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Abstract Despite the progress made in digital signal pro-
cessing during the last decades, the constraints imposed
by high data rate communications are becoming ever more
stringent. Moreover mobile communications raised the
importance of power consumption for sophisticated algo-
rithms, such as channel equalization or decoding. The strong
link existing between computational speed and power con-
sumption suggests an investigation of signal processing with
energy efficiency as a prominent design choice. In this work
we revisit the topic of signal processing with analog circuits
and its potential to increase the energy efficiency. Channel
equalization is chosen as an application of nonlinear sig-
nal processing, and a vector equalizer based on a recurrent
neural network structure is taken as an example to demon-
strate what can be achieved with state of the art in VLSI
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design. We provide an analysis of the equalizer, includ-
ing the analog circuit design, system-level simulations, and
comparisons with the theoretical algorithm. First measure-
ments of our analog VLSI circuit confirm the possibility
to achieve an energy requirement of a few pJ/bit, which is
an improvement factor of three to four orders of magnitude
compared with today’s most energy efficient digital circuits.

Keywords Nonlinear signal processing · Energy
requirements · Analog VLSI · Vector equalization ·
Recurrent neural networks

1 Introduction

Energy efficiency became an essential aspect in recent
years, especially for mobile devices. The most recent
Green500 [2] and Top500 [21] rankings show that the most
efficient heterogeneous supercomputers can reach peak per-
formance of about five GFLOPS/Watt. Despite the effort to
increase this value, the current trend shows an ever-growing
difficulty in improving the energy efficiency of digital cir-
cuits [3]. As an example, in [14] the authors identify both
physical and architectural limitations of modern processors,
and predict that those barriers may severely hamper the
reduction of the required energy per operation in the future.

We address here alternatives offered by analog circuits.
Some authors of earlier work in the field of advanced analog
processing concluded that analog systems have the poten-
tial to improve the efficiency substantially [12]. Moreover,
depending on the application, there might be no need for
additional A/D conversion [4]. Analog signal processing is
already advantageously used for low-power low-frequency
applications [22] and is gaining momentum for applications
in the millimeter-wave frequency range [20].
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Related to our work are activities in building circuits
emulating functions of natural neural networks, e.g. the
European “Human Brain” project [13]. In this context it is
common to use the term “neuromorphic computing”, see
also the early work by Mead [15]. In contrast to neuro-
morphic computing, our focus is more on common signal
processing algorithms, usually realized today with digital
circuits or digital processors.

To demonstrate how far the energy efficiency can be
increased with state of the art VLSI design, in this work,
a vector equalizer (VE) [11] serves as an example of a
functional block requiring nonlinear processing. The non-
linearity offers the chance to use analog circuits out of their
conventional field of linear signal processing, with all its
disadvantages, like accumulation of noise and inaccuracies
of circuits elements. The corresponding algorithms achieve
results as robust as their digital counterparts. This is no sur-
prise, since “digital circuits” are in essence analog circuits
with strong nonlinearities.

The paper is organized as follows: in Section 2 we
explain the background of our application, while in
Section 3 we analyze the structure of the algorithm. In
Section 4 we detail the design steps and the components
needed to implement a real-valued vector equalizer in
SiGe BiCMOS technology. Section 5 expands the theory
of the transmission model, of the algorithm, and of the
design steps, in order to handle a complex-valued vector
equalization. Sections 6 and 7 discuss simulation results
of the vector equalizer. Included is the analysis of the
penalty in the BER, introduced by a finite resolution of
the equalizer’s weights. Section 8 highlights the improve-
ment in the energy requirement that is achievable with
an analog circuit design, while Section 9 shows measure-
ments on a real chip. Conclusions in Section 10 close the
paper.

2 Background

The background for our application is an uncoded digi-
tal transmission over radio channels with multiple anten-
nas (multiple-input-multiple-output, MIMO). We assume
a linear modulation scheme. Figure 1 shows a model for
such a transmission, which is a discrete-time model on a
symbol basis. More about this model and its relation to
the continuous-time (physical) transmission model can be
found in [11]. For a real-valued transmission model the
quantities in Fig. 1 are defined as follows:

– k is the discrete-time symbol interval variable;
– x(k) is the transmit symbol vector of length N at

symbol interval k. We assume binary phase shift key-
ing (BPSK) modulation, i.e. xi(k) ∈ {−1, +1} and

Figure 1 Discrete-time transmission model on a symbol basis for an
uncoded transmission with linear modulation over MIMO channels.

the transmit symbol alphabet Ax contains 2N possible
transmit vectors of length N ;

– R(k) is the discrete-time channel matrix on a symbol
basis. Its size is (N × N), it is hermitian and pos-
itive semidefinite. We assume that the channel state
is known, with this information used to appropriately
configure the vector equalizer;

– ne(k) is a sample function of an additive Gaussian noise
vector process with zero mean and covariance matrix
given by �nene (k) = N0

2 · R(k). N0 is the single-sided
noise power spectral density;

– x̃(k) = R(k) ∗ x(k) + ne(k) is the received symbol
vector. ∗ denotes matrix-vector convolution [11];

– x̂(k) ∈ Ax is the decided vector at the output of the
vector equalizer (VE).

R(k) includes the antennas at the transmit and receive
sides, the transmit impulses, and the multipath propagation
on the radio channel as well. In general it is a sequence
of matrices with respect to the symbol interval variable k.
Because we assume here no interference between symbol
vectors (or “blocks”), k can be omitted and it is sufficient
to consider a transmission of isolated vectors. The model
in Fig. 1 can then be described mathematically as in Eq. 1.
The non-diagonal elements R\d of the channel matrix lead
to interference between the components of the transmitted
vectors at the receive side. Refer to [11] for more details.

x̃ = R · x + ne,

x̃ = Rd · x
︸ ︷︷ ︸

signal

+ R\d · x
︸ ︷︷ ︸

interference

+ ne
︸︷︷︸

additive noise

,

R = Rd
︸︷︷︸

diagonal elements

+ R\d
︸︷︷︸

non-diagonal elements

. (1)

The computational complexity of the optimum vector equal-
ization (i.e. maximum likelihood, ML) grows exponentially
with N . Because this will result in an unrealistic number
of operations per symbol vector, suboptimum schemes have
to be used. Our approach is to use a recurrent neural net-
work (RNN). The VE-RNN does not need a general training
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algorithm like backpropagation, the entries of R can be
measured and directly related to the weights of the RNN.

