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Abstract Polar codes are a new class of capacity-achieving
error-correcting codes with low encoding and decoding
complexity. Their low-complexity decoding algorithms ren-
dering them attractive for use in software-defined radio
applications where computational resources are limited. In
this work, we present low-latency software polar decoders
that exploit modern processor capabilities. We show how
adapting the algorithm at various levels can lead to sig-
nificant improvements in latency and throughput, yield-
ing polar decoders that are suitable for high-performance
software-defined radio applications on modern desktop pro-
cessors and embedded-platform processors. These proposed
decoders have an order of magnitude lower latency and
memory footprint compared to state-of-the-art decoders,
while maintaining comparable throughput. In addition, we
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present strategies and results for implementing polar deco-
ders on graphical processing units. Finally, we show that the
energy efficiency of the proposed decoders is comparable to
state-of-the-art software polar decoders.

Keywords Polar codes · Successive-cancellation
decoding · Software decoders

1 Introduction

In software-defined radio (SDR) applications, researchers
and engineers have yet to fully harness the error-correction
capability of modern codes due to their high computational
complexity. Many are still using classical codes [7, 23]
as implementing low-latency high-throughput—exceeding
10 Mbps of information throughput—software decoders for
turbo or low-density parity-check (LDPC) codes is very
challenging. The irregular data access patterns featured in
decoders of modern error-correction codes make efficient
use of single-instruction multiple-data (SIMD) extensions
present on today’s central processing units (CPUs) difficult.
To overcome this difficulty and still achieve a good through-
put, software decoders resorting to inter-frame parallelism
(decoding multiple independent frames at the same time) are
often proposed [12, 25, 26]. Inter-frame parallelism comes
at the cost of higher latency, as many frames have to be
buffered before decoding can be started. Even with a split
layer approach to LDPC decoding where intra-frame paral-
lelism can be applied, the latency remains high at multiple
milliseconds on a recent desktop processor [10]. This work
presents software polar decoders that enable SDR systems
to utilize powerful and fast error-correction.

Polar codes provably achieve the symmetric capacity of
memoryless channels [5]. Moreover they are well suited for
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software implementation, due to regular memory access pat-
terns, on both x86 and embedded processors [9, 13, 14].
To achieve higher throughput and lower latency on proces-
sors, software polar decoders can also exploit SIMD vector
extensions present on today’s CPUs. Vectorization can be
performed intra-frame [9] or inter-frame [13, 14], with the
former having lower decoding latency as it does not require
multiple frames to start decoding.

In this work, we explore intra-frame vectorized polar
decoders. We propose architectures and optimization strate-
gies that lead to the implementation of high-performance
software polar decoders tailored to different processor
architectures with decoding latency of 26 μs for a (32768,
29492) polar code, a significant performance improve-
ment compared to that of our previous work [9]. We start
Section 2 with a review of the construction and decod-
ing of polar codes. We then present two different software
decoder architectures with varying degrees of specialization
in Section 3. Implementation and results on an embed-
ded processor are discussed in Section 4. We also adapt
the decoder to suit graphical processing units (GPUs), an
interesting target for applications where many hundreds
of frames have to be decoded simultaneously, and present
the results in Section 5. Finally, Section 6 compares the
energy consumption of the different decoders and Section 8
concludes the paper.

This paper builds upon the work published in [9] and
[19]. It provides additional details on the approach as well
as more experimental results for modern desktop proces-
sors. Both floating- and fixed-point implementations for the
final desktop CPU version—the unrolled decoder—were
further optimized leading to an information throughput of
up to 1.4 Gbps. It also adds results for the adaptation of our
strategies to an embedded processor leading to a throughput
and latency of up to 2.25 and 36 times better, respectively,
compared to that of the state-of-the-art software implemen-
tation. Compared to the state of the art, both the desktop
and embedded processor implementations are shown to
have one to two orders of magnitude smaller memory foot-
print. Lastly, strategies and results for implementing polar
decoders on a graphical processing unit (GPU) are presented
for the first time.

