
J Sign Process Syst (2017) 89:209–224
DOI 10.1007/s11265-016-1184-8

Computational Complexity Analysis of FEC
Decoding on SDR Platforms

Zhenzhi Wu1,2 ·Chen Gong1 ·Dake Liu1,2

Received: 22 October 2015 / Revised: 14 June 2016 / Accepted: 19 September 2016 / Published online: 15 October 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The computational complexity evaluation is nec-
essary for software defined Forward Error Correction (FEC)
decoders. However, currently there are a limited number
of literatures concerning on the FEC complexity evalua-
tion using analytical methods. In this paper, three high
efficient coding schemes including Turbo, QC-LDPC and
Convolutional code (CC) are investigated. The hardware-
friendly decoding pseudo-codes are provided with explicit
parallel execution and memory access procedure. For each
step of the pseudo-codes, the parallelism and the opera-
tions in each processing element are given. Based on it
the total amount of operations is derived. The compari-
son of the decoding complexity among these FEC algo-
rithms is presented, and the percentage of each computa-
tion step is illustrated. The requirements for attaining the
evaluated results and reference hardware platforms are pro-
vided. The benchmarks of state-of-the-art SDR platforms
are compared with the proposed evaluations. The analyt-
ical FEC complexity results are beneficial for the design
and optimization of high throughput software defined FEC
decoding platforms.

� Dake Liu
dake@bit.edu.cn

1 School of Information and Electronics,
Beijing Institute of Technology, 100081,
Beijing, China

2 Institute of Electrical Engineering, Linköping University,
SE-581 83, Linköping, Sweden

Keywords SDR · FEC · GOPS · Computational
complexity · Convolutional code · Turbo · LDPC ·
Viterbi · Layered decoding · BCJR

1 Introduction

High throughput Software Defined Radio (SDR) platform
encounters extremely high computational complexity in
FEC decoding. C.H. Kees [1] presented a roughly estima-
tion on FEC workload for nowadays standards, and shows
in graph that approximately 100-3000 Operations per Bit
(OP/bit) is needed, occupying approximately 40 % of work-
load in baseband. The attainable throughputs for LDPC
are revealed with GPU [2, 3], IBM Cell processor [4] and
DSP [5]. Turbo decoding throughputs are provided with
GPU platforms [6, 7] and DSP platform [8]. The cycle
counts for Viterbi decoding are provided for general pur-
pose processor [9, 10], SORA platform [9], SODA platform
[10] and DVB-T receiver [11]. The arithmetic operations
for Quasi-Cyclic Low-Density Parity-Check (LDPC) and
Turbo are provided and compared in [12], which shows
that QC-LDPC codes have significantly lower complex-
ity than Turbo codes. However these results are provided
without sufficient proof, especially for arbitrary configu-
rations. Apart from SDR evaluations, the hardware based
FEC complexity is given by [13] and [14], whereas the
individual hardware result cases may be inaccurate for
Software Defined Radio (SDR) platforms.

Among these proposals, few theoretical analysis on com-
plexity is provided, therefore the relationship between the
complexity and the algorithm is still unclear. Moreover,
because most of cases are implementations with dedicated

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-016-1184-8&domain=pdf
mailto:dake@bit.edu.cn


210 J Sign Process Syst (2017) 89:209–224

configurations, the general complexity expression with arbi-
trary configurations (such as code length, parallelism) has
not been exposed clearly, which hinders the designs and
optimizations of the SDR platforms. For the algorithm
researchers, the complexity results are also necessary for
designing high efficient low complexity codes.

Based on these requirements, this research work aims
to obtain a likely Giga Operations per Second (GOPS) or
OP/bit low bound using analytical methods. The ‘likely
low bound’ refers to an approximately low bound including
the most probably memory access procedures and parallel
execution procedures, which is more valuable for platform
designers. The work consists of several aspects as following.

Firstly most of the papers addressing FEC decoding
only concern on the algorithm level description which lacks
of accuracy for the complexity evaluation. The address-
ing, memory access and shuffling network besides the
arithmetic computation are all necessary to be consid-
ered. In addition, the parallel execution procedure for high
throughput decoding needs to be taken into considera-
tion as well. For these reasons, hardware-friendly highly
accurate pseudo-codes are thus required and provided in
this work.

Secondly there are many different decoding algorithm
alternatives, and it is hard to cover all during evaluations.
In this paper, the mainstream kernel functions and alter-
native decoding algorithms are listed and compared, and
the ones with minimum operations are selected. Differ-
ent from other papers providing the experimental results
based on the hardware architecture details, this work tries
to minimize the hardware specifics, and provides a plat-
form independent result. The evaluation is performed on
basic operation level (basic operations will be given in a
following table) instead of the instruction level or hardware
circuit level.

Thirdly, after the complexity is provided for each algo-
rithm, different coding schemes are necessary to be com-
pared using the parameters from wireless standards, which
offer a general overview of the decoding efficiency. In addi-
tion, the operations for each decoding step are figured out
as well.

The paper is organized as following. Section 2 lists all
the pseudo-codes and the decoding procedure descriptions.
Section 3 provides the operation analysis for each algorithm.
Section 4 provides the comparison among the algorithms,
and the operation cost on percentage for each decod-
ing steps. Section 5 illustrates the reliable prototypes and
assumptions for attaining the proposed results. Section 6
gives comparisons of proposed results with state-of-the-art
SDR platforms.

2 Pseudo-Codes Analysis

To calculate the operations for each decoding step, the hard-
ware friendly pseudo-codes are provided firstly. The parts of
codes denoting with ‘for x do in parallel’ are able to be exe-
cuted by independent Processing Elements (PEs) in parallel.
The variables stored in memory are denoted with a ‘bar’
over the variable name, they need load and store procedure
to access. Other variables without ‘bar’ are register variables
which are only valid in the current parallel block and usu-
ally in small size. For a multiple PEs platform, except for
the shared memory variable L(i, n) which is accessed by
all PEs, other memory variables can be stored in each PE
locally.

Let x = [x0, x1, · · · , xN−1] be the transmitted informa-
tion codeword and y = [y0, y1, · · · , yN−1] be the received
codeword. Let LLR(n) = log(P (xn = 1 | yn)/P (xn =
0 | yn)) be the likelihood-ratio (LLR) of each received mes-
sage, which is the input of the algorithm. The decoded bits
can be viewed as an estimation of x which is the output of
the algorithm, and denoted as x̂ = [x̂0, x̂1, · · · , x̂N−1].

2.1 LDPC Decoding

Many high-throughput wireless standards such as IEEE
802.16e and IEEE 802.11n apply Quasi-cyclic LDPC (QC-
LDPC) because of its ability for intrinsic highly parallel
execution. Hence we confine our research on QC-LDPC
mainly. The efficient algorithms for QC-LDPC decoding are
Belief-Propagation (also called Message Passing) and lay-
ered decoding [15]. Layered decoding method is proposed
by updating the variable-node as soon as the check node
updates for the current row are calculated instead of all the
equations, and about half of the iterations can be saved.
Hence the layered decoding is adopted for the following
analysis, which is shown in Algorithm 1.

In Algorithm 1, A QC-LDPC code QC(J, N) is pro-
cessed, which has N decoded bits, J variable nodes (chan-
nel messages) and M check nodes (M = J − N). It can
be described by a parity-check matrix HM×J . The matrix
H can be divided into L × C sub-matrices of degree Z, in
which L = M/Z and C = J/Z. HBL×C represents the
base matrix with elements either zero or equals to the cyclic-
shift value of the identity matrix. Let Sr,k represents the kth
non-zero element (NZE) in row r of HB, and the shift value
can be obtained as HBr,Sr,k

, simplified as Rr,k . Sr denotes
the number of NZE in row r . A p-layer consists of Z layers
which can be processed in parallel.