The application of the RNN as a vector equalizer has
been discussed first in the context of multiuser detection for
code division multiple access (CDMA) transmission sys-
tems [8, 16, 24], see also [5, 23]. It can be shown that this
RNN tries to maximize the likelihood function of the opti-
mum VE. In general it converges to a local maximum, but
in many cases this local maximum turns out to be close to
or identical with the global maximum, see e.g. [6].

3 Continuous-Time Recurrent Neural Network

The VE-RNN discussed before relies on a discrete-
time RNN. Analog circuit design requires continuous-time
RNNs [17], which have also been known for long time.
The dynamic behavior is described by a set of first order
nonlinear differential equations as in Eq. 2, where:

– t is the continuous-time evolution time variable;

– e is the external input vector of length N , where N is
the length of the transmit symbols, and corresponds to
the number of neurons in the RNN;

– T is a diagonal matrix with time constants τi on its main
diagonal;

– W is a (N × N) weights matrix with entries wii′ ;
– W0 is a diagonal matrix with entries wi0 on its main

diagonal;
– u(t) is the state vector of length N ;
– v(t) is the corresponding output vector;
– v̂(t) = HD [v(t)] is the corresponding hard decision

(HD) output vector;
– ψi(·) is the ith element-wise activation function.

T · du(t)

dt
= −u(t) + W · v(t) + W 0 · e,

v(t) = ψ [u(t)]

= [ψ1[u1(t)], ψ2[u2(t)], ..., ψN [uN(t)]]T ,

v̂(t) = HD [v(t)]

= [HD1[v1(t)],HD2[v2(t)], ...,HDN [vN(t)]]T .

(2)

Figure 2 shows a resistance-capacitance structure for a
real-valued continuous-time RNN [7]. The stability of this
RNN in the sense of Lyapunov has been intensively inves-
tigated, e.g. in [10]. τi = Ri · Ci is the time constant of

Figure 2
Resistance-capacitance structure
of a real-valued recurrent neural
network in continuous-time
domain.
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the i-th neuron. The weights in Eq. 2 above are related
to the resistors in Fig. 2 by normalization as follows:
wii′ = Ri

Rii′
, wi0 = Ri

Ri0
. To distinguish between resistors and

channel matrix, the symbol for the channel matrix is bold.

3.1 Equalization based on Continuous-Time Recurrent
Neural Networks

The vector equalizer discussed in Section 2 works on a sym-
bol basis and is discrete in time. This means that the clock
for the VE is kTs , with k being the discrete time variable
and Ts the symbol interval for the digital transmission. The
RNN in Fig. 2 works equally with the parallel input of a
symbol vector, but is continuous in time. In order to connect
the vector equalizer of Fig. 1 with the network of Fig. 2, the
following conditions must be fulfilled, cf. Eqs. 1, and 2:

– The continuous-time RNN requires a minimum inter-
val of time to perform the equalization of a vector. This
time slot is here defined as the total equalization time
tequ. It follows that the symbol interval Ts for the digi-
tal transmission is constrained by the equalization time,
i.e. Ts ≥ tequ;

– e = x̃: the external input vector of the RNN represents
the received symbol vector;

– v̂(tequ) = x̂: the output vector of the RNN – after an
equalization is performed and after the hard decision –
is coincident with the decided vector of the discrete-
time VE;

– W 0 = R−1
d : the weights for the external inputs of

the RNN are computed from the diagonal elements of
the channel matrix. In the following we consider only
normalized channel matrices, i.e. calling I the identity
matrix, R−1

d = Rd = I ;

– W = I −R−1
d ·R: feedback paths between the different

neurons are related to the intersymbol interference and
are taken from the channel matrix. Under the hypoth-
esis of normalized channel matrices, W = −R\d , i.e.
the weight matrix corresponds to the additive inversion
of the non-diagonal elements of the channel matrix,
with zeros on the main diagonal (neurons with no self
feedback);

– τ1, τ2, · · · , τN = τ : all time constants have the same
value;

– ψ1[(·)1], ψ2[(·)2], · · · ψN [(·)N ] = ψ[(·)i]: all neurons
possess the same activation function. The activation
function applied to a generic element of the state vec-
tor is defined as a hyperbolic tangent: ψ[ui(t)] = α ·
tanh(β · ui(t)). Here, α = 1 V gives the dimension of
Volts to the activation function, while β [V−1] is a pos-
itive variable which must be optimized for achieving
best performance. From our simulations, the condition
to fulfill is β ≥ 3 V−1;

– HD[vi(t)] = sign(vi(t)): the hard decision applied to a
vector element has the codomain {−1, +1}.

With those assumptions, and applying the update rule of
the first Euler method, Eq. 2 can be simulated on a digital
computer:

u(l + 1) =
{

1 − �t

τ

}

u(l) + �t

τ
{W · v(l) + e} ,

v(l) = ψ[u(l)]. (3)

l is now a discrete time variable, connected to the tem-
poral evolution of the network. �t is the sampling step,
which should be as small as possible. For our simulations
we assume τ/�t = 10. Since the RNN is Lyapunov stable,
v̂(t) reaches an equilibrium state after the evolution time,
i.e. for l = tequ. The above stated conditions are valid for
BPSK, but can be generalized by combining the results of
[10, 18, 19].

