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Abstract Hypercubes have interesting geometric and topo-
logical properties with applications in several different
fields, such as computer networks, information retrieval,
data fusion, social networks, coding theory and linguistics.
In this work, we present and discuss the use of hyper-
cubes in some image analysis problems. Hypercube graphs
take advantage of high dimensional features to provide
low-cost image transformations. The downsampling of an
image is performed as a pixel permutation, with no need for
interpolation and, consequently, addition and multiplication
operations. The hypercube graph is employed on demand
one edge at once, such that there is no memory usage to
traverse the image. Experimental results demonstrate the
effectiveness of hypercubes as a powerful space represen-
tation both in terms of computational time and memory
requirements.

Keywords Image analysis · Hypercube graph · Gray
code · Edge detection · Multiscale decomposition ·
Logic units

1 Introduction

In this work, we introduce a methodology for solving a set
of image processing problems based only on simple logical
operations. Such restriction allows its implementation on a
variety of devices not only based on a central processing

� Helio Pedrini
helio@ic.unicamp.br

1 Institute of Computing, University of Campinas, Campinas,
São Paulo 13083-852, Brazil

unit (CPU) computation, as well as in graphics processing
unit (GPU), field-programmable gate array (FPGA) or even
simple application-specific integrated circuits (ASIC).

Before presenting the proposed methodology, it is needed
to define our computational model to perform complexity
analysis that should be far in any chosen architecture to
implement it. In our computational model, we considered
the most basic operation as the access of a pixel from an
image data source, that could be a sensor, a file, a service or
any mean that provides that information as O(1).

A hypercube Qn is a graph with 2n vertices, where its
vertices are binary n-vectors and two vertices are adja-
cent in the hypercube if the Hamming distance between
them is equal to 1. We start embedding the image data
source on a hypercube by mapping the image 2D coordi-
nates to a Binary Gray Code axis. This way, all pixels that
are neighbors in the image data source are neighbors on
the hypercube as well (the opposite is not valid) and each
node belonging to the hypercube represents a pixel in the
image. Using this approach, one can benefit from the mul-
tidimensional properties of the hypercube as the projection
in different vector spaces. Vector space projections usually
involve calculations that require complex arithmetic units
that are beyond the scope of the presented framework. How-
ever, one can perform such operations on the hypercube
using only simple logic units.

In order to take advantages of the hypercube topology, it
is necessary the employment of an efficient way to construct
it entirely or partially. Therefore, we use the algorithm pro-
posed by Silva et al. [42] to construct independent spanning
trees [50] over the hypercube. As we are not working with
spanning trees directly, we can disregard the memory con-
sumptions since we process each edge (composed of a pair
of pixels in image) once. Actually, Silva et al. [42] algorithm
builds a directed hypercube and its edge generation has no
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repeated edge even without marking the visited edges in the
hypercube case (in the case of the spanning trees, it requires
a bit per vertex). Thus, the complexity for the construction
of the proposed technique is constant in terms of memory,
that is, O(1).

As the technique complexity regarding required memory
requirements and computational resources remain low, it is
still necessary a simple operation that performs projections
onto other vector spaces. For this purpose, it is only used a
transformation operation that maps each coordinate of the
hypercube to a vector space D − 1 or D + 1. This operation
is the one-bit shift right of each hypercube coordinate in the
case of downsampling an image w×h to w/2×h/2 and log-
ical shift to the left to increase the resolution, where w and
h are the width and height of the image, respectively. The
increase in resolution requires some work regarding interpo-
lation. The number used in the shift right logical operation
generates 2n image samples and, although the images are
similar, they are merely redistributions of the original image
pixels.

With the proposed technique, it is possible to generate
low resolution images samples with the complexity of the
sample size, i.e. w × h sample pixels no matter the origi-
nal resolution of the image is. Regarding other multiscale
methods, only considering them as one access per pixel,
the complexity is O(n). Thus, if we have an image of, for
instance, 512 × 512 pixels and we need a 64 × 64 pixel
sample image, then 262,144 pixel accesses will be required
against 4,096 used in the proposed method. As it has no
interpolation or change on the information of the pixels
besides its repositioning on the image, some characteristics
as histogram are quite preserved. Our results show that the
proposed method preserves the geometric features of the
image better than other multiscale methods.

The proposed method can be applied to a variety of
problems. It can provide image search gains by using the
low resolution samples of the image before going through
the entire image at original resolution. It allows reduction
on the processing time in real-time applications, such as
vision-aided vehicle driving systems or robot path-planning
systems, which require to process thousands of images per
second.