The decoding is performed in an iterative manner, and
the maximum number of iterations is itmax . In each iteration



J Sign Process Syst (2017) 89:209–224 211

Figure 1 QC-LDPC parity check matrix and layered decoding
routine.

L p-layers are processed one by one, where r denotes the
index of the current p-layer being processed. In each p-layer,
the NZEs are processed one by one sequentially, shown in
Fig. 1.

The check-node update can be realized by Forward-
Backward Recursion (FBR), and the principle can be briefly
summarized as following. The LLR result of modulo-2
addition of two LLR values is given by LLR(x ⊕ y) =
f (x, y) = log(1 + ex+y) − log(ex + ey) [16]. The LLR
for multiple input elements can be calculated using 2-input
f (x, y) function as f (x1, x2, · · · , xn) = LLR(x1 ⊕ x2 ⊕
· · · ⊕ xn) = LLR(((x1 ⊕ x2) ⊕ x3) ⊕ · · · ⊕ xn) =
f (f (f (x1, x2), x3), ·, xn). The check-node update can be
represented by �z

r,k = LLR(γ z
1 ⊕γ z

2 ⊕· · ·⊕γ z
k−1⊕γ z

k+1⊕
· · · ⊕ γ z

Sr−1) = f (γ z
1 , γ z

2 , · · · , γ z
k−1, γ

z
k+1, · · · , γ z

Sr−1).
The LLR value of the first k check nodes are calculated
by αz

k = f (f (f (γ z
1 , γ z

2 ), γ z
3 ), ·, γ z

k ). It can be calculated
by Forward Recursion (FR) using αz

k = f (αz
k−1, γ

z
k ).

The last k check nodes is originally calculated by βz
k =

f (f (f (γ z
Sr−1, γ

z
Sr−2), γ

z
Sr−3)..., γ

z
k ). They can be obtained

by Backward Recursion (BR) following βz
k = f (βz

k+1, γ
z
k ),

and finally the check node update process can be performed
by �z

r,k = f (αz
k, β

z
k+1). Further information related to FBR

can be obtained from [17] and [16].
In FR part, Line 7 and Line 8 can be executed by a block

data read operation and a block data permutation instead,
where Z data are fetched together in normal sequence. The
data are then shifted by a permutation network (cyclic-
shifters) which is given by I z

org ← L(z, Sr,k), z ∈ [0, Z−1],
and I z ← �(Iz

org,Rr,k). Line 24 (along with 17) can be
alternatively executed by a block transmission also, given
by Oz

org ← �−1(Oz,Rr,k), and L(z, Sr,k) ← Oz
org .

In Algorithm 1 and following Algorithms in this article,
note that:

(1). The notation ← represents ‘assigned to’, which
means the calculation result on right side updates the
variable on the left side.

(2). The register update procedure and memory access
procedure are separately represented. For example,
the forward path update αz

k ← f (αz
k, γ

z) is split to
αz

k ← αz and αz ← f (αz, γ z), where αz
k is a memory

variable with k be the address. If there is no need to



212 J Sign Process Syst (2017) 89:209–224

store to memory (such as β), then no memory access
procedure is needed.

(3). The foot mark k may be omitted for variables within
the kth recursion body without confusion.

There is an alternative decoding approach named
improved Min-Sum algorithm. In this method, the iteration
process in Algorithm 1 is substituted by Algorithm 2. In the
forward recursion, only five values are recorded, including
the maximum and secondary maximum a-priori messages,
the index of the maximum value, the sign of each mes-
sage, and the product of all signs. The backward recursion
part is redesigned in a non-recursion way. The a-posteriori
messages are assigned as the maximum value or the sec-
ondary maximum value, with the product of signs from all
other messages. It is a reduced complexity method and ben-
efits for hardware design. However, for a programmable
platform, the branch operation and sign operations may con-
sume more resources. Therefore Algorithm 2 introduces
more workload compared to Algorithm 1. Hence, Algorithm
1 is applied for the complexity evaluation.

2.2 Turbo Decoding

Turbo is an efficient coding technique approaching to Shan-
non limit. Turbo meets the need of high-throughput wireless
applications by its parallel decoding ability, and has been
widely accepted in many standards such as 3GPP-LTE(A),
HSPA, CDMA2000, and IEEE 802.16e. In this work, only
8-state Parallel Concatenated Convolutional Code (PCCC)
Turbo is considered because most of the widely adopted
standards (listed above) are based on it.

In the following, the BCJR (Bahl-Cocke-Jelinek-Raviv)
algorithmwith the parallel processing is investigated, shown
in Algorithm 3. Let N denotes the information message
length, which is encoded to 3N transmitted bits. Let
L(i, n), i = 0, 1, 2 denotes the 3nth to (3n + 2)th data in
LLR(n). Because each iteration consists of two constituent
maximum a-posteriori (MAP) decoding, we introduce a
variable r = 0, 1 to distinguish the first half iteration
(MAP1) and the second (MAP2). The first MAP decoding
uses L(0, k), L(1, k) and a-posteriori messages fromMAP2
L(i0, k) as input, L(i1, k) and L(iL, k) as the output. Where
k is the current FBR step. The second MAP decoding uses
L(0, kinv), L(2, k) and L(i1, kinv) as the input, L(i0, k) and
L(iL, k) as the output. i0 and i1 are arbitrary constants used
for bank labels, such as i0 = 3, i1 = 4. L(iL, k) is only
required at the last MAP2 procedure, in such occasion Line
37 is applied instead of Line 36 in Algorithm 3, otherwise
Line 36 is skipped.

In parallel decoding, the received codewords are split
into P slices with each length of L. P a-posteriori messages
are read from a group of memory banks with both sequen-
tial and interleaved address. The data are arranged in a
sequential pattern, referring that L(i, n) is stored in �n/L�th
bank with address mod(n,L). If accessed with interleaved
address, the output should be reordered by a permuter. The
interleaved address may also incur memory access conflict
when more than one data being fetched are located in the



J Sign Process Syst (2017) 89:209–224 213



214 J Sign Process Syst (2017) 89:209–224

same memory bank. A contention-free interleaver, such
as Quadratic Permutation Polynomial (QPP)-interleaver
applied in 3GPP-LTE(A), can avoid such occasions when
N is divisible with the parallelism P [18, 19]. In this
case, the interleaving for each memory data is

∏
r (n) =

mod(Qr(n), L), and the permutation route for each data
is

∐
r (n) = Qr(n)/L. Where Q1(n) = n, and Q2(n) is

the QPP-interleaving function. For the case of other inter-
leavers, the data can be rearranged to achieve conflict-free
using graph coloring algorithm [20] or annealing proce-
dure [21]. From them the addresses

∏
r (n) and permuta-

tion routes
∐

r (n) are obtained as well. The permutation
routes are needed for both MAP1 and MAP2. The memory
accesses and permutation procedures are still the same as
conflict-free case.

The BCJR algorithm is applied for each MAP half iter-
ation. It consists of three main steps: FR, BR and extrinsic
a-posteriori calculation. In the forward recursion, the branch
metrics are calculated, and previous α metrics are fetched.
Then the α for each trellis step k is calculated using kernel
function and then stored. In addition, the input data for all k
are stored in local in order to be supplied in BR. BR begins
at the end of FR and β is calculated. The a-posteriori and
extrinsic messages for the next half iteration are obtained. In
each step, S represents the current trellis state, and S ′

i , i =
0, 1 represent the previous states connected to the current
state. The function T rellis(S ′

i , S) outputs the information
sequence u, the first output branch v0 (v0 equals to u when
component code is a Systematic Convolutional Code) and
second output branch v1. (S, S′) ∈ ∑ + denotes all the
branches which output bit 1, and (S, S′) ∈ ∑− denotes all
the branches which output bit 0.