3.2 Scaling

The dynamic systems of Eqs. 2 and 3 must fit the limited
voltage swings that an analog circuit can handle. It is thus
convenient to introduce a dimensionless scaling factor S:

u′(t) = S · u(t), v′(t) = S · v(t), e′ = S · e. (4)

The scaled set of equations, describing the dynamical
behavior of the continuous-time RNN, can finally be written
as:

T · du
′(t)
dt

= −u′(t) + W · v′(t) + e′,

v′(t) = S · ψ

[

u′(t)
S

]

. (5)

4 Real-Valued Equalizer

Potential implementations of a RNN cover a wide variety
of solutions, from a discrete-time RNN implemented with
field programmable gate arrays (FPGA) – as in [23] – to
continuous-time analog hardware – as in [1] and [9]. Since
here we focus on speed of operation and power efficiency,
analog VLSI design and the continuous-time RNN will be
the topic.

The resistance-capacitance model of Section 3 offers a
very compact and descriptive view of a continuous-time
RNN. It is useful for the stability analysis and for the
algorithm definition, but is not of practical realization, the
main issue being the presence of tunable resistors that must
cover both a positive and a negative range with very fine
resolution, according to the weights configuration.
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Figure 3 System-level view of
a real-valued equalizer,
composed by N = 4 neurons.

4.1 Circuit Design

The system-level view of the actual equalizer is presented
in Fig. 3. It refers to a real-valued vector equalizer with
N = 4 neurons, designed in IHP 0.25 µm SiGe BiCMOS
technology (SG25H3). Figure 4 shows the functional view
of one single neuron, with Fig. 5 finally presenting the
schematic circuit. For each neuron the input/output ports
are expressed in Volts. The circuit is fully differential and
the bipolar junction transistors (BJTs) are assumed ideally
matched.

The first set of inputs that the ith neuron takes is rep-
resented by the feedback inner state elements u′

k from all
other neurons in the RNN (k ∈ [1, ..., N ], k �= i). The
activation function (ϕ in Fig. 4) is realized with a differen-
tial transconductance (TC) stage (transistors Q1 and Q2 in

Fig. 5), biased with a tail current It , generated through a
current mirror. This results in a large-signal output current
as follows:

Ik = ϕ
[

u′
k

] ∈ [-It , It ]

≈ It · tanh
(

u′
k

2 · Vt

)

(6)

Using a four quadrant analog multiplier (Gilbert cell),
each feedback current Ik is multiplied by a weight wik in
the range [−1, +1]. The value of wik is set to the cor-
responding entry of the channel matrix. The Gilbert cell
(TC stage f in Fig. 4, quartet of transistors Q3-Q6 in
Fig. 5) is controlled by the voltage Vik and a constant
reference voltage Vref. An attenuator – in the form of a com-
mon emitter amplifier with gain lower than unity – allows

Figure 4 Functional blocks of
the ith neuron for a real-valued
equalizer. Req and Ceq are an
equivalent parasitic impedance
between node u′

i,tot and ground.
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Figure 5 Circuit schematic for
the ith neuron: (a) Differential
pair for the generation of the
activation function ϕ(·), and
Gilbert cell used as four
quadrant analog multiplier; (b)
MOSFET switch used as a
sequencer; (c) Common
collector stage for the external
input; (d) Buffers.

-

each individual feedback current Iik to be tuned with fine
resolution:

Iik = f [Vik] ∈ [-Ik, Ik]

= wik · Ik (7)

Connecting the output branches of the Gilbert cells, the
total weighted feedback current for the ith neuron Ii,tot is
obtained by applying Kirchhoff’s current law:

Ii,tot =
N

∑

k=1
k �=i

wik · Iik (8)

Two common collector transistors (Q8, Q9), biased by
the same current Ii,tot used for the summation of the feed-
back currents, create an additional differential voltage drop
on u′

i,tot, proportional to the correspondent external input

e′
i . Two additional buffer stages replicate the differen-
tial voltage u′

i,tot into u′
i . The circuit is provided with an

integrated metal-oxide-semiconductor field-effect transis-
tor (MOSFET) switch. This switch acts as a sequencer. Its
importance will be clarified in Section 4.2.

Considering the MOSFET switch in off state, we make
the assumption of an equivalent low-pass behavior with time
constant τ = Req · Ceq , where Req and Ceq mainly include
the combination of the output impedance of the Gilbert
cells, of the load resistor R′, of the input impedance of the
buffer stages loaded by the subsequent differential pairs,
and of the parasitic capacitors of the MOSFET switch. Lay-
out losses of the interconnections also play a role. In other
words, to fully exploit the speed of the BJTs, in this archi-
tecture an equivalent low-pass filter, lumped at node u′

i ,
is used in lieu of an external low-pass filter. This allows
for the minimization of the the time constant τ – that is
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the basis for scaling of the evolution time t . The valida-
tion of this hypothesis, both in a simulation environment
and in a measurement setup on the real chip, is presented in
Section 9.

The nodal analysis on u′
i (t) gives:

τ · du
′
i (t)

dt
= −u′

i (t) − Req ·
N

∑

k=1
k �=i

wik · Ii + e′
i (9)

u′
i (t) represents the inner state that will be distributed to

the other N − 1 neurons in the network. Note also that –
according to Eq. 2 – the sign of u coincides with the sign of
v, and can thus be used to perform a hard decision at the end
of an equalization. Generalizing, the dynamics of the analog
neural network can be finally written in vector form:

T · du
′(t)
dt

= −u′(t) + W · v′(t) + e′,

v′(t) ≈ Req · It · tanh
(

u′(t)
2 · Vt

)

. (10)

The correspondence between the circuit model of Fig. 3
and the resistance-capacitance model of Fig. 2 is validated,
if the following positions hold:

S = (Req · It )/α,

β = S/(2 · Vt ). (11)

The scaling factor of the circuit depends on the tail current
and on the equivalent resistive load. It also influences the
slope of the hyperbolic tangent at the origin, i.e. for a null
differential voltage u′ = 0. Using the values provided in
Table 1, Eq. 10 is linked to Eq. 5, with scaling factor S = 0.2
and slope of the hyperbolic tangent β = 3.87 1/V.

4.2 The Reset (Rst) Function

The VE-RNN is a dynamic system, where the network
evolves from an initial state (a saddle equilibrium point) to

Table 1 Summary of Main Circuit Parameters.