As main contributions of this work, we provide a sim-
ple way to perform preliminary image analysis in real-time
systems on very limited computing power devices, and pro-
vide new perspectives on how to traverse images based on
the desired goal. We provide satisfactory results with sim-
ple operations which can contribute to an initial sorting of
images before applying more expensive traditional meth-
ods from a computational point of view. Our operations
are based upon simple logic units and simple pixel access
using some coordinate transformation functions providing
fast and effective results. To the best of our knowledge, there

is no previous work that applies transformations to images
by simply translating and rotating hypercube coordinates.

The remainder of the paper is organized as follows.
Section 2 briefly describes some concepts related to hyper-
cube graphs and their applications. Section 3 presents the
methodology proposed in this work. Section 4 describes and
discusses the experiments and results. Section 5 concludes
the paper with final remarks and directions for future work.

2 Background

Before presenting the methodology, it is necessary to define
some terms that are used throughout this work, as well as
some conventions proposed here.

A graph G is an ordered pair of disjoint sets (V , E) such
that E is a subset of V (2) of unordered pairs of V . Let G be
a graph, then V = V (G) is the vertex set of G and E =
E(G) is the set of edges. An edge x, y joins the vertices
x and y and is denoted by xy. Then, xy and yx refer to
the same edge. If xy ∈ E(G), then x and y are adjacent
vertices of G, and the vertices x and y are incident to the
edge xy. Two edges are said adjacent if they have exactly
one common endvertex [4]. A path is a sequence of vertices
v0, v1, v2, ..., vl describing the route of the vertex i towards
the vertex j . A cycle in a graph is a subset of edges that
represents a path such as that the first vertex of the path
corresponds to the last vertex.

A graph G has a Hamiltonian path if, and only if, there
is a path in G such that each vertex is visited once. A
Hamiltonian cycle is a cycle that forms a Hamiltonian path.

The hypercube, also called n-cube and usually denoted
as Qk , is a k-connected graph with a special property where
each vertex and its adjacent differ in only one bit in their
binary representations, as illustrated in Fig. 1.

An m-bit Gray code, Gm, denotes a sequence of all
binary numbers of m-bits. G1 is defined as (0, 1) and for
m > 1, Gm is defined recursively in terms of Gm−1 as
(0Gm−1, 1Gm−1

r ), where Gm−1
r is the reverse order Gm−1

and 0Gm−1 (1Gm−1
r ) is the advance fixing of each binary

number Gm−1 (Gm−1
r ) as 0 (1) [21].

For instance, a binary number sequence (000, 001, 011,

010, 110, 111, 101, 100) is a Gray code of 3 bits represent-
ing a path in a hypercube of 23 vertices (3-cube), starting
with vertex 000 and finishing at vertex 100.

0011

0000 0001 1001 1000

1011

Figure 1 Two vertices are adjacent in the hypercube if their symbols
differ exactly in a single coordinate.
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Figure 2 Mapping an image of
8×4 pixels to the hypercube Q5. tuple

(0,0)
(0,1)
(0,2)
(0,3)
(0,4)
(0,5)
(0,6)
(0,7)
(1,0)
(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
(1,6)
(1,7)
(2,0)
(2,1)
(2,2)
(2,3)
(2,4)
(2,5)
(2,6)
(2,7)
(3,0)
(3,1)
(3,2)
(3,3)
(3,4)
(3,5)
(3,6)
(3,7)

gray
code

00000
00001
00011
00010
00110
00111
00101
00100
01000
01001
01011
01010
01110
01111
01101
01100
11000
11001
11011
11010
11110
11111
11101
11100
10000
10001
10011
10010
10110
10111
10101
10100

(0,0) (0,1)

(2,0)

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(0,2) (0,3) (0,4) (0,5) (0,6) (0,7)

(1,0)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7)

00000 00001

11000

01001 01011 01010 01110 01111 01101 01100

00011 00010 00110 00111 00101 00100

01000

10000 10001 10011 10010 10110 10111 10101 10100

11001 11011 11010 11110 11111 11101 11100

decimal
--
0
1
2
3

gray
code
--
00
01
11
10

decimal
--
0
1
2
3
4
5
6
7

gray
code
--
000
001
011
010
110
111
101
100

4 lines (2 bits)

8 columns (3 bits)

The Hamiltonian property of the hypercube is strongly
related to the theory of Gray codes [22, 43, 48]. Hyper-
cubes are often used in networks [3, 28, 46] due to their
valuable properties in fault tolerant systems, their symme-
try and logarithmic distance between the vertices available
in commercial implementations such as iPSC [23] and
nCUBE [35]. Several algorithms have been proposed to
embed important topologies on the hypercube such as rect-
angular meshes [6, 25], trees [13, 20] and pyramids [29, 51].
For additional information about hypercube properties, the
reader may consult [18].