For parallel decoding, α and β are discontinuous when
separated into SISOs and decoded in parallel. Therefore
Next Iteration Initialization (NII) [7] also called State Met-
ric Propagation (SMP) [19] method is applied. The FR
initial value α

p

0 is the final FR value α
p−1
L−1 of the previous

iteration, and the backward initial value β
p

L−1 is the final

BR value β
p+1
0 at the previous iteration, depicted in Fig. 2.

Figure 2 Turbo decoding NII message passing among processing
elements.

If there is no previous iteration, the initial values are set to
zeros. The messages may come from neighbour PEs, which
lead to inter-PE data transfers or global memory accesses.

2.3 Convolutional Code Viterbi Decoding

Let CC(m, 1, M) denote a CC with code rate 1/m, infor-
mation bits (decoded bits) N and constraint length M

(Ts = 2M−1 states). The algorithm description is shown in
Algorithm 4. The channel messages are split to several
blocks with overlapped area with the size of the traceback
(TB) length, and decoded by separate PEs. The overlapped
area is for traceback procedure for each PE.

Branch Metric Update (BMU) and Add-Compare-Select
(ACS) are the two main kernels in FR. In each FR step
k, the BMU is performed to obtain the Euclidean Distance
between the received messages and local trellis outputs.
The distances (branch metrics) are added with the previous
path metrics. Two branches S′

0 and S′
1 connecting to cur-

rent state S are compared and the one has smaller metric



J Sign Process Syst (2017) 89:209–224 215

is selected (the transition bit is recorded as sel). After k

reaches L + LT B , the traceback procedure starts. The sur-
vival state calculated in previous step is applied to address
the survival path memory and get the transition bit β. The
survival state is updated by using the previous state and
current β. This procedure performs recursively. Finally the
Least Significant Bit (LSB) of Sp is stored back as the
decoded bits.

2.4 Low Complexity Kernel Functions

The original kernel function f (x, y) for LDPC and Turbo
are hard to be implemented for the fixed data format
and sensitive to the quantization error. Therefore several
frequently used low complexity approximations are dis-
cussed here in detail. For LDPC, f (x, y) can be the
addition of a linear part and a correction part, given
by f (x, y) = fb(x, y) + fc(x, y). Following Jacobian
approach, fb(x, y) = sign(x) · sign(y) · min(|x|, |y|) =
max(x, y) − max(x + y, 0), and fc(x, y) = log(1 +
e−|x+y|) − log(1 + e−|x−y|). fc(x, y) can be implemented
by a Look-Up-Table (LUT) or polynomial approximation,
shown as fcL1 and fcL2 in Table 2. Turbo kernel function is
part of the LDPC kernel, and the low complexity methods
applied for LDPC is also suitable for Turbo.

If only the linear part is used with no correction part, it is
called min-sum algorithm. A refined version of min-sum is
the offset-min-sum algorithm, which is defined as

�k =
∏

i �=k,i∈0:Sr−1

sign(γi) · max

{

min
i �=k,i∈0:Sr−1

|γi | − μ, 0

}

Where μ is a positive small constant. Similar to it, scaled-
min-sum algorithm is an alternative approach, which is
given by

�k =
∏

i �=k,i∈0:Sr−1

μ · sign(γi) · min
i �=k,i∈0:Sr−1

|γi |

Where μ is a scaling factor (less than 1). With these
methods, the extrinsic messages � are updated with offset-
/scaled-min-sum function, whereas FR messages α and BR
messages β are updated with the original min-sum function.

In summary, the base part fb(x, y) for the three algo-
rithms can be chosen from Table 1, and the correction part
fc(x, y) can be chosen from Table 2.

3 Computational Analysis

3.1 Proposed Evaluation Method and Platform
Independent Assumptions

The computational complexity is evaluated by Giga Oper-
ations per Second (GOPS) or Operations per decoded bit

Table 1 Base part alternatives in kernel function.

Algorithm Name Function

Turbo fbT max(x, y)

LDPC fbL1 max(x + y, 0) − max(x, y) [15]

fbL2 sign(x) · sign(y) · min(|x|, |y|) [22]
fbL3 sign(x) · sign(y)·

max (min(|x|, |y|) − μ, 0)

fbL4 μ · sign(x) · sign(y) · min(|x|, |y|)
Viterbi fbV min(x, y)

(OP/bit), where the ‘Operation’ refers to the basic oper-
ations listed in Table 3. They are the hardware architec-
ture unrelated basic computation units for constructing the
pseudo-codes, and all of them cost one operation. Therefore
the number of operations can be derived from the pseudo-
codes based on these unit operations. One operation may
need several instructions to be performed according to the
instruction-set specification. The ‘Complex arithmetic’ cat-
egory in the table is a special class of computations which
requires much more computational resources and float-
ing point support. They are applied for comparing kernel
function alternatives only.

There are several assumptions needed to achieve a plat-
form independent evaluation.

(1). To unify the evaluation of branch cost, it is assumed
that all the loops are unrolled and the loop branch
overhead is zero;

(2). The memory capacity is assumed to be sufficient;
(3). The permutation can be realized by a likely ‘load’

instruction with the permute route as the offset
address, which cost one operation. The permutation
for a set of data may also be executed by a dedicated
hardware such as crossbar network;

(4). The data are assumed in floating format or fixed
format with enough datawidth, hence no overflow
protection is included.

In the following analysis, the number of operations of
kernel function f (x, y) alternatives is analysed at first, then

Table 2 Correction part alternatives in kernel function.

Algorithm Name Function

Turbo fcT 1 max( 58 − |x+y|
4 , 0)

fcT 2 log(1 + e−|x−y|) [23]
fcT 3 0

LDPC fcL1 max( 58 − |x+y|
4 , 0) − max( 58 − |x−y|

4 , 0) [15]

fcL2 log(1 + e−|x+y|) − log(1 + e−|x−y|) [22]
fcL3 0

Viterbi fcV 0



216 J Sign Process Syst (2017) 89:209–224

Table 3 List of unit operations for the computational complexity
evaluation.

Category Operation definition

Arithmetic computation c = a + b, c = a − b, c = a · b, c = |a|
{c, idx} = max(a, b), {c, idx} = min(a, b)

c = −a, c = sign(a), c = a · const∗

c = a/2, c = a/4

Complex arithmetic c = log(x), c = ex

LUT access c = LUT (a, b), c = LUT (a)

Memory access load a datum, store a datum,

permute a datum

Branch if-else

Note*: Although const multiplication may require multiple pipeline
stages, when data dependency is proper sheduled, one equivalent clock
cycle (one operation) processing is attainable.

the number of operations of single FR/BR step is evaluated.
With the number of FR/BR iterations, the total decoding
complexity is derived at last.

3.2 LDPC Decoding Computational Complexity
Analysis

(1). Kernel operation
The operations for the possible kernel functions are

listed in Table 4. It shows that the minimum num-
ber of operations is 4, whereas all the kernels can be
calculated within 9 operations. The original function
needs exponential and logarithm calculation, hence
approximation kernels with simple operations and
LUTs are recommended to be applied. For calculating
fcL1 and fcL2, LUTs for function max( 58 − |x+y|

4 , 0),

max( 58 − |x−y|
4 , 0), log(1+e−|x+y|), log(1+e−|x−y|)

are assumed to be provided. The addition operation
for connecting fb (linear part) and fc (correction part)

Table 5 Operations for LDPC forward recursion kernel.

Type Equation Operations

Address LUT Rr,k , Sr,k 2

Address comp. - 0

Memory read I z
org ← L(z,Sr,k), ρz ← �

z

r,k Z × 2

Memory write γ z
k ← γ z, αz

k ← αz Z × 2

Permutation I z ← �(Iz
org,Rr,k) 1 × Z

Kernel αz ← f (αz, γ z) Z × f

Other arith. comp. γ z ← I z − ρz Z × 1

Note: (1). In LDPC decoding, the minimum kernel complexity is f =
4; (2). The operations is represented as the number of PEs times the
operations in each PE.

are counted in. In following, the ‘min-sum’ solu-
tion with f = 4 is chosen for the overall decoding
procedure complexity estimation.