2 Polar Codes

2.1 Construction of Polar Codes

Polar codes exploit the channel polarization phenomenon
to achieve the symmetric capacity of a memoryless channel
as the code length increases (N → ∞). A polarizing con-
struction where N = 2 is shown in Fig. 1a. The probability
of correctly estimating bit u1 increases compared to when

Figure 1 Construction of polar codes of lengths 2 and 4.

the bits are transmitted without any transformation over the
channel W . Meanwhile, the probability of correctly estimat-
ing bit u0 decreases. The polarizing transformation can be
combined recursively to create longer codes, as shown in
Fig. 1b for N = 4. As the N → ∞, the probability of suc-
cessfully estimating each bit approaches either 1 (perfectly
reliable) or 0.5 (completely unreliable), and the proportion
of reliable bits approaches the symmetric capacity of W [5].

To construct an (N , k) polar code, the N −k least reliable
bits, called the frozen bits, are set to zero and the remaining
k bits are used to carry information. The frozen bits of an
(8, 5) polar code are indicated in gray in Fig. 2a. The loca-
tions of the information and frozen bits are based on the type
and conditions of W . In this work we use polar codes con-
structed according to [22]. The generator matrix, GN , for a
polar code of length N can be specified recursively so that

GN = FN = F
⊗ log2 N

2 , where F2 =
[

1 0
1 1

]
and ⊗ is the

Kronecker power. For example, for N = 4, GN is

G4 F 2

2

F2 0

F2 F2

1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

.

In [5], bit-reversed indexing is used, which changes the
generator matrix by multiplying it with a bit-reversal oper-
ator B, so that G = BF . In this work, natural indexing is
used as it yields more efficient software decoders [9].

Figure 2 The graph and tree representation of an (8, 5) polar code.
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2.2 Tree Representation of Polar Codes

A polar code of length N is the concatenation of two con-
stituent polar codes of length N/2 [5]. Therefore, binary
trees are a natural representation of polar codes [4]. Figure 2
illustrates the tree representation of an (8, 5) polar code. In
Fig. 2a, the frozen bits are labeled in gray while the infor-
mation bits are in black. The corresponding tree, shown in
Fig. 2b, uses white and black leaf nodes to denote these
bits, respectively. The gray nodes of Fig. 2b correspond to
concatenation operations shown in Fig. 2a.

2.3 Successive-Cancellation Decoding

In successive-cancellation (SC) decoding, the decoder tree
is traversed depth first, selecting left edges before back-
tracking to right ones, until the size-1 frozen and informa-
tion leaf nodes. The messages passed to child nodes are
log-likelihood ratios (LLRs); while those passed to parents
are bit estimates. These messages are denoted α and β,
respectively. Messages to a left child l are calculated by the
f operation using the min-sum algorithm:

αl[i] = f (αv[i], αv[i + Nv/2])
= sgn(αv[i])sgn(αv[i + Nv/2])

min(|αv[i]|, |αv[i + Nv/2]|), (1)

where Nv is the size of the corresponding constituent code
and αv the LLR input to the node.

Messages to a right child are calculated using the g

operation

αr [i] = g(αv[i], αv[i + Nv/2], βl[i])
=

{
αv[i + Nv/2] + αv[i], when βl[i] = 0;
αv[i + Nv/2] − αv[i], otherwise,

(2)

where βl is the bit estimate from the left child.
Bit estimates at the leaf nodes are set to zero for frozen

bits and are calculated by performing threshold detection for
information ones. After a node has the bit estimates from
both its children, they are combined to generate the node’s
estimate that is passed to its parent

βv[i] =
{

βl[i] ⊕ βr [i], when i < Nv/2;
βr [i − Nv/2], otherwise,

(3)

where ⊕ is modulo-2 addition (XOR).

2.4 Simplified Successive-Cancellation Decoding

Instead of traversing a sub-tree whose leaves all corre-
spond to frozen or information bits, simplified successive-
cancellation (SSC) applies a decision rule immediately [4].
For frozen sub-trees, the output is set to the zero vec-
tor; while for information sub-tree the maximum-likelihood

Figure 3 Decoder trees corresponding to the SC, SSC and Fast-SSC
decoding algorithms.