Parameter Value Unit Note

R′ 900 � Load resistor

It 222 µA Tail current

S 0.2 Scaling factor

β 3.87 V−1 Hyperbolic tangent’s slope

at the origin

τ 42 ps Equivalent time constant

Achip 0.68 mm2 Chip area

Aact 0.087 mm2 Active area

Cnt 171 Transistor count

Wst 35 mW VE power consumption

a stable state, following a non-monotonic trajectory in the
state-space according to the set of equations in Eq. 10. Given
a sequence of input vectors e′, Fig. 6 details how the VE
reaches stability (and consequently when the output vector
can be considered “valid”) and how it is possible to discard
the memory of a previous equalization.

The evolution time tev is defined as the time slot granted
to the circuit, necessary to reach a stable state. External
inputs are applied only during this time slot. Before the next
input is applied, it is crucial that the network returns – and
stays pinned – to a predefined initial state.

A reset time tRst can be defined as the time granted to the
circuit to return to the initial state after a vector equalization.
In our implementation the inner state u′ is forced to return
to zero, an unbiased starting point, equidistant from the 2N

possible stable states. From the circuit point of view this
effect can be compared to a capacitor which must be fully
discharged at the beginning of the equalization, in order to
avoid a “memory” of the previous equalization.

Rst is the reset signal, indicating if either an equaliza-
tion is running or the circuit is resetting. Rst acts on the
gate port of a MOSFET switch (the sequencer, in Figs. 4
and 5). When high, Rst switches the two NMOS FETs into
a low channel resistance state, short circuiting the differen-
tial internal state u′. The width of the MOSFETs is chosen
as a tradeoff between the parasitic capacitance seen with
the switch in off state (to be minimized, since it strongly
contributes to the increase of the equivalent τ ) and the
equivalent resistance seen in on-state (to be minimized,
since it represents the “goodness” of the short circuit).

For best performance, i.e. highest throughput, both tev
and tRst can be adjusted and minimized for each channel
matrix. This is translated in the statistical optimization of the
evolution time tev,min and of the reset time tRst,min, as shown
in Section 6.

Figure 6 Time domain evolution of an equalization. Because of the
iterative nature of the algorithm, the outputs are “valid” after a mini-
mum evolution time. A minimum reset time is also necessary before a
new equalization.



170 J Sign Process Syst (2017) 89:163–180

5 Complex-Valued Equalization

5.1 Theory of Operation

The background and the dynamical behavior of a VE-RNN
can be extended to include quadrature phase shift keying
(QPSK) modulation. We introduce subscripts “p” and “q” to
refer to in-phase and quadrature components of the symbols,
of the noise, and of the matrices. The discrete-time model of
Fig. 1 and Eq. 1 still holds with the following assumptions:

– xc = xp + jxq is the complex-valued transmit sym-
bol vector. xc,i ∈ {±1 ± j} and the transmit symbol
alphabetAxc contains 4

N possible transmit vectors. The
same complex notation is applied to the received sym-
bol vector x̃c and to the decided vector at the output of
the equalizer x̂c;

– Rc = Rp + jRq is the complex-valued discrete-time
channel matrix on symbol basis;

– nc,e is the complex-valued additive Gaussian noise.

A complex-valued continuous-time RNN is still
described by a set of first order nonlinear differential
equations – cf. Eq. 2 – with the following modifications:

– ec = ep + jeq is the complex-valued external input
vector. Using the same notation, uc(t), vc(t), and v̂c(t)

are the complex-valued state vector, output vector, and
hard-decision vector, respectively.

– the weight matrix is now W c and has complex-valued
entries wc,ii′ = wp,ii′ + jwq,ii′ ;

– ψc[uc] = ψ[up] + jψ[uq]: the complex-valued activa-
tion function is obtained by independently applying the
real-valued activation function ψ to the in-phase and
quadrature components of the state vector. The same
procedure is valid for the complex-valued hard decision
function on the output vector: HDc[vc] = HD[vp] +
jHD[vq].

The resistance-capacitance model of Fig. 2 must be
extended to handle complex-valued quantities. If all the
variables are expanded in terms of their real and imaginary
part, and considering the scaling of the system, the set of
equations in (5) can finally be separated as follows:

T
du′

p(t)

dt
= −u′

p(t) +
[

Wpv
′
p(t) − W qv

′
q(t)

]

+ e′
p,

T
du′

q(t)

dt
= −u′

q(t) +
[

Wpv
′
q(t) + W qv

′
p(t)

]

+ e′
q,

v′
p(t) = S · ψ

[

u′
p(t)

S

]

,

v′
q(t) = S · ψ

[

u′
q(t)

S

]

. (12)

As shown in Fig. 7, a complex-valued recurrent neural
network with N = 4 neurons is equivalent to a real-
valued recurrent neural network of N = 8 neurons, split
in two sub-networks of N = 4 neurons. Each sub-network
accepts in-phase and quadrature part of the received sym-
bol, and will produce the in-phase and quadrature part of
the decided vector, respectively. The N complex-valued
feedback contributions are mapped into 2 · N real feed-
back paths for each sub-network. This is the approach used

Figure 7 Equivalence between a complex-valued recurrent neural
network with N neurons (a) and the interconnection of two real-valued
neural sub-networks (b).
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in this work to design the analog complex-valued vector
equalizer.

5.2 Circuit Design

The system-level view of the complex equalizer is shown
in Fig. 8. The ith neuron takes the ith complex-valued
element of the external input vector e′

c and outputs the
ith complex-valued element of the internal state vec-
tor u′

c(t). Each neuron also accepts the complex-valued
inner state elements coming from the other neurons in
the network. The voltage Vp,ik covers the real part of
the interference from neuron k to neuron i. Correspond-
ingly, Vq,ik is used for the imaginary part of the inter-
ference. All the neurons possess the reset (Rst) input
port.