(2). Recursion kernel
We divide the Algorithm into FR part and BR part,

and then estimate them separately. In Algorithm 1,
Line 7 to Line 15 is the FR part. In Table 5, the
operations for FR part are summarized, where block
transmission is applied. The total operations in FR
part are calculated as FR = 2 + (6 + f ) · Z.

From Line 16 to Line 26 in Algorithm 1 is the BR
part. Table 6 shows the summary of operations, and
the number of operations in BR part is BR = (6 +
2f ) · Z.

(3). Loop structure and total operations
There are up to itmax iterations. In each iteration

L p-layers (rows in HB) are processed sequentially.
In each row, there are totally Sr NZEs. For an irreg-
ular code, Sr is aligned to the maximum number
of NZEs among all p-layers. This approximation is
beneficial for parallel FR/BR alignment, and also with

Table 4 Operations for
calculating LDPC f (x, y)

kernels.
Name Kernel Summary Total

Original f (x, y) add/sub=4, exp=3, log=2 9

Min-sum fbL1(+fcL3) max=2, add/sub=2 4

LUT-min-sum fbL2(+fcL3) abs=2, sign=2, min=1, mul=2 7

fbL1 + fcL1 base=4, LUT=2, add/sub=2 8

fbL1 + fcL2 base=4, LUT=2, add/sub=2 8

Offset fbL3 abs=2, sign=2, max=1 9

-min-sum min=1, sub=1, mul=2

Scaled fbL4 abs=2, sign=2, min=1 8

-min-sum mul=3



J Sign Process Syst (2017) 89:209–224 217

Table 6 Operations for LDPC backward recursion kernel.

Type Equation Operations

Address LUT - 0

Address comp. - 0

Memory read γ z ← γ z
k , α

z ← αz
k Z × 2

Memory write �
z

r,k ← �z Z × 2

L(z,Sr,k) ← Oz
org

Permutation Oz
org ← �−1(Oz,Rr,k) 1 × Z

f (x, y) Kernel βz ← f (βz, γ z) Z × 2f

�z ← f (αz, βz)

Other arith. comp. Oz ← γ z + �z Z × 1

the consideration that the Sr difference among p-
layers is at most one for wireless standards IEEE
802.11n and IEEE 802.16e. Therefore the total decod-
ing operations is

OPLDPC = itmax · L · Sr · (FR + BR)

= itmax · L · Sr · (2 + (12 + 3f ) · Z) (1)

Note that the statistics include the decoding kernel only.
Early termination and correction check are not counted in.
The data input and output procedure is assumed to be fin-
ished by DMA instead of processors. Therefore the data
load/store operation cost is not included. It is assumed in the
deduction that Z PEs are available. However as long as the
number of PEs P is less than or equal to Z, the total num-
ber of operations is the same, whereas the Z layers may be
updated in partially parallel if PEs are not abundant.

For the case of the maximum throughput in IEEE
802.11n standard, the configuration is L = 4, Sr = 20,
and Z = 81. Along with the selected parameters f = 4
and itmax = 6, there are 934,080 operations for the 1620
decoded bits (1944 channel bits). Hence the computational
complexity is 577 OP/bit. For a throughput of 450 Mb/s,
259 GOPS would be consumed.

Following similar way the computational complexity for
Algorithm 2 can be calculated. It shows that Algorithm
2 consumes 6Z additional operations than Algorithm 1
in the Check Node Update kernel (FBR kernel). There-
fore we recommend Algorithm 1 for software defined (SD)
decoding.

3.3 Turbo Decoding Computational Complexity
Analysis

Table 7 shows the alternatives of Turbo kernel function
f (x, y). In this table, we assume that LUTs are available
for max( 58 − |x+y|

4 , 0) and log(1 + e−|x−y|). In most
of Turbo implementations the max-log-MAP algorithm is

Table 7 Operations for calculating turbo f (x, y) kernels.

Name Kernel Summary Total

log-MAP f (x, y) exp=2, add=1, log=1 4

Max-log-MAP fbT (+fcT 3) max=1 1

LUT-log-MAP fbT + fcT 1/2 base=1, LUT=1, add=1 3

applied, and is therefore selected for the following decoding
complexity evaluation.

In Algorithm 3, forward recursion is in Line 9 to Line
22. It contains the accesses of memory with permuta-
tion, branch metric update and forward recursions. Table 8
summarized the operations in detail.

When the constituent code is systematic such as in 3GPP
standard, where u = v0, a simplified solution for BM
calculation is shown following.

Step 1. Calculating the trellis constraints, following
t0[0] = S[0] ⊕ S[2], t0[1] = S[0] ⊕ S[1], t1[0] =
S[0] ⊕ S[2] ⊕ 1, and t1[1] = S[0] ⊕ S[1] ⊕ 1.
Where ⊕ represents XOR logic.

Step 2. Obtaining g0 and g1 by p = La + r0, g0 = (p +
r1)/2, and g1 = (−p + r1)/2.

Step 3. Output the branch messages following the
Table 10.

Although this method has the similar number of opera-
tions as the original method, for all 16 branches (Ts = 8)
there are only four independent branch metric values asso-
ciated with all possible ti . In addition, two of them are the
negative numbers of the other two. Therefore the BM cal-
culation in FR/BR consumes 8 operations for each step in
each PE.

It is derived from Tables 8 and 9 that the total number of
FR operations is (19+(3+f ) ·Ts) ·P , and BR is (17+(7+
3f ) ·Ts) ·P . With the number of half iterations (2itmax), the
recursion window length L, and the parallelism P (where
L · P = N), the total operations are calculated by

OPT urbo = 2itmax · L · (FR + BR)

= 2itmax · N · (36 + (10 + 4f ) · Ts) (2)

Take 3GPP-LTE(A) Turbo (Ts = 8) with N = 6144
decoded bits as an example. When max-log-MAP kernel
function (f = 1) and itmax = 6 are selected, the total
operations for the decoding are 10,911,744. Therefore the
computational complexity is 1776 OP/bit (Table 10). For a
decoding throughput of 150 Mbit/s, the computation would
be 266 GOPS. Note that in this evaluation, no pipeline stall
caused by data dependency or memory access conflict is
counted in. The Inter-PE message passing only happens at
the border of the recursion shown in Fig. 2. The complexity
contribution of it is negligible, and therefore not included.



218 J Sign Process Syst (2017) 89:209–224

Table 8 Operations for turbo
forward recursion kernel. Type Equation PNum. ×

OP/Par.

Address LUT k
p
inv ← ∏

r kp , kp
pmu ← ∐

r kp P × 2

Addr. Comp. kp ← k + pL P × 1

Memory read M
p

1 ← L(ir , k
p
inv), M

p

2 ← L(0, kp
inv), P × 3

M
p

3 ← L(1 + r, kp)

Memory write {La, r0, r1}pk ← {La, r0, r1}p P × 3

α
p
k (S) ← αp(S) P · Ts × 1

Permutation {La, r0, r1}p ← {�(M
p

1 , k
p
pmu), �(M

p

2 , k
p
pmu), M

p

3 )} 2 × P

Kernel BM S′
0 ← S/2, S′

1 ← S/2 + Ts/2 0

{u, v0, v1}p ← T rellis(S′
i , S) 0

γ p(S′
i , S) ← 1

2

(
up · L

p
a + r

p

0 · v
p

0 + r
p

1 · v
p

1

)
P × 8

Kernel FR bp(S′
i , S) ← γ p(S′

i , S) + αp(S′
i ), i = 0, 1 2P · Ts × 1

αp(S) ← f
(
bp(S′

0, S), bp(S′
1, S)

)
P · Ts × f

Note: (1). PNum. refers to the number of PEs, OP/Par. refers to the operations in each PE;
(2). In Turbo decoding, the minimum kernel complexity is f = 1.