(ML) output is obtained by performing element-wise thresh-
old detection on the soft-information input vector, αv. This
shrinks the decoder, reducing the number of calculations
and increasing decoding speed. The SC and SSC pruned tree
corresponding to an (8, 5) polar code are shown in Fig. 3a
and b, respectively.

2.5 The Fast-SSC Decoding Algorithm

The Fast-SSC decoding algorithm further prunes the deco-
der tree by applying low-complexity decoding rules when
encountering certain types of constituent codes. These spe-
cial cases are:

Repetition codes: are constituent codes where only the
last bit is an information bit. These codes are efficiently
decoded by calculating the sum of the input LLRs and
using threshold detection to determine the result that is then
replicated to form the estimated bits:

βv[i] =
{

0, when
(∑Nv−1

i=0 αv[i]
)

≥ 0;
1, otherwise,

where Nv is the number of leaf nodes.
Single-parity-check (SPC) codes: are constituent codes

where only the first bit is frozen. The corresponding node
is indicated by the cross-hatched orange pattern in Fig. 3c.
The first step in decoding these codes is to calculate the hard
decision of each LLR

βv[i] =
{

0, when αv[i] ≥ 0;
1, otherwise,

(4)

and then calculating the parity of these decisions

parity =
Nv−1⊕
i=0

βv[i]

If the parity constraint is unsatisfied, the estimate of the
bit with the smallest LLR magnitude is flipped:

βv[i] = βv[i] ⊕ parity, where i = arg min
i

(|αv[i]|).
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Repetition-SPC codes: are codes whose left constituent
code is a repetition code and the right an SPC one. They
can be speculatively decoded in hardware by simultane-
ously decoding the repetition code and two instances of the
SPC code: one assuming the output of the repetition code
is all 0’s and the other all 1’s. The correct result is selected
once the output of the repetition code is available. This
speculative decoding also provides speed gains in software.

Figure 3c shows the tree corresponding to a Fast-SSC
decoder is will be described more thoroughly in Section 3.2.
Other types of operations are introduced in the Fast-SSC
algorithm, we refer the reader to [20] for more details.

3 Implementation on x86 Processors

In this section we present two different versions of the
decoder in terms of increasing design specialization for
software; whereas the first version—the instruction-based
decoder—takes advantage of the processor architecture it
remains configurable at run time and the second one—
the unrolled decoder—presents a fully unrolled, branchless
decoder fully exploiting SIMD vectorization. In the sec-
ond version of the decoder, compile-time optimization plays
a significant role in the performance improvements. Per-
formance is evaluated for both the instruction-based and
unrolled decoders.

It should be noted that, contrary to what is common in
hardware implementations e.g. [15, 20], natural indexing
is used for all software decoder implementations. While
bit-reversed indexing is well-suited for hardware decoders,
SIMD instructions operate on independent vectors, not adja-
cent values within a vector. Using bit-reverse indexing
would have mandated data shuffling operations before any
vectorized operation is performed.

Both versions, instruction-based decoders and unrolled
decoders, use the following functions from the Fast-SSC
algorithm [20]: F, G, G 0R, Combine, Combine 0R, Rep-
etition, 0SPC, RSPC, RepSPC and P 01. An Info function
implementing (4) is also added.

Methodology for the Experimental Results We dis-
cuss throughput in information bits per second as well as
latency. Our software was compiled using the C++ com-
piler from GCC 4.9 using the flags “-march=native
-funroll-loops -Ofast”. Additionally, auto-
vectorization is always kept enabled. The decoders are
inserted in a digital communication chain to measure their
speed and to ensure that optimizations, including those
introduced by -Ofast, do not affect error-correction per-
formance. In the simulations, we use binary phase shift
keying (BPSK) over an AWGN channel with random
codewords.

The throughput is calculated using the time required
to decode a frame averaged over 10 runs of 50,000 and
10000 frames each for the N = 2048 and the N > 2048
codes, respectively. The time required to decode a frame,
or latency, also includes the time required to copy a frame
to decoder memory and copy back the estimated codeword.
Time is measured using the high precision clock provided
by the Boost Chrono library.