The functional view of the single neuron is shown in
Fig. 9, and the schematic is detailed in Fig. 10. The mode
of operation is based on TC stages. According to the vari-
able separation in Eq. 12, each neuron is formed by two
twin subsystems, with each subsystem requiring 2 · (N − 1)
transconductance stages to generate the weighted feedback
currents.

The first TC stage (“f ” in Fig. 9) is formed by a dif-
ferential pair (Q2, Q5, and the two resistors for the emitter
degeneration in Fig. 10), biased with a tail current It . The
tail current is generated through a current mirror, not shown
in the figure. Transistors Q3 andQ4 represent the sequencer
for the Rst function.

With respect to the differential pairQ2-Q5, the sequencer
is in a “winner takes all” configuration. During the evolu-
tion time, Q3 and Q4 are biased with a base voltage lower
than both Q2 andQ5. Therefore they are in off state, and the
differential pair Q2-Q5 generates a differential current Ip,ik
function of the differential voltage Vp,ik . When Vq,ik is con-
cerned, the current is denoted as Iq,ik . With Q3 and Q4 off
(evolution time), the input/output relations can be expressed
as follows:

Ip,ik = f
[

Vp,ik
] ∈ [-It , It ]

= wp,ik · It

Iq,ik = f
[

Vq,ik
] ∈ [-It , It ]

= wq,ik · It (13)

During the reset time the base voltage of Q3 and Q4

is higher than the base of both Q2 and Q5. The bias

Figure 8 System-level view of
a complex-valued equalizer
composed by N = 4 neurons.
The definitions of the external
input, inner state, and voltages
Vik are kept unchanged.
Subscripts “p” and “q” account
for the real and imaginary parts
of the values, respectively.
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Figure 9 Functional blocks of
a neuron, as part of a N = 4
complex-valued equalizer. The
topology includes two twin
subsystems. Req and Ceq

represent an equivalent parasitic
low-pass filter connected to the
node u′

p,i (or u′
q,i ).

 

 

-

current It flows only through Q3 and Q4, equally split,
and independent of Vp,ik(Vq,ik). With Q3 and Q4 on, the
differential currents Ip,ik and Iq,ik become zero:

Ip,ik = Iq,ik = 0, ∀(Vp,ik, Vq,ik) (Reset time)

The differential current Ip,ik (Iq,ik) biases a second TC
stage (ϕ in Fig. 9), formed by two differential pairs in
Gilbert cell configuration (Q6, Q7, Q8, Q9 in Fig. 10).
The large signal output current is a four-quadrant multi-
plication of the inner state u′

p,k (u′
q,k). Depending on the

Figure 10 Circuit schematic of
a fully-differential subsystem, as
part of a complex-valued vector
equalizer.

-
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subsystem under consideration, the input/output relations
can be expressed as follows:
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Ipp,ik = ϕ
[

Vp,ik, u
′
p,k

]

∈ [

-Ip,ik, Ip,ik
]

= wp,ik · It · tanh
(

u′
p,k

2·Vt

)

Iqq,ik = ϕ
[

Vq,ik, u
′
q,k

]

∈ [

-Iq,ik, Iq,ik
]

= wq,ik · It · tanh
(

u′
q,k

2·Vt

)

(14)

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Ipq,ik = ϕ
[

Vp,ik, u
′
q,k

]

∈ [

-Ip,ik, Ip,ik
]

= wp,ik · It · tanh
(

u′
q,k

2·Vt

)

Iqp,ik = ϕ
[

Vq,ik, u
′
p,k

]

∈ [

-Iq,ik, Iq,ik
]

= wq,ik · It · tanh
(

u′
p,k

2·Vt

)

(15)

An additional transconductance stage (g in Fig. 9, Q12

and Q13 in Fig. 10) is used to generate a current Ip,i0 (or
Iq,i0), proportional to the in-phase (or quadrature) ith ele-
ment of the external input e′

c. This stage is optimized to
provide a linear large signal output characteristic (constant
transconductance G) among the range of interest:

Ip,i0 = g
[

e′
p,i

]

∈ [-Ie, Ie]

= G · e′
p,i

Iq,i0 = g
[

e′
q,i

]

∈ [-Ie, Ie]

= G · e′
q,i (16)

Connecting the output branches of the Gilbert cells, the
total in-phase differential currents (Ip,i) for the ith neuron
can finally be computed as in Eq. 17. For the twin sub-
system, the total quadrature differential current of the ith

neuron (Iq,i) is given in Eq. 18.

Ip,i = It ·
N

∑

k=1
k �=i

[

wp,ik · tanh
(

u′
p,k

2 · Vt

)]

−It ·
N

∑

k=1
k �=i

[

wq,ik · tanh
(

u′
q,k

2 · Vt

)]

+G · e′
p,i (17)

Iq,i = It ·
N

∑

k=1
k �=i

[

wp,ik · tanh
(

u′
q,k

2 · Vt

)]

+It ·
N

∑

k=1
k �=i

[

wq,ik · tanh
(

u′
p,k

2 · Vt

)]

+G · e′
q,i (18)

As for the real-valued equalizer, an equivalent parasitic
low-pass filter can be defined, mainly composed of a phys-
ical load resistor R′, and the combination of (i) the output
impedance of the Gilbert cells connected to the node u′

p,i
(or u′

q,i), and (ii) of the input impedance of the transconduc-
tance stages, driven by u′

p,i (or u
′
q,i). Defining τ ≡ Req ·Ceq ,

and choosing G = 1/Req , the nodal analysis on nodes u′
p,i

and u′
q,i respectively gives:

τ · du
′
p,i (t)

dt
= −u′

p,i (t) − Req · Ip,i (t) + e′
p,i ,

τ · du
′
q,i (t)

dt
= −u′

q,i (t) − Req · Iq,i (t) + e′
q,i , (19)

When written in vector form, the set of equations in (19)
corresponds to Eq. 12, if S ·α = Req · It and β = S/(2 ·Vt ).
Finally, the diodes D1 and D2 in Fig. 10 are used as voltage
shifters, while the diodes D3 and D4 are voltage limiting
circuits.