Hypercubes are not a novel topic in the computer field.
Cover [9] used them to give the upperbounds on the num-
ber of polynomially separable Boolean functions. Pease [36]
employed the hypercube topology to explore the possibility

of its use as a large scale array of microprocessors as
computational facility due to the high degree of parallelism.

Some hypercube algorithms have been employed to
address problems in coding theory [26], linguistics [16],
computer system design [19], image analysis [7, 10, 31, 33,
38, 52], pattern recognition [24, 34, 37, 40] and computa-
tional geometry [8, 30, 32, 41]. For additional information
about properties and applications of hypercube graphs, the
reader can refer to [2, 12, 18, 39].

Graph representation has also been utilized in several
image processing problems. Eshera and Fu [15] described
a semantic-synthatic model based on attributed relational
graphs to understand the content of images. Wu and
Leahy [49] presented a graph theoretic approach to data
clustering, such that the problem is formulated as the

Figure 3 Diagram with the
main stages of the proposed
methodology.
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Figure 4 Diagram with the main stages of edge detection metho-
dology.

optimal partitioning of an undirected graph into a number of
subgraphs. The clustering algorithm is applied to segment
images.

Trémeau and Colantoni [44] developed structures and
algorithms based on region adjacency graphs to segment
color images, improving other segmentation approaches
such as region growing or watershed transformation. Uyt-
tendaele et al. [45] presented methods for automatically
creating image mosaics from a set of panoramic pho-
tographs through a graph of regions of difference between
input images.

Methods based on graph cuts construct a specialized
graph for the energy function to be minimized [27]. These

methods have been applied to a variety of image processing
problems, such as image restoration [11], image segmen-
tation [47] and medical imaging [5]. Elmoataz et al. [14]
presented a non-local discrete regularization approach on
weighted graphs for image and manifold processing.

The majority of the research work on image process-
ing using hypercubes developed in the 1980 and 1990
decades reports the application of algorithms with n-cube
or hypercube architecture present in supercomputers such
as iPSC [23] and nCUBE [35]. In contrast, the hypercube
dimensions used in our method are based on the image size,
O(log(w∗h)), such that for an image of 4096×4096 pixels,
for instance, the hypercube has 22 dimensions. Our algo-
rithm for constructing the hypercubes does not need any
memory in the construction stage and the edges are used on
demand and discarded right after their use.

3 Methodology

This section describes the methodology developed for the
image manipulation by simply mapping the original image
coordinates to the hypercube topology. Two operations are
analyzed: edge detection and multiscale decomposition.

The edge detection is performed locally using only two
vertices at a time that represent two neighbor pixels in the
original image through a very simple approach in which
a border exists if an active pixel and an inactive one are
neighbors in the original image.

Figure 5 Translation of the
coordinates through 1-bit logic
shift right operation.
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Figure 6 Original image and the result of the translation of the coordinates using 1-bit logic shift right operation.

Figure 7 Results for
multi-resolution and
horizontal/vertical flips on an
image.

Figure 8 Results for different edge detection methods.
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Figure 9 Results for different image resampling methods.

Differently, the multiscale decomposition translates each
pixel of the image to a new coordinate, such that the decom-
position can be performed by just accessing the pixels of
the original image without any other computation involving
the generation of new values. Furthermore, all the pix-
els present in a multiscale decomposition are present in
the original image with values of identical band intensi-
ties. Such approach provides a more accurate analysis of
the original image through the processing of its multiscale
decomposition samples. For instance, one can perform a
search for a specific color in an image via its decomposed
samples, which reduces the required processing time.

The following describes the steps needed by the method-
ology proposed in this work. Initially, an image is mapped to
the hypercube topology, such that the mapping is performed
as follows: each hypercube coordinate is obtained by con-
catenating the bits representing the X-Y image coordinates

using their equivalent Gray code, resulting in a binary rep-
resentation of the hypercube vertex. Figure 2 shows the
mapping of an image with 8×4 pixels to the hypercube Q5.
After that, one can handle the image operations based on
the hypercube topology, almost disregarding the image grid
representation.

Figures 3 and 4 show schematic diagrams representing
the proposed methodology. Our approach provides a proper
level of abstraction since it simplifies the traditional way to
deal with usual image processing problems. For instance,
the edge detection is handled by using only a hypercube
edge, i.e., a threshold is established and an edge is present
if one of the vertices is below and the other is above the
threshold established.