In this work we focus on decoders running on one pro-
cessor core only since the targeted application is SDR.
Typically, an SDR system cannot afford to dedicate more
than a single core to error-correction as it has to per-
form other functions simultaneously. For example, in SDR
implementations of long term evolution (LTE) receivers,
the orthogonal frequency-division multiplexing (OFDM)
demodulation alone is approximately an order of magnitude
more computationally demanding than the error-correction
decoder [6, 7, 23].

3.1 Instruction-based Decoder

The Fast-SSC decoder implemented on a field-programma-
ble gate array (FPGA) in [20] closely resembles a CPU with
wide SIMD vector units and wide data buses. Therefore, it
was natural to use the same design for a software decoder,
leveraging SIMD instructions. This section describes how
the algorithm was adapted for a software implementation.
As fixed-point arithmetic can be used, the effect of quanti-
zation is shown.

3.1.1 Using Fixed-Point Numbers

On processors, fixed-point numbers are represented with
at least 8 bits. As illustrated in Fig. 4, using 8 bits of
quantization for LLRs results in a negligible degradation
of error-correction performance over a floating-point rep-
resentation. At a frame-error rate (FER) of 10−8 the per-
formance loss compared to a floating-point implementation
is less than 0.025 dB for the (32768, 27568) polar code.
With custom hardware, it was shown in [20] that 6 bits
are sufficient for that polar code. It should be noted that
in Fast-SSC decoding, only the G function adds to the
amplitude of LLRs and it is carried out with saturating
adders.

With instructions that can work on registers of packed
8-bit integers, the SIMD extensions available on most
general-purpose x86 and ARM processors are a good fit to
implement a polar decoder.

3.1.2 Vectorizing the Decoding of Constituent Codes

On x86-64 processors, the vector instructions added with
SSE support logic and arithmetic operations on vectors
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Figure 4 Effect of quantization on error-correction performance.

containing either 4 single-precision floating-point numbers
or 16 8-bit integers. Additionally, x86-64 processors with
AVX instructions can operate on data sets of twice that size.
Below are the operations benefiting the most from explicit
vectorization.

F : the f operation (1) is often executed on large vectors
of LLRs to prepare values for other processing nodes. The
min() operation and the sign calculation and assignment are
all vectorized.

G and G 0R: the g operation is also frequently executed
on large vectors. Both possibilities, the sum and the differ-
ence, of Eq. 2 are calculated and are blended together with a
mask to build the result. The G 0R operation replaces the G
operation when the left hand side of the tree is the all-zero
vector.

Combine and Combine 0R: the Combine operation com-
bines two estimated bit-vectors using an XOR operation
in a vectorized manner. The Combine 0R operation is to
Combine what G 0R is to G.

SPC decoding: locating the LLR with the minimum
magnitude is accelerated using SIMD instructions.

3.1.3 Data Representation

For the decoders using floating-point numbers, the represen-
tation of β is changed to accelerate the execution of the g

operation on large vectors. Thus, when floating-point LLRs
are used, βl[i] ∈ {+1, −1} instead of {0, 1}. As a result,
Eq. 2 can be rewritten as

g(αv[i], αv[i +Nv/2], βl[i]) = αv[i] ∗βl[i]+αv[i +Nv/2].

This removes the conditional assignment and turns g()

into a multiply-accumulate operation, which can be per-
formed efficiently in a vectorized manner on modern CPUs.
For integer LLRs, multiplications cannot be carried out on
8-bit integers. Thus, both possibilities of Eq. 2 are calculated
and are blended together with a mask to build the result. The
Combine operation is modified accordingly for the floating-
point decoder and is computed using a multiplication with
βl[i] ∈ {+1, −1}.

3.1.4 Architecture-specific Optimizations

The decoders take advantage of the SSSE 3, SSE 4.1 and
AVX instructions when available. Notably, the sign and
abs instructions from SSSE 3 and the blendv instruction
from SSE 4.1 are used. AVX, with instructions operating on
vectors of 256 bits instead of the 128 bits, is only used for
the floating-point implementation since it does not support
integer operations. Data was aligned to the 128 (SSE) or
256-bit (AVX) boundaries for faster accesses.