6 Simulations Results

In this section two types of simulations, run on general-
purpose computers, of the continuous-time RNN equalizer
are compared and shortly discussed: one represents Eq. 3
simulated in Matlab, and labeled in the following as “algo-
rithm”. The second is a circuit-based simulation, performed
in Keysight ADS, and labeled as “circuit”. The modulation
is BPSK, and the number of neurons is four. Here results are
presented for two channel matrices:

Rm =

⎡

⎢

⎢

⎣

1 +0.60 +0.60 +0.60
+0.60 1 +0.60 +0.60
+0.60 +0.60 1 +0.60
+0.60 +0.60 +0.60 1

⎤

⎥

⎥

⎦

Rh =

⎡

⎢

⎢

⎣

1 +0.85 +0.66 -0.67
+0.85 1 +0.85 -0.79
+0.66 +0.85 1 -0.89
-0.67 -0.79 -0.89 1

⎤

⎥

⎥

⎦

They are representative of channels with moderate (Rm)
and high (Rh) crosstalk (interference between vector com-
ponents), respectively. A pseudo-random sequence of sym-
bol vectors was generated and multiplied with one of these
matrices. Gaussian noise vectors according to the Eb/N0

signal-to-noise ratio were then added. Eb is the average
energy per bit. For the circuit simulations all the applied
signals have a rise/fall time of tr/f = τ/3.

Figure 11 shows the good agreement of the bit error rate
(BER) curves between the algorithm and the circuit sim-
ulation. Since the vector equalization based on RNNs is a
suboptimum scheme, the Maximum Likelihood curves are
also shown for reference.
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Figure 11 BER evaluation of the continuous-time RNN equalizer,
including circuit and algorithm simulations. Maximum Likelihood
algorithm shown for reference.

Because of the iterative nature of the RNN algorithm, the
BER is – additionally to Eb/N0 – a function of the evo-
lution (tev) and reset (tRst) time. Given a channel matrix,
a BER surface is obtained by sweeping the evolution and
reset time, and keeping the signal-to-noise ratio constant, as
shown in Fig. 12 for a circuit-based simulation with inter-
ference given by Rh and Eb/N0 = 18 dB. Following this
optimization procedure, and considering the region in which

0.1

t
Rst

 [ ]

1.522.535
4

3

t
ev

 [ ]

2
10-4

10-2

100

1

B
E

R

Figure 12 Rh BER surface for different evaluation and reset times,
and constant signal-to-noise ratio. Flat performance indicates that (i)
the circuit reaches a proper stable equilibrium point, and (ii) does
not possess memory of a previous equalization. Note: circuit-based
simulation performed in Keysight ADS.

the BER performance becomes flat, values for the minimum
equalization (tev,min) and reset (tRst,min) time can be found.

{

Rm : [tev,min, tRst,min] = [3.67, 1.33]τ
Rh : [tev,min, tRst,min] = [4, 2]τ

tequ = tev,min + tRst,min is the total equalization time, i.e. the
minimum relative time between two successive symbol vec-
tors. tequ must be equal or smaller than the symbol interval
Ts of the digital transmission. With the numbers from before
and τ = 42 ps (see Section 9) we get Ts for the worst case
channel Rh:

Ts ≥ (4 + 2) · 42 ps = 252 ps,

corresponding to a throughput of four GSymbol/s (16
Gbit/s). For the BER simulations of Fig. 11, the minimum
values for Ts were taken.

7 Weights Discretization

For both a real-valued (cf. Section 4.1) and a complex-
valued (cf. Section 5.2) vector equalizer the differential
transconductance stages f provide the multiplication of
a differential current signal, as a function of an analog
voltage. All the weights for the equalizer can be in prin-
ciple configured to assume any value in a range between
[−1, +1] with any precision (see also Section 9). As shown
in Fig. 13 (a), this section is concerned with the resolution
D of the weights, such that the BER of the equalizer with
finely spaced discrete weights approaches the BER of an
equalizer, driven by precise analog values. Results of this
study are presented in Fig. 13 (b) for a QPSK modulation
with the complex-valued channel matrix in Eq. 20.

Rcx =

⎡

⎢

⎢

⎣

1 0.25-j0.10 -0.15+j0.15 +0.15+j0.20
R∗
12 1 -0.10-j0.35 +0.10+j0.15

R∗
13 R∗

23 1 -0.35+j0.00
R∗
14 R∗

24 R∗
34 1

⎤

⎥

⎥

⎦

(20)

With D = 1 bit the equalizer does not work correctly, and
the BER presents an error floor. With a resolution D = 2
bits the vector equalizer shows a SNR loss of ≈ 3 dB (with
respect to an equalizer, driven by precise values) at a BER =
10−2. The SNR loss decreases to approximately 0.6 and 0.3
dB, with resolutions D = 3 and 4 bits, respectively. The
SNR loss falls to a value of ≈ 0.01 dB for D = 6 bits,
and a similar behavior is observed for different matrices. We
conclude that a digital-to-analog converter (DAC), covering
the whole range of weights [−1, +1] with resolution D = 6
bits, is sufficient to mimic the performance of an equalizer
without discretization error.
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Figure 13 Weights discretization error: (a) Discrete-time model on
symbol basis with discrete weights control; (b) BER vs. Eb/N0 for
crosstalk Rcx , parameterized for different weights resolutions. Setup:
223 input bits, tev = tRst = 5 τ .

8 Energy Requirement

Digital and analog signal processing rely on highly diverse
theories of operation. A common denominator between the
two domains can be found in the energy requirement (ER),
here defined as the ratio between the power requirements
of an architecture [Watt] and its bit rate, i.e. the number of
bits per second the architecture is able to equalize. All other
aspects, e.g. the area requirement, are excluded from the
comparison. ER has dimensions of [J/bit], so the the smaller
ER the more energy efficient the system is. This defini-
tion of energy requirement allows to compare very diverse
architectures, overcoming the problem of an analysis solely
relying on performance, i.e. a pure benchmark.