If parallelism P increases, the decoding latency would be
reduced. In such case the amount of complexity increasing
is negligible whereas the bit error rate performance may
degrade due to the discontinuity of recursion messages.
More iterations can be applied to reduce the degradation
which results in the linear increasing of total operations.

3.4 CC Decoding Computational Complexity Analysis

The distance function dist (r, v) is originally implemented
by Euclidean distance function dist (r, v) = ∑

i (ri −
vi)

2, i = 0, · · · , m − 1. Because
∑

i r2i and
∑

i v2i are
the same for all transition branches. After dropping these

terms, the remaining part is −2
∑

i ri · vi , and −2 is a
constant which can be avoided without changing the relative
value. In addition, vi is the m local trellis transition bits con-
taining at most 2m combinations, and half of them can be
obtained by a negative operation from the other half (con-
sumes totally 2m−1 operations). Therefore the 2m−1 possible
metrics are calculated in advance. For each metric calcula-
tion,m−1 additions/subtractions are required. Therefore the
dist (r, v) calculation for all branches in a trellis step con-
sumes (m − 1) · 2m−1 + 2m−1 = m · 2m−1 in total. If the
pre-calculation is not applied, m multiplications (or selec-
tions) and m−1 additions are needed for each branch metric
calculation.

Table 9 Operations for turbo
backward recursion kernel. Type Equation PNum. ×

OP/Par.

Addr. Comp. kp ← k + pL P × 1

Memory read {La, r0, r1}p ← {La, r0, r1}pk P × 3

αp(S) ← α
p
k (S) P · Ts × 1

Memory write L(i1−r , k
p
inv) ← L

p
w , or L(iL, k

p
inv) ← L

p
w P × 1

Permutation L
p
w ← �−1(L

p
e , k

p
pmu), or L

p
w ← �−1(L

p
o , k

p
pmu) 1 × P

Kernel BM S′
0 ← 2S, S′

1 ← 2S + 1 0

{u, v0, v1}p ← T rellis(S, S′
i ) 0

γ p(S, S′
i ) ← 1

2

(
up · L

p
a + r

p

0 · v
p

0 + r
p

1 · v
p

1

)
P × 8

Kernel BR bp(S, S′
i ) ← γ p(S, S′

i ) + βp(S′
i ), i = 0, 1 2P · Ts × 1

βp(S) ← f
(
bp(S, S′

0), b
p(S, S′

1)
)

P · Ts × f

Kernel LLR L
p
o ← f(S,S′)∈∑ +Wp(S′, S) − f(S,S′)∈∑ −Wp(S′, S) 2P · Ts × f ,

P × 1

Wp(S′, S) ← β
p
old (S′) + γ p(S, S′) + αp(S) 2P · Ts × 2

L
p
e ← L

p
o − Lcr

p

0 − L
p
a , with Lc = 1 P × 2



J Sign Process Syst (2017) 89:209–224 219

Table 10 Complexity reduced turbo branch metric calculation.

ti [0] ti [1] b(S′
i , S)

0 0 −g0

0 1 g1

1 0 −g1

1 1 g0

From Tables 11 and 12, we can conclude that for each
step, there are P · (1+ m + m · 2m−1 + (3+ f ) · Ts) opera-
tions to be applied in ACS and 6.5P operations in TB. For a
codeword with length N = L · P , The decoding procedure
contains L + LT B ACS and TB steps, therefore the overall
operations are

OPCC = (7.5+m+m ·2m−1 + (3+f) ·Ts) ·P · (L+LT B)

= (7.5 + m + m · 2m−1 + 4Ts) · P · (L + LT B) (3)

For a CC(2, 1, 7) (m = 2, Ts = 64), with decoded bits
N = 2048, traceback length LT B = 35 and parallelism
P = 8, the total operations are 627,396, equivalent to 306
OP/bit. In the case of larger trellis constraint length code
such as CC(3, 1, 9) (m = 3, Ts = 256), with N = 2048,
LT B = 45 and P = 8, the total operations are 2,519,972,
and equivalent to 1230 OP/bit.

Because there is an overlapped area in each PE for the
traceback computing which costs redundant computations,
the parallelism P impacts on the computational complexity
obviously. For the previous CC(3,1,9) example, the decod-
ing needs extra 15 % of operations than the single PE
(P = 1) configuration.

4 Complexity Comparison

To reveal the relationship of computational complexity
among these algorithms, the number of operations is shown

Table 12 Operations for CC backward path.

Type Equation PNum. × OP/Par.

Address comp. kp ← k + pL P × 1

Memory read βp ← T B
p

k (Sp) P × 1

Memory write x̂(kp) ← LSB(Sp) when k < L P × 1

Kernel TB if βp = 1 then Sp ← Sp/2 P × 3.5

else Sp ← Sp/2 + Ts/2

in Fig. 3, wherein all the LDPC configurations in IEEE
802.11n and IEEE 802.16e standards (R=1/2 to R=5/6),
8-state Turbo (3GPP-LTE Turbo R=1/3) and CC are com-
pared. Six iterations are applied for LDPC and Turbo decod-
ing. Several conclusions are summarized from the compari-
son: (1). For all modes, the decoding complexity is approx-
imately proportional to the number of the decoded bits; (2).
When the cost of operations is the same, LDPC may offer
even 2-3 times of throughput than that of Turbo; (3). The
complexity of CC(3, 1, 9) is slightly higher than LDPC with
6 iterations; (4). IEEE 802.11n and IEEE 802.16e LDPC
have the similar complexity; (5). CC with small constraint
length has the minimum complexity, whereas Turbo decod-
ing consumes much more operations than other coding
types. In Fig. 4, the relationship of throughput and comput-
ing cost as GOPS is provided for several typical codes. The
1 Gbps Turbo consumes approximately 2000 GOPS, along
with other auxiliary workload it would be 2-3 times more,
which is currently difficult to be performed in a single chip.
However 1Gbps LDPC requires less than 600 GOPS which
is easier to be realized in SDR platforms. Less iterations can
linearly reduce the complexity, which can be achieved with
the early termination.

The computation is composed by several kernel tasks,
and the operations for each step are summarized, listed
in Table 13. CC(2, 1, 7), 3GPP-LTE Turbo and Z = 96
QC-LDPC codes are shown as examples. It is concluded
that for Turbo and CC, arithmetic computation occupies

Table 11 Operations for CC
forward path. Type Equation PNum. ×

OP/Par.

Address comp. kp ← k + pL P × 1

Memory read r
p
i ← L(i, kp), i = 0, ·, m − 1 P · m × 1

Memory write T B
p

k (S) ← selp(S) P · Ts × 1

Kernel BMU v(S′
i , S) ← T rellis(S′

i , S) 0

γ p(S′
i , S) ← dist (lp, v(S′

i , S)), i = 0, 1 P × m · 2m−1

kernel ACS S′
i ← S/2 + iTs/2, i = 0, 1 0

bp(S′
i , S) ← γ p(S′

i , S) + αp(S′
i ), i = 0, 1 P · 2Ts × 1

{αp(S), selp(S)} ← f (bp(S′
0, S), bp(S′

1, S)) P · Ts × f

Note: In CC decoding, the minimum f is 1.



220 J Sign Process Syst (2017) 89:209–224

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15
x 10

5

Decoded bits

T
ot

al
 o

pe
ra

tio
ns

802.16e LDPC
802.11n LDPC
3GPP−LTE Turbo
CC(2,1,5) P=1
CC(3,1,7) P=1
CC(3,1,9) P=1

Figure 3 Computational complexity comparison among FEC algo-
rithms with different decoded codeword length.