3.1.5 Implementation Comparison

Here we compare the performance of three implemen-
tations. First, a non-explicitly vectorized version using
floating-point numbers. Second an explicitly vectorized ver-
sion using floating-point numbers. Third, the explicitly
vectorized version using a fixed-point number representa-
tion. In Table 1, they are denoted as Float, SIMD-Float and
SIMD-int8 respectively.

Results for decoders using the floating-point number
representation are included as the efficient implementa-
tion makes the resulting throughput high enough for some

Table 1 Decoding polar codes with the instruction-based decoder.

Code Implementation Info T/P Latency

(N, k) (Mbps) (μs)

(2048, 1024) Float 20.8 49

SIMD-Float 75.6 14

SIMD-int8 121.7 8

(2048, 1707) Float 41.5 41

SIMD-Float 173.9 10

SIMD-int8 209.9 8

(32768, 27568) Float 32.4 825

SIMD-Float 124.3 222

SIMD-int8 175.1 157

(32768, 29492) Float 40.8 723

SIMD-Float 160.1 184

SIMD-int8 198.6 149
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applications. The decoders ran on a single core of an Intel
Core i7-4770S clocked at 3.1 GHz with Turbo disabled.

Comparing the throughput and latency of the Float and
SIMD-Float implementations in Table 1 confirms the ben-
efits of explicit vectorization in this decoder. The perfor-
mance of the SIMD-Float implementation is only 21 %
to 38 % slower than the SIMD-int8 implementation. This
is not a surprising result considering that the SIMD-Float
implementation uses the AVX instructions operating on vec-
tors of 256 bits while the SIMD-int8 version is limited
to vectors of 128 bits. Table 1 also shows that vectorized
implementations have 3.6 to 5.8 times lower latency than
the floating-point decoder.

3.2 Unrolled Decoder

The goal of this design is to increase vectorization and
inlining and reduce branches in the resulting decoder by
maximizing the information specified at compile-time. It
also gets rid of the indirections that were required to get
good performance out of the instruction-based decoder.

3.2.1 Generating an Unrolled Decoder

The polar codes decoded by the instruction-based decoders
presented in Section 3.1 can be specified at run-time. This
flexibility comes at the cost of increased branches in the
code due to conditionals, indirections and loops. Creating a
decoder dedicated to only one polar code enables the gener-
ation of a branchless fully-unrolled decoder. In other words,
knowing in advance the dimensions of the polar code and
the frozen bit locations removes the need for most of the
control logic and eliminates branches there.

A tool was built to generate a list of function calls corre-
sponding to the decoder tree traversal. It was first described
in [19] and has been significantly improved since its ini-
tial publication notably to add support for other node types
as well as to add support for GPU code generation. List-
ing 1 shows an example decoder that corresponds to the (8,
5) polar code whose dataflow graph is shown in Fig. 5. For
brevity and clarity, in Fig. 5b, I and C 0R correspond to the
Info and Combine 0R functions, respectively.

Figure 5 Dataflow graph of a (8, 5) polar decoder.

3.2.2 Eliminating Superfluous Operations on β-Values

Every non-leaf node in the decoder performs the combine
operation (3), rendering it the most common operation. In
Eq. 3, half the β values are copied unchanged to βv. One
method to significantly reduce decoding latency is to elim-
inate those superfluous copy operations by choosing an
appropriate layout for β values in memory: Only N β val-
ues are stored in a contiguous array aligned to the SIMD
vector size. When a combine operation is performed, only
those values corresponding to βl will be updated. Since the
stage sizes are all powers of two, stages of sizes equal to or
larger than the SIMD vector size will be implicitly aligned
so that operations on them are vectorized.

3.2.3 Improved Layout of the α-memory

Unlike in the case of β values, the operations producing α

values, f and g operations, do not copy data unchanged.
Therefore, it is important to maximize the number of vec-
torized operations to increase decoding speed. To this end,
contiguous memory is allocated for the log2 N stages of the
decoder. The overall memory and each stage is aligned to
16 or 32-byte boundaries when SSE or AVX instructions
are used, respectively. As such, it becomes possible to also
vectorize stages smaller than the SIMD vector size. The
memory overhead due to not tightly packing the stages of α

memory is negligible. As an example, for an N = 32, 768
floating-point polar decoder using AVX instructions, the
size of the α memory required by the proposed scheme is
262,208 bytes, including a 68-byte overhead.