ER [J/bit] = Power [W]

Bit rate [bit/s]
(21)

Digital solutions included in this comparison are ranked in
terms of floating point operations per second (FLOPS) and
of the related power consumption. The conversion between
FLOPS and bit rate is achieved by considering (i) the algo-
rithm complexity (how many floating point operations are
required by the algorithm per vector equalization), and (ii)

the degree of parallelization (how many bits are produced in
parallel after an equalization). The algorithm complexity is
computed as follows (cf. Table 2): for a real-valued equal-
ization, each neuron requires three multiplications, four
sums, and one hyperbolic tangent computation per iteration.
We assume that each operation corresponds to one FLOP,
and that ten iterations are sufficient to equalize a vector.
This results in an algorithmic complexity of 320 floating
point operations per equalization. The output parallelization
is equal to N .

Summarizing, the energy requirement for the digital
solution (ERdig) can be written as:

ERdig = Power

Outputs · (FLOPS/Algorithm)
(22)

The analog solution represents an application specific
integrated circuit, i.e. the algorithm complexity is hard-
wired in the circuit design. The bit rate is computed from
the equalization time tequ, function of the time constant
τ . With regards to the power consumption, in our design
static power is the dominant parameter involved. The energy
requirement for the analog implementation can then be
written as:

ERan = Power

Outputs · (1/Equalization time)
(23)

Figure 14 shows the energy requirement comparison for
the case of a N = 4 neurons real-valued equalizer. Cyan
squares represent the ten fastest architectures, as ranked in
the Top500 list in June 2015 [21]. The rate of execution
lies between 50 and 400 Tbit/s, but the power requested to
achieve such performance is between 1 and 20 MW. Those
architectures show on average an ERdig ≈ 50 nJ/bit. Green
triangles are representative of the ten most efficient archi-
tectures, as ranked in the Green500 list in June 2015 [2].
Those system can perform an equalization with bit rates
approximately ranging from 2 to 10 Tbit/s, with power con-
sumptions in the range of 30-200 kW. The average energy
requirement is ERdig ≈ 18 nJ/bit. Located at the bottom left
corner of the picture, red circles show the performance of
five commercial general purpose processors1. Those single-
processor architectures cover bit rates between 300 Mbit/s

Table 2 Algorithm complexity.

Equalization complexity per neuron

Real valued Complex valued

Mult N − 1 4 · N − 4

Sums N 4 · N − 2

tanh(·) 1 2
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Figure 14 Energy requirement comparison between digital and ana-
log real-valued vector equalizers, with N = 4 neurons.

and 2 Gbit/s, with power requirements approximately span-
ning from 10 to 100 W. The average energy requirement is
ERdig ≈ 60 nJ/bit.1

Finally, the analog solution presented in this work allows
for the equalization of 16 Gbit/s, already outperforming
single-processors architectures in terms of pure perfor-
mance. Most important, the analog vector equalizer requires
a static power of only 35 mW (measured on the real chip, cf.
Fig. 18 in Section 9). With an energy requirement ERan ≈
2 pJ/bit, we can conclude that our dedicated hardware shows
an efficiency improvement between three and four orders of
magnitude over the digital counterparts.

The advantage of the analog solution is maintained in the
case of a complex-valued equalizer. The power consump-
tion of a digital architecture – as well as its performance in
FLOPS – is assumed as constant. The output parallelization
doubles (from N parallel bits for a real-valued equalization
to 2 · N bits for a complex-valued one). As derived from
Eq. 12 and listed in Table 2, the algorithmic complexity
increases to 1120 floating point operations per equalization,
for a complex-valued equalization with N = 4 neurons.

The complex-valued analog equalizer of Section 5 is
designed with a power consumption P ≈ 85 mW, and a
time constant τ ≈ 160 ps. Assuming a sufficient equaliza-
tion time tequ = 6 τ , also the complex equalizer shows an
energy efficiency improvement of three orders of magni-
tude.

1Microprocessors included in the comparison [Name, declared peak
performance, TDP]: (1) Intel i7-3930k, 153 GFLOPS, 130 W; (2) Intel
i7-3840QM, 89.6 GFLOPS, 45 W; (3) Intel i5-3570, 108.8 GFLOPS,
77 W; (4) Intel i5-3610ME, 43 GFLOPS, 35 W; (5) Intel i3-3229Y,
22.4 GFLOPS, 13 W.

Figure 15 Single neuron characterization: realized test structure,
including the single neuron (cf. Fig. 3), an equivalent load and addi-
tional buffers to facilitate the measurements. The inner state u′

k is
accessible and used to generate the feedbacks for the ith neuron.

9 Measurement Results

Our first measurements focused on the functional validation
of the single neuron for real-valued equalizations: weighted
multiplication, β of the activation function, and cutoff fre-
quency, i.e. the equivalent time constant τ . For this purpose
the circuit of Fig. 15 was realized using a 250 nm SiGe
BiCMOS fabrication process by IHP. The test structure was
bonded and mounted on a Rogers RO4003 printed circuit
board (PCB).

The feedback states u′
k for the ith neuron, coming from

the other neurons (k ∈ [1, ..., N ], k �= i), are here externally
generated and directly applied. Provided that the neuron
under test also drives an identical load (N − 1 transcon-
ductance stages) as in the full vector equalizer, the charac-
terization of this elementary cell remains valid at system
level.

Figure 16 shows the gain variation wik as a function
of the voltage Vik applied. The values are computed by
applying a sinusoidal excitation to u′

k and by measuring
magnitude and phase of u′

i before the corner frequency
given by τ , at a frequency of 0.1 GHz. The attenuator –
cf. Figs. 4 and 5 – allows the weights to be fine-tuned,
within a span of 1.2 V. The measured curve presents a shift

V
ik

 [V]

0.8 1 1.2 1.4 1.6 1.8 2

w
ik

-1

-0.5

0

0.5

1

Measurements

Simulations

Figure 16 Voltage mapping wik = f [Vik] ∈ [−1, 1]. Blue squares
represent measured values.
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�Vik ≈ 0.1 V with respect to simulations. This shift can
however be easily calibrated in the measurement setup and
has not any impact on neuron’s performance.