75 % around of workload, whereas memory access con-
sumes 25 % around. For LDPC, 42 % of workload belongs
to memory access, and only 58 % belongs to arithmetic
computation. One of the reasons is that LDPC outputs Z a-
posteriori messages in a recursion step, whereas Viterbi or
(Binary) Turbo only outputs one bit. Considered that LDPC
Layered decoding consumes approximately 1/3 of total
computation to Turbo BCJR, Layered Decoding requires
only 25 % message update computations per bit than that
of BCJR (with the same number of iterations). Viterbi algo-
rithm consumes most of the computation on ACS because
Ts states need to be processed one by one. For an even larger
Ts such as in CC(2, 1, 9), the percentage of computation for
ACS is even larger.

It is revealed from Table 13 that several kernel func-
tions consume a large portion of computing resources. The

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Throughput (Gbit/s)

x1
03  G

O
PS

3GPP−LTE Turbo N=6144
802.11n QC−LDPC(1944, 1620)
CC(3,1,7) N=2048 P=8
CC(3,1,9) N=2048 P=8

Figure 4 Evaluated total computing cost with respect to throughput.

Table 13 Percentage of component computations.

Kernel Operations Percentage

Convolutional code

Address transform 2 0.7 %

Memory read 3 1.1 %

Memory write 65 24.1 %

Kernel BMU 4 1.5 %

Kernel ACS 192 71.2 %

Kernel TB 3.5 1.3 %

Sum 269.5 100.0 %

Turbo (Half iteration)

Address LUT 2 1.4 %

Address transform 2 1.4 %

Memory read 14 9.5 %

Memory write 12 8.1 %

Permutation 3 2.0 %

Kernel BM 16 10.8 %

Kernel FR 24 16.2 %

Kernel BR 24 16.2 %

Kernel LLR 51 34.5 %

Sum 148 100.0 %

LDPC (One iteration)

Address LUT 2 0.1 %

Memory read 384 16.7 %

Memory write 384 16.7 %

Permutation 192 8.3 %

f (x, y) kernel 1152 50.0 %

Arithmetic 192 8.3 %

Sum 2306 100.0 %

operations would be reduced dramatically if the kernels
are accelerated by hardware circuits and operation-fusion
instructions. Such as the f (x, y) function for LDPC layered
decoding, the LLR calculation in Turbo decoding, and the
ACS kernel in Viterbi algorithm.

5 Specific Platform Design with the Proposed
Evaluations

For highly parallel platforms, the platform related overhead
needs to be considered in, which includes the inter-core
communication, the core workload balancing, and the syn-
chronization between cores. The decoding algorithms also
require for a conflict-free or conflict-minimum memory
access. It is advisable to construct a many core platform
based on the ASIC FEC implementations. In ASIC (Appli-
cation Specific Integrated Circuit) or ASIP (Application
Specific Instruction-set Processor) implementations of the
proposed pseudo-codes [19, 24–26], the inter-core data
passing are operation-free, the core tasks are well balanced



J Sign Process Syst (2017) 89:209–224 221

and the synchronization between cores are not necessary.
The memory banks are small sized on-chip scratch-pad
modules, therefore no cache is needed. All the memory
access conflicts can be avoided and therefore not considered
in. These optimizations for ASIC decoders can be applied
for designing an SD FEC platform.

We also constructed a tri-mode unified ASIP decoder
[27] following these pseudo-codes. (Additional sliding win-
dows are added for reducing the buffer size). The inter-
connection network and memory subsystem can be bor-
rowed to construct the fully programmable platform. The
difference is that the processor cores are introduced to sub-
stitute the arithmetic circuits in the ASIP prototype. Higher
flexible inter-core network with more redundancy can be
introduced without performance degradation if the network
and memory structure in the ASIP prototype are included.

6 Compare the Evaluated Results with General
Software Defined Decoding Platforms

Apart from the theoretical complexity results and the sup-
porting hardware platforms which can reach these low
bounds, the FEC benchmarks are provided for revealing
the attainable complexity in feasible processors. Currently,
high throughput decoding mainly relies on the General
Purpose GPU (GPGPU) platforms because of its highly
parallel architecture. In such platforms, the peak floating
point operations (GFLOPS) are accessible by manufactures.
An alternative choice is general DSP platforms with Very
Long Instruction Word (VLIW) architecture, where several
instructions are possibly processed simultaneously, such as
Texas Instrument (TI) TMS320Cx series DSPs. The peak
MIPS can be derived from the device datasheets. Apart
from the peak performance, the decoding throughput, itera-
tion numbers, and code length are available in the reference
papers, therefore the operations per bit per iteration can be
obtained following OP/N/itmax . Meanwhile the evaluated
results are shown with OP given by Eqs. 1, 2 and 3.

Figure 5 shows the software defined (SD) Turbo in gen-
eral purpose platforms. The proposed guideline is approxi-
mately 312 for all sizes of decoded bits. Most of the refer-
ence approaches are in GPU platform. Wolf et al. [28] pro-
posed a Design Space Exploration method for SD Turbo and
four platforms are tested. With the codeword size of 5000,
the complexity is 10 KOP/bit - 100 KOP/bit around. Other
proposals target on N = 6144 3GPP-LTE Turbo, which
reveal a complexity of 7 KOP/bit - 45 KOP/bit. Proposal
[6] reported that the efficiency can be further improved
with multi-codeword parallel decoding, which can fully
utilize the GPU resources, and the efficiency improves
from 9 KOP/bit to 1.8 KOP/bit. It also introduces highly
parallel number to make full use of core resources, and

4800 5000 5200 5400 5600 5800 6000 6200
10

2

10
3

10
4

10
5

10
6

M. Wolf ION

M. Wolf GF8600GTS
M. Wolf G8600GT512
M. Wolf C1060

D. Yoge GF9800GX2

M. Wu C1060

X. Jiao GTX480
G. Wang GTX470

X. Jiao GTX480

Y. Song C6201

Proposed guideline

Decoded bits

O
pe

ra
tio

ns
/b

it/
ite

r.

Figure 5 Computational complexity of SD Turbo implementations.
The solution references are M. Wolf [28], D. Yoge [29], M. Wu [30],
Y. Song [8], X. Jiao [6], and G. Wang [7].

finally 122 Mb/s throughput is derived. Apart from that, a
TMS320C6201 DSP approach [8] reveal that approximately
6400 OP/bit is required for HSPA N=5114 code, which is
similar to GPU approaches. For this TMS320C6201 DSP
platform and following TMS320C64x platform, the peak
operations are evaluated by eight times of its peak Million
Instruction Per Second (MIPS) because the processor has
eight processing units. The actual workload derived from
these implementations is higher than the proposed results
because of several reasons. (1). An operation defined in
Table 3 may be mapped into several processor operations
(instructions). (2). In our evaluation, extra tasks such as

200 400 600 800 1000 1200 1400 1600 1800 2000

10
2

10
3

10
4

8800GTX G. Falcao
GTX470 G. Wang

9800GTX K.K.Abburi

GTX480 S.Kang

HD5870 G. Falcao (K=4000)

GTXTITAN G. Wang

GTX480 X. Wen 802.11n

GTX480 X. Wen 802.16e

TMS320C64x (K=5114)

Decoded bits

O
pe

ra
tio

ns
/b

it/
ite

r.

proposed guide−band

Figure 6 Computational complexity of SD LDPC implementations.
The reference implementations are G. Falcao [4], GTX 470 G. Wang
[32] [33], K.K.Abburi [2], S. Kang [34], G. Falcao (K=4000) [35],
GTXTITAN G. Wang [3], X. Wen [31], and TMS320C64x [5].



222 J Sign Process Syst (2017) 89:209–224

Table 14 Viterbi computational complexity benchmarks.