3.2.4 Compile-Time Specialization

Since the sizes of the constituent codes are known at com-
pile time, they are provided as template parameters to the
functions as illustrated in Listing 1. Each function has two
or three implementations. One is for stages smaller than the
SIMD vector width where vectorization is not possible or
straightforward. A second one is for stages that are equal
or wider than the largest vectorization instruction set avail-
able. Finally, a third one provides SSE vectorization in an
AVX or AVX2 decoder for stages that can be vectorized by
the former, but are too small to be vectorized using AVX or
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AVX2. The last specialization was noted to improve decod-
ing speed in spite of the switch between the two SIMD
extension types.

Furthermore, since the bounds of loops are compile-time
constants, the compiler is able to unroll loops where it
sees fit, eliminating the remaining branches in the decoder
unless they help in increasing speed by resulting in a smaller
executable.

3.2.5 Architecture-Specific Optimizations

First, the decoder was updated to take advantage of AVX2
instructions when available. These new instructions benefit
the fixed-point implementation as they allow simultaneous
operations on 32 8-bit integers.

Second, the implementation of some nodes were hand-
optimized to better take advantage of the processor archi-
tecture. For example, the SPC node was mostly rewritten.
Listing 2 shows a small but critical subsection of the SPC
node calculations where the index within a SIMD vector
corresponding to the specified value is returned. The reduc-
tion operation required by the Repetition node has also been
optimized manually.

Third, for the floating-point implementation, β was chan-
ged to be in {+0, −0} instead of {+1, −1}. In the floating-
point representation [2], the most significant bit only carries
the information about the sign. Flipping this bit effectively
changes the sign of the number. By changing the mapping
for β, multiplications are replaced by faster bitwise XOR
operations. Similarly, for the 8-bit fixed-point implemen-
tation, β was changed to be in {0, −128} to reduce the
complexity of the Info and G functions.

Listings 3 and 4 show the resulting G functions for
both the floating-point and fixed-point implementations as
examples illustrating bottom-up optimizations used in our
decoders.

3.2.6 Memory Footprint

The memory footprint is considered an important constraint
for software applications. Our proposed implementations
use 2 contiguous memory blocks that correspond to the α

and β values, respectively. The size of the β-memory is

Mβ = NWβ, (5)

where N is the frame length, Wβ is the number of bits used
to store a β value and Mβ is in bits.

The size of the α-memory can be expressed as

Mα =
⎡
⎣(2N − 1) + A log2 A −

⎛
⎝log2(A)−1∑

i=0

2i

⎞
⎠

⎤
⎦Wα, (6)

where N is the frame length, Wα is the number of bits used
to store an α value, A is the number of α values per SIMD
vector and Mα is in bits. Note that the expression of Mα con-
tains the expression for the overhead MαOH due to tightly
packing the α values as described in Section 3.2.3:

MαOH =
⎡
⎣A log2 A −

⎛
⎝log2(A)−1∑

i=0

2i

⎞
⎠

⎤
⎦Wα. (7)

The memory footprint can thus be expressed as

Mtotal = Mβ + Mα

= NWβ +
⎡
⎣(2N − 1) + A log2 A −

⎛
⎝log2(A)−1∑

i=0

2i

⎞
⎠

⎤
⎦ Wα.

(8)

The memory footprint in kilobytes can be approximated
with

Mtotal (kbytes) ≈ N(Wβ + 2Wα)

8000
. (9)
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Table 2 Decoding polar codes with floating-point precision using
SIMD, comparing the instruction-based decoder (ID) with the unrolled
decoder (UD).

