT-DWT domains.
The main feature of the concept is the utilization of inter-
nal noise due to lack of illumination in a dark image. As a
result of the SR-based iterative processing, the hybrid coef-
ficients or values are non-linearly scaled, thereby producing
noteworthy contrast enhancement of the image.

By keeping the termination criteria of optimal con-
trast while ascertaining good perceptual quality, a trade-off
between perceptual quality measure and contrast metric is
observed. Color enhancement, logarithmic contrast metrics,
and subjective scores have also been observed to present
an estimate of actual visual quality. It was found that
noise-enhanced processing on SVs of DWT approximation
band produces maximum blocking artifacts in the enhanced
image. While SV-DCT performed best amongst the SR-
based algorithms in terms of iteration count to reach target
output, processing on DCT-DWT produced high contrast
and visual quality with somewhat larger iteration count.
The hybrid domain analysis proves that noise-enhanced
iterative processing can be used in hybrid domains to pro-
duce noteworthy enhancement of dark images, and specific
to application requirements, the SV-DCT and DCT-DWT
may be further explored and modified. While currently the
reported iterative processing is able to enhance only over-
all dark images, and not dull or bright images, suitable

modifications can be made to address images of different
types. Also, the SR mathematical model may be subjected
to revision so as to develop an analytical model specific
to images, and to address a wide variety of images. More-
over, depending on the input given to an SR system, global
features such as edges, or local features such as textures
may be enhanced by modeling the SR phenomenon in these
contexts.
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