Code type Platform Peak performance Benchmark Equivalent complexity

CC(2, 1, 5) N=189 for GSM TMS320C62x DSP [36] 1600 MIPS, 8 PEs. 38.3 Inst/bit 306 OP/bit (8-parallel VLIW)

CC(2, 1, 5) N=189 for GSM Proposed guideline 87 OP/bit

CC(2, 1, 7) Cell Processor [37] 102.4 GOPS 30 Mbit/s 3413 Inst/bit

CC(2, 1, 7) N=2048 SPIRAL Core i7 2600 128,300 MIPS (16037/core), 4.1 Mbit/s 3887 Inst/bit

without SSE

CC(2, 1, 7) N=2048 SPIRAL Core i7 2600 128,300 MIPS (16037/core), 26.4 Mbit/s 607 Inst/bit (16-parallel SSE)

with SSE

CC(2, 1, 7) N=2048 SPIRAL ARM Cortex A7 2850 MIPS/core 786 Kbit/s 3627 Inst/bit

CC(2, 1, 7) Proposed guideline 1252 OP/bit

data management, memory conflict management, control-
ling overhead, and thread synchronization are not taken into
account. (3). The GPU device peak GFLOPS is assumed
as the cost used for the decoding procedure, however mak-
ing full use of all the computation resources on a chip is
unrealistic. Nevertheless, the reference designs reveal the
nowadays attainable complexity. It is also hopeful that using
an alternative hardware architecture the decoding efficiency
can be improved further.

According to the code rates and how sparse the base
matrices are, the LDPC decoding complexity varies in dif-
ferent configurations. However they most locate in a ‘band’,
proposed in Fig. 6. It shows the complexity ranging from
88 OP/bit to 162 OP/bit for all the configurations in IEEE
802.11n and IEEE 802.16e. Most of proposed solutions
realized a complexity of 500 OP/bit to 2300 OP/bit. Among
them, Wen et al. [31] proposed a min-sum layered decoder
reaching up to 507 Mbit/s (2 iterations) with early ter-
mination, which is the highest throughput among all SD
LDPC. It reaches a complexity of 1062 OP/bit. G. Wang
et al. proposed a 304 Mbps (10 iterations, 50 codewords
in GTX TITAN GPU) solution which reaches the lowest
computational complexity (493 OP/bit). K.K.Abburi et al.
[2] proposed another high efficient solution which reaches
a complexity of 881 OP/bit. The TI TMS320C64x DSP
solution [5] shows its similar complexity to GPU solutions.

In case of Viterbi decoding, the benchmarks for
DSP, ARM and Intel Processor are summarized. For
TMS320C62x series DSP, the number of instructions for
GSMCC(2, 1, 5) decoding is given by (38·N+12+N/4)/N
[36]. For a larger N , approximately 38 instructions per bit
are required, which equivalent to 306 operations/bit due to
the parallel architecture with eight processing units. The
SPIRAL Viterbi decoding code [38] is applied for evalu-
ating the overall decoding complexity in ARM processor
(ARM Cortex A7) and Intel processor (Intel Core i7-2600).
The code is complied by GNU GCC with ‘-O3’ optimiza-
tion level. For Core i7 implementation, only one of the
8 cores is utilized. The evaluation results are shown in

Table 14, wherein the peak MIPS is derived in [39]. Because
16-way SSE (Streaming SIMD Extensions) vector instruc-
tions can perform up to 16 calculations per instruction,
therefore the number of instructions is lower than the pro-
posed guideline. It reveals that VLIW DSP is efficient for
Viterbi processing. For high throughput decoding in Intel
processors, a much higher decoding throughput is achieved
by enabling SSE acceleration [9]. The complexity of refer-
ence implementations are approximately 2-3 times higher
than the proposed complexity guideline.

7 Conclusion

In this work the complexity evaluations for LDPC Lay-
ered Decoding, Turbo BCJR decoding and CC Viterbi
decoding are provided. Closed expressions for these coding
types are offered with variety of configurable parameters.
The complexity of these algorithms are compared with the
configurations in wireless standards. The reference imple-
mentations are compared with the proposed results, which
shows that current SDR platforms still have possibilities for
achieving higher decoding efficiency. The proposed pseudo-
codes, parallel schemes and opeartion results may promote
the architecture selection and software design for further
software defined FEC platforms.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Van Berkel, C.H. (2009). Multi-core for mobile phones. In
Design, automation test in Europe conference exhibition, 2009.
DATE ’09 (pp. 1260–1265).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


J Sign Process Syst (2017) 89:209–224 223

2. Abburi, K.K. (2011). A scalable LDPC decoder on GPU. In
24th international conference on VLSI design (VLSI Design), 2011
(pp. 183–188).

3. Wang, G., Wu, M., Yin, B., & Cavallaro, J.R. (2013). High
throughput low latency LDPC decoding on GPU for SDR sys-
tems. In Proceedings of the IEEE global conference on signal and
information processing (GlobalSIP).

4. Falcao, G., Sousa, L., & Silva, V. (2011). Massively LDPC decod-
ing on multicore architectures. IEEE Transactions on Parallel and
Distributed Systems, 22(2), 309–322.

5. Lechner, G.ottfried., Sayir, J., & Rupp, M. (2004). Efficient
DSP implementation of an LDPC decoder. In Proceedings of
IEEE international conference on acoustics, speech, and signal
processing, 2004. (ICASSP ’04), (Vol. 4 pp. iv–665–iv–668).

6. Xianjun, J.iao., Canfeng, C.hen., Jaaskelainen, P., Guzma, V., &
Berg, H. (2013). A 122mb/s turbo decoder using a mid-range
GPU. In 9th international wireless communications and mobile
computing conference (IWCMC), 2013 (pp. 1090–1094).

7. Wu, M., Sun, Y., Wang, G., & Cavallaro, J.R. (2011). Implemen-
tation of a high throughput 3GPP turbo decoder on GPU. Journal
of Signal Processing System, 65(2), 171–183.

8. Song, Y., Liu, G., et al. (2005). The implementation of turbo
decoder on DSP in W-CDMA system.

9. Tan, K., He, L., Zhang, J., Zhang, Y., Ji, F., & Voelker, G.M.
(2011). Sora: high-performance software radio using general-
purpose multi-core processors. Communications of the ACM,
54(1), 99–107.

10. Lin, Y.uan., Lee, H.yunseok., Woh, M., Harel, Y., Mahlke, S.,
Mudge, T., Chakrabarti, C., & SODA, K.Flautner. (2006). A low-
power architecture for software radio. In 33rd international sym-
posium on computer architecture, 2006. ISCA ’06 (pp. 89–101).

11. Chengzhi, P., Bagherzadeh, N., Kamalizad, A.H., & Koohi, A.
(2003). Design and analysis of a programmable single-chip archi-
tecture for DVB-T base-band receiver. In Design, automation
and test in Europe conference and exhibition, 2003 (pp. 468–
473).

12. Ohkubo, N., Miki, N., Kishiyama, Y., Higuchi, K., & Sawahashi,
M. (2006). Performance comparison between turbo code and rate-
compatible LDPC code for evolved utra downlink OFDM radio
access. In Military communications conference, 2006. MILCOM
2006 (pp. 1–7): IEEE.

13. Kienle, F., Wehn, N., & Meyr, H. (2011). On complexity, energy-
and implementation-efficiency of channel decoders. IEEE Trans-
actions on Communications, 59(12), 3301–3310.

14. Dielissen, J., Engin, N., Sawitzki, S., & van Berkel, K. (2008).
Multistandard FEC decoders for wireless devices. IEEE Transac-
tions on Circuits and Systems 284–288.

15. Mansour, M.M. (2006). A turbo-decoding message-passing algo-
rithm for sparse parity-check matrix codes. IEEE Transactions on
Signal Processing, 54(11), 4376–4392.

16. Hu, X.-Y., Eleftheriou, E., Arnold, D.-M., & Dholakia, A.
(2001). Efficient implementations of the sum-product algorithm
for decoding LDPC codes. In Global telecommunications confer-
ence, 2001. GLOBECOM ’01, (Vol. 2 pp. 1036–1036E): IEEE.

17. Wang, Z., & Cui, Z. (2007). Low-complexity high-speed decoder
design for quasi-cyclic LDPC codes. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 15(1), 104–114.