The slope of the activation function β at the origin – cf.
Eqs. 2 and 5 – is a free parameter that can be optimized.
From our simulations, the condition to fulfill for best perfor-
mance is β ≥ 3 V-1. Measurements performed at 0.1 GHz
resulted in a value of 3.47, slightly smaller than the simu-
lated one β = 3.87 V-1. Reasons can probably be imputed
to small losses in the measurement setup.

The equivalent τ for time scaling can be measured by
applying a sinusoidal excitation to the external input e′

i and
measuring the frequency response at the neuron output u′

i .
Fig. 17 (a) shows the simulated transfer function |u′

i/e
′
i | and

a comparison with an ideal RC low pass filter with cutoff
frequency of 3.79 GHz (τ = 42 ps). The hypothesis of a
frequency response which resembles an ideal RC behavior
is confirmed by Fig. 17 (b), showing the single-input single-
output |u+

i /e+
i | measurement and the comparison with the

expected curve.
Having the single neuron validated by measurement data,

a full vector equalizer has been fabricated (Fig. 18). The
chip area of 0.68 mm2 is dominated by the several pads
needed for measurements. The pin configuration is the fol-
lowing: four differential external inputs (pads 1, 2, 3, 4, 5, 6,
7, 8), four differential outputs (pads 9, 10, 11, 12, 23, 24, 25,
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Figure 17 Equivalent τ of a single neuron. Measurements confirm
the hypothesis of a first-order low-pass filter comparable to an ideal
low-pass RC filter, lumped between u+

i and u−
i .
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Figure 18 Layout of the vector equalizer and pin configuration.

26), six pins for the weights configuration (pads 13, 14, 18,
19, 20, 21), reset (pad 15), voltage supplies (pads 16, 17, 22)
and grounds (square pads). The active area is approximately
0.09 mm2, with a transistor count CNT = 171 for four
neurons. The power consumption of 35 mW was measured,
confirming simulation results.

A descriptive test to check the functionality of the equal-
izer connections is shown in Fig. 19. The equalizer is tested
with a set of input vectors e′ with equal elements (e′

i =
e′, i ∈ [1, ..., N ]) and the steady state outputs u′ are mea-
sured. If the weights are set equally for all the neruons
(wik = w, k ∈ [1, ..., N ], k �= i), the expected trans-
fer characteristic u′ = f (e′) complies with the following
transcendental scalar equation:

u′ − w · (Sα) · (N − 1) · tanh
(

u′

2 · Vt

)

= e′ (24)

The numerical solution of Eq. 24 with w = 1 shows a
hysteresis loop, described by the model in Eq. 25: bneg and
bpos are two switching boundaries. When the input is outside
the boundaries, one unique solution exists for Eq. 24. When
the input is within the boundaries, the output presents two
stable solutions. The choice of the “plus” or “minus” sign
in Eq. 25 then depends on the last crossed boundary. If the
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Figure 19 Hysteresis curve resulting from a numerical solution of
Eq. 24: comparison between simulations (black line) and measured
data (blue circles).
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input last crossed bpos, the numerical solution is with the
plus sign. Otherwise, the solution with the “minus” sign is
the correct one.

u′ =
⎧

⎨

⎩

e′ + (Sα)(N − 1), ∀ e′ ≥ bpos
e′ − (Sα)(N − 1), ∀ e′ ≤ bneg
e′ ± (Sα)(N − 1), ∀ bneg < e′ < bpos

(25)

In other words, because of the neurons’ strong nonlin-
earities, as the external input increases and reaches the
boundary bpos, the internal state flips from a negative to a
positive value. As the external input decreases and reaches
the boundary bneg, the inner state switches from a positive to
a negative value. The good agreement between simulations
and measurements is confirmed by Fig. 19, where all the
four differential outputs are measured for each differential
external input vector e′.

10 Conclusions

Given the current trend of wireless and mobile communi-
cations, implementing complex algorithms, achieving high
data rates, and at the same time minimizing the power con-
sumption of a digital signal processing system is becoming
extremely challenging. And the situation is not likely to be
reversed in the near future, by scaling the minimum feature
size of transistors. Our intention is to turn this challenge
into an opportunity to revitalize the topic of analog sig-
nal processing, i.e. implementing algorithms with efficient
dedicated analog circuits.

As an application of analog nonlinear signal processing
we presented a vector equalizer for MIMO transmissions,
realized in SiGe BiCMOS technology. The equalizer can
handle vectors of length N = 4 for either BPSK or QPSK
modulation schemes.

Bit error rate performance comparisons showed virtually
the same or similar behavior for the common digital signal
processing and the analog VLSI circuit version. The reason
for the comparable robustness – the input is noisy – is that
both types of processing use equilibrium states of nonlin-
ear dynamical systems to get the outputs, rather than simple
amplitude levels.

The throughput of the vector equalizer is influenced by
the evolution time the analog RNN needs to reach the
equilibrium state. This time in turn depends on the equiv-
alent time constant τ . In our circuit design the throughput
was maximized by exploiting the low-pass behavior, given
by parasitic capacitances of bipolar transistors and MOS-
FETs. Furthermore, an on-chip switch gives the possibility
to reset the internal states of the equalizer – a fundamental
prerequisite to handle a sequence of vectors.

The analog vector equalizer does not need an analog to
digital conversion of the inputs, but needs to be configured
with proper weights, representing the channel state. We
showed that the optimum interface requires a DAC with a
minimum resolution of six bits.

The set of measured data confirmed the expected char-
acteristics of a single neuron. Also the equalizer was tested
with a predefined set of input-output vectors, and always
confirmed the simulation results. In comparison with com-
mon digital signal processing we conclude that the energy
efficiency can be improved by some orders of magnitude.
This confirms earlier conjectures, stating a huge potential
for nonlinear signal processing with analog circuits.
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