Code (N, k) Info T/P (Mbps) Latency (μs)

ID UD ID UD

(2048, 1024) 75.6 229.8 14 4

(2048, 1707) 173.9 492.2 10 3

(32768, 27568) 124.3 271.3 222 102

(32768, 29492) 160.1 315.1 184 94

3.2.7 Implementation Comparison

We first compare the SIMD-float results for this
implementation—the unrolled decoder—with those from
Section 3.1—the instruction-based decoder. Then we show
SIMD-int8 results and compare them with that of the
software decoder of Le Gal et. al [14]. As in the previous
sections, the results are for an Intel Core i7-4770S running
at 3.1 GHz when Turbo is disabled and at up to 3.9 GHz
otherwise. The decoders were limited to a single CPU core.

Table 2 shows the impact of the optimizations introduced
in the unrolled version on the SIMD-float implementations.
It resulted in the unrolled decoders being 2 to 3 times
faster than the flexible, instruction-based, ones. Compar-
ing Tables 1 and 2 shows an improvement factor from
3.3 to 5.7 for the SIMD-int8 implementations. It should
be noted that some of the improvements introduced in the
unrolled decoders could be backported to the instruction-
based decoders, and is considered for future work.

Compared to the software polar decoders of [14], Table 3
shows that our throughput is lower for short frames but

can be comparable for long frames. However, latency is an
order of magnitude lower for all code lengths. This is to
be expected as the decoders of [14] do inter-frame paral-
lelism i.e. parallelize the decoding of independent frames
while we parallelize the decoding of a frame. The mem-
ory footprint of our decoder is shown to be approximately
24 times lower than that of [14]. The results in [14] were
presented with Turbo frequency boost enabled; therefore
we present two sets of results for our proposed decoder:
one with Turbo enabled, indicated by the asterisk (*) and
the 3.1+ GHz frequency in the table, and one with Turbo
disabled. The results with Turbo disabled are more indica-
tive of a full SDR system as all CPU cores will be fully
utilized, not leaving any thermal headroom to increase
the frequency. The maximum Turbo frequencies are 3.8
GHz and 3.9 GHz for the i7-4960HQ and i7-4770S CPUs,
respectively.

Looking at the first two, or last two rows of Table 2, it can
be seen that for a fixed code length, the decoding latency
is smaller for higher code rates. The tendency of decoding
latency to decrease with increasing code rate and length was
first discussed in [21]. It was noted that higher rate codes
resulted in SSC decoder trees with fewer nodes and, there-
fore, lower latency. Increasing the code length was observed
to have a similar, but lesser, effect. However, once the code
becomes sufficiently long, the limited memory bandwidth
and number of processing resources form bottlenecks that
negate the speed gains.

The effects of unrolling and using the Fast-SSC algo-
rithm instead of SC are illustrated in Table 4. It can be
observed that unrolling the Fast-SSC decoder results in a 5
time decrease in latency. Using the Fast-SSC instead of SC
decoding algorithm decreased the latency of the unrolled
decoder by 3 times.

Table 3 Comparison of the
proposed software decoder
with that of [14].

Decoder Target L3 f Code Mem. footprint Info T/P Latency

Cache (GHz) (N, k) (kbytes) (Mbps) (μs)

[14]* Intel Core i7-4960HQ 6MB 3.6+ (2048, 1024) 144 1,320 25

(2048, 1707) 144 2,172 26

(32768, 27568) 2304 1,232 714

(32768, 29492) 2304 1,557 605

this work Intel Core i7-4770S 8MB 3.1 (2048, 1024) 6 398 3

(2048, 1707) 6 1,041 2

(32768, 27568) 98 886 31

(32768, 29492) 98 1,131 26

this work* Intel Core i7-4770S 8MB 3.1+ (2048, 1024) 6 502 2

(2048, 1707) 6 1,293 1

(32768, 27568) 98 1,104 25

(32768, 29492) 98 1,412 21

*Results with Turbo enabled.
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Table 4 Effect of unrolling and algorithm choice on decoding speed
of the (2048, 1707) code on the Intel Core i7-4770S.

Decoder Info T/P (Mbps) Latency (μs)

ID 210 8.1

UD SC 363 4.7

UD Fast-SSC 1041 1.6

4 Implementation on Embedded Processors

Many of the current embedded processors used in SDR
applications also offer SIMD extensions, e.g. NEON for
ARM processors. All the strategies used to develop an
efficient x86 implementation can be applied to the ARM
architecture with changes to accommodate differences in
extensions. For example, on ARM, there is no equivalent to
the movemask SSE/AVX x86 instruction.