18. Takeshita, O.Y. (2006). On maximum contention-free interleavers
and permutation polynomials over integer rings. IEEE Transac-
tions on Information Theory, 52(3), 1249–1253.

19. Sun, Y., & Cavallaro, J.R. (2011). Efficient hardware implemen-
tation of a highly-parallel 3GPP LTE/LTE-advance turbo decoder.
Integration, the VLSI Journal, 44(4), 305–315.

20. Sani, A.H., Coussy, P., & Chavet, C. (2013). A first step toward
on-chip memory mapping for parallel turbo and LDPC decoders: a

polynomial time mapping algorithm. IEEE Transactions on Signal
Processing, 61(16), 4127–4140.

21. Tarable, A., Benedetto, S., & Montorsi, G. (2004). Mapping
interleaving laws to parallel turbo and LDPC decoder architec-
tures. IEEE Transactions on Information Theory, 50(9), 2002–
2009.

22. Chen, J., Dholakia, A., Eleftheriou, E., Fossorier, M.P.C.,
& Hu, X.-Y. (2005). Reduced-complexity decoding of LDPC
codes. IEEE Transactions on Communications, 53(8), 1288–
1299.

23. Lin, S., & Costello, D.J. (2004). Error Control Coding Vol. 123.
Englewood Cliffs: Prentice-hall.

24. Sun, Y., & Cavallaro, J.R. (2008). A low-power 1-Gbps recon-
figurable LDPC decoder design for multiple 4G wireless stan-
dards. In IEEE international SOC conference, 2008 (pp. 367–
370).

25. Cavallaro, J.R., & Vaya, M. (2003). Viturbo: a reconfigurable
architecture for Viterbi and turbo decoding.

26. Gentile, G., Rovini, M., & Fanucci, L. (2010). A multi-standard
flexible turbo/LDPC decoder via ASIC design. In 6th inter-
national symposium on turbo codes and iterative information
processing (ISTC), 2010 (pp. 294–298).

27. Zhenzhi, W., & Liu, D. (June 2014). Flexible multistandard FEC
processor design with ASIP methodology. In IEEE 25th inter-
national conference on application-specific systems, architectures
and processors (ASAP), 2014 (pp. 210–218).

28. Lee, D., Wolf, M., & Kim, H. (2010). Design space exploration
of the turbo decoding algorithm on GPUs. In Proceedings of
the 2010 international conference on compilers, architectures and
synthesis for embedded systems, CASES ’10 (pp. 217–226). New
York: ACM.

29. Reddy, D., YOge, N., & Chandrachoodan, N. (2012). GPU imple-
mentation of a programmable turbo decoder for software defined
radio applications. In VLSI Design’12 (pp. 149–154).

30. Wu, M., Sun, Y., & Cavallaro, J.R. (2010). Implementation
of a 3GPP LTE turbo decoder accelerator on GPU (pp. 192–
197).

31. Wen, X., Xianjun, J., Jaaskelainen, P., Kultala, H., Canfeng,
C., Berg, H., & Zhisong, B. (2014). A high throughput LDPC
decoder using a mid-range GPU. In IEEE international confer-
ence on acoustics, speech and signal processing (ICASSP), 2014
(pp. 7515–7519).

32. Wang, G., Wu, M., Sun, Y., & Cavallaro, J.R. (2011). A mas-
sively parallel implementation of QC-LDPC decoder on GPU. In
SASP’11 (pp. 82–85).

33. Wang, G., Wu, M., Sun, Y., & Cavallaro, J.R. (2011). GPU accel-
erated scalable parallel decoding of LDPC codes. In Conference
record of the 45th Asilomar conference on signals, systems and
computers (ASILOMAR), 2011 (pp. 2053–2057).

34. Kang, S., & Moon, J. (2012). Parallel LDPC decoder imple-
mentation on GPU based on unbalanced memory coalescing. In
IEEE international conference on communications (ICC), 2012
(pp. 3692–3697).

35. Falcao, G., Silva, V., Sousa, L., & Andrade, J. (2012). Portable
LDPC decoding on multicores using OpenCL [applications cor-
ner]. IEEE Signal Processing Magazine, 29(4), 81–109.

36. TEXASINSTRUMENTS. C6000Benchmarks., http://www.ti.com/
sc/docs/products/dsp/c6000/62bench.htm. Accessed: 2016-6-10.

37. Lai, J., & Chen, J. (2008). High performance viterbi decoder on
cell BE. In Proceedings of the 1st international workshop on
software radio technology (SRT2008).

38. SPIRAL. Viterbi decoder software generator., http://www.spiral.
net/software/viterbi.html. Accessed: 2016-6-10.

39. Wikipedia. Instructions per second., http://en.wikipedia.org/wiki/
Instructions per second. Accessed: 2016-6-10.

http://www.ti.com/sc/docs/products/dsp/c6000/62bench.htm
http://www.ti.com/sc/docs/products/dsp/c6000/62bench.htm
http://www.spiral.net/software/viterbi.html
http://www.spiral.net/software/viterbi.html
http://en.wikipedia.org/wiki/Instructions_per_second
http://en.wikipedia.org/wiki/Instructions_per_second


224 J Sign Process Syst (2017) 89:209–224

Zhenzhi Wu received his
B.S. degree in electronic sci-
ence and technology from
Beijing Institute of Technol-
ogy (BIT) in 2008 and his
Ph.D. degree in information
and communication engineer-
ing from BIT in 2015. He was
a visiting researcher with the
division of Computer Engi-
neering from Sep. 2012 to
Sep. 2014, Linköping Uni-
versity, Linköping, Sweden.
Currently, he is an assistant
researcher in Center for Brain-
Inspired Computing Research,

Tsinghua University, Beijing, China. Zhenzhi’s research interests are
high performance hardware for signal processing algorithms, artificial
intelligence hardware, and wireless baseband accelerator designs.

Chen Gong received his B.S.
degree in electrical engineer-
ing from the Dalian Univer-
sity of Technology, China, in
2012. He is currently pur-
suing his Ph.D. degree in
electrical engineering at the
Beijing Institute of Technol-
ogy, China. His research inter-
ests include inductive near-
field communication, high-
performance application spe-
cific instruction set proces-
sors (ASIP), and low-power
mixed-signal circuit design for
advanced medical devices.

Dake Liu is professor and
the director of ASIP Lab,
Beijing Institute of Technol-
ogy, China, and also profes-
sor of Computer Engineer-
ing Division at the Depart-
ment of Electrical Engineer-
ing of Linköping University,
Sweden. He got technology
doctor degree from Linköping
University Sweden in 1995.
Dake published more than 150
papers on journals and inter-
national conferences. Dake’s
research interests are high-
performance low-power ASIP

(application specific instruction set processors), integration of onchip
multi-processors for communications and media digital signal process-
ing. Dake has experiences also in design of communication systems
and Radio frequency CMOS integrated circuits. Dake Liu is the
cofounder and CTO of FreehandDSP AB, Stockholm Sweden, and
the co-founder of Coresonic AB, Linköping, Sweden. Coresonic was
acquired by MediaTek. Currently he is enrolled in the China Recruit-
ment Program of Global Expert (Thousand Talents Plan Project) since
2010.


	Computational Complexity Analysis of FEC Decoding on SDR Platforms
	Abstract
	Introduction
	Pseudo-Codes Analysis
	LDPC Decoding
	Turbo Decoding
	Convolutional Code Viterbi Decoding
	Low Complexity Kernel Functions

	Computational Analysis
	Proposed Evaluation Method and Platform Independent Assumptions
	LDPC Decoding Computational Complexity Analysis
	Turbo Decoding Computational Complexity Analysis
	CC Decoding Computational Complexity Analysis

	Complexity Comparison
	Specific Platform Design with the Proposed Evaluations
	Compare the Evaluated Results with General Software Defined Decoding Platforms
	Conclusion
	Open Access
	References