Algorithm 1 is used to navigate in the image as a
hypercube. Initially, the vertex set is traversed (Line 2),
the neighboring dimensions are explored (Line 3), edge

Figure 10 Results for different
image resampling methods.



J Sign Process Syst (2017) 88:453–462 459

repetitions are avoided (Line 4) and, finally, the edges are
generated (Line 5).

We provide some factors of multiscale decomposition by
the simple translation of the original coordinate space to
another one. For instance, to generate an image with half of
the original scale, we transform the hypercube by shifting
all vertices by 1 bit to the right-hand side, causing the trans-
lation of the pixels to a new vectorial space, as illustrated in
Fig. 5.

The number m used in the shift transformation opera-
tion results in 2m multiscale decompositions of the image.
Figure 6 illustrates a decomposition resulting in two sample
images, each one with the half of the original resolution.

4 Experimental Results

This section presents the experimental results obtained by
applying the proposed methodology to a number of images.
The experiments were performed on an AMD FX-6300 3.5
GHz processor and 8 GB of memory. The algorithms were
implemented in Java programming language.

Figure 7 shows the results for different logical operations
on an input image. It is possible to observe the multiple
resolutions and horizontal/vertical flips obtained only by
coordinate translations with simple operations.

Results for edge detection are shown in Fig. 8. A com-
parison among the method based on hypercube graphs and
two traditional image edge detection methods (Sobel and
Canny) [17], is performed. A threshold value of 80 was used
in the Sobel method. A standard deviation of 0.45 and an
upper and lower threshold of 50 and 110, respectively, were
used in the Canny edge detector. Our method used a thresh-
old value of 90. The proposed method was able to capture
fine details present in the image.

Figure 9 shows the results for different resampling meth-
ods, including the nearest neighbor, bilinear and bicubic
interpolation techniques. The proposed method is referred
here to as raw hypercube due to the fact that we purely apply
the transposition of pixels without any interpolation or any
other modification. This means that the signal information
of the original pixel is retained as one can see by the lack

Figure 11 Results for different
image resampling methods.
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Figure 12 Example of multi-resolution search using the hypercube for different image resolutions.

of smoothing on the resulting image. Furthermore, the final
image quality obtained by such a simple method is relevant.

Figure 10 shows the results for different resampling
methods with a specific target. The square border in the
original image is one pixel thick. Our method preserves the
original pixel color information that facilitates search for a
particular color belonging to the target object.

Other results for resampling methods are shown in
Fig. 11. It is possible to observe that our method preserved
the geometric characteristics of the original image, whereas
none of the other tested techniques maintained the one-pixel
separation between the parallel lines present in the original
image. This may be advantageous in the search for images
by texture since the information in the original image texture
patterns are preserved in the subsamples.

Figure 12 shows the results for a multi-resolution search
using the hypercube. In this experiment, the purpose is to
search for a specific blue car at the bottom center of the
image. The search starts at a resolution from 1 × 1 to w ×
h, where w and h are the width and height of the image,
respectively. The car was found in the 3,035-th pixel of the
image with resolution of 64 × 64 pixels. Therefore, the total
cost was 20 + 21 + 22 + 23 + 24 + 25 + 3, 035 = 3, 098
accesses. On the other hand, a sequential search on the entire
image found the pixel with cost of 422,660 accesses.

The number of operations required for a pixel interpola-
tion is a commonly used strategy for assessing complexity

Table 1 Number of operations per pixel required for different inter-
polation methods.

Interpolation Method

Operation Nearest Bilinear Bicubic Hypercubic

Addition 2 16 22 0

Multiplication 0 18 29 0

cost [1]. The metric includes the operations demanded both
for the convolution and for the calculation of the basis
function. The convolution operation of an m × m mask
requires m2 multiplications and m2 − 1 additions. Table 1
reports the number of operations per pixel for the near-
est neighbor, bilinear and bicubic interpolation methods, as
well as for the proposed hypercubic approach. Our method
has cost 0 for both operations since it uses the original pixel
values.

5 Conclusions and Future Work

In this work, we presented and evaluated an approach to
solving a number of image analysis problems using the
hypercube graph. We were able to satisfactorily deal with
different problems in a simple and flexible way.

We performed transformations on the images with only
the granularity of the hypercube vertices and edges. The
strategy for generating the edge set is easily parallelized and
the transformations hereby described are restricted to simple
logic operations that simplified the final hardware design.

As directions for future work, we intend to propose dif-
ferent logical operations and apply the method to other
image analysis problems.
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