The equations for the memory footprint provided in
Section 3.2.6 also apply to our decoder implementation for
embedded processors.

Comparison with Similar Works Results were obtained
using the ODROID-U3 board, which features a Samsung
Exynos 4412 system on chip (SoC) implementing an ARM
Cortex A9 clocked at 1.7 GHz. Like in the previous sections,
the decoders were only allowed to use one core. Table 5
shows the results for the proposed unrolled decoders and
provides a comparison with [13]. As with their desktop CPU
implementation of [14], inter-frame parallelism is used in
the latter.

It can be seen that the proposed implementations provide
better latency and greater throughput at native frequen-
cies. Since the ARM CPU in the Samsung Exynos 4412 is
clocked at 1.7 GHz while that in the NVIDIA Tegra 3 used
in [13] is clocked at 1.4 GHz, we also provide linearly scaled
throughput and latency numbers for the latter work, indi-
cated by an asterisk (*) in the table. Compared to the scaled

Table 5 Decoding polar codes with 8-bit fixed-point numbers on an
ARM Cortex A9 using NEON.

Code Decoder Mem. Footprint T/P (Mbps) Latency

(N, k)
(kBytes) Coded Info

(μs)

(1024, 512) [13] 38 70.5 35.3 232

[13]∗ 38 80.6 42.9 191

this work 3 113.1 56.6 9

(32768, 29492) [13] 1,216 33.1 29.8 15,844

[13]∗ 1,216 40.2 36.2 13,048

this work 98 90.8 81.7 361

*Results linearly scaled for the clock frequency difference.

results of [13], the proposed decoder has 1.4–2.25 times
the throughput and its latency is 25–36 times lower. The
memory footprint of our proposed decoder is approximately
12 times lower than that of [13]. Both implementations are
using 8-bit fixed-point values.

5 Implementation on Graphical Processing Units

Most recent graphical processing units (GPU) have the
capability to do calculations that are not related to graph-
ics. These GPUs are often called general purpose GPUs
(GPGPU). In this section, we describe our approach to
implement software polar decoders in CUDA C [18] and
present results for these decoders running on a NVIDIA
Tesla K20c.

Most of the optimization strategies cited above could be
applied or adapted to the GPU. However, there are notewor-
thy differences. Note that, when latency is mentioned below
we refer to the decoding latency including the delay required
to copy the data in and out of the GPU.

5.1 Overview of the GPU Architecture and Terminology

A NVIDIA GPU has multiple microprocessors with 32
cores each. Cores within the same microprocessor may
communicate and share a local memory. However, synchro-
nized communication between cores located in different
microprocessors often has to go through the CPU and is thus
costly and discouraged [8].

GPUs expose a different parallel programming model
than general purpose processors. Instead of SIMD, the GPU
model is single-instruction-multiple-threads (SIMT). Each
core is capable of running a thread. A computational kernel
performing a specific task is instantiated as a block. Each
block is mapped to a microprocessor and is assigned one
thread or more.

As it will be shown in Section 5.3, the latency induced by
transferring data in and out of a GPU is high. To minimize
decoding latency and maximize throughput, a combination
of intra- and inter-frame parallelism is used for the GPU
contrary to the CPUs where only the former was applied.
We implemented a kernel that decodes a single frame. Thus,
a block corresponds to a frame and attributing e.g. 10 blocks
to a kernel translates into the decoding of 10 frames in
parallel.

5.2 Choosing an Appropriate Number of Threads
per Block

As stated above, a block can only be executed on one micro-
processor but can be assigned many threads. However, when
more than 32 threads are assigned to a block, the threads
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Figure 6 Effect of the number of threads per block on the information
throughput and decoding latency for a (1024, 922) polar code where
the number of blocks per kernel is 208.

starting at 33 are queued for execution. Queued threads are
executed as soon as a core is free.

Figure 6 shows that increasing the number of threads
assigned to a block is beneficial only until a certain point is
reached. For the particular case of a (1024, 922) code, asso-
ciating more than 128 threads to a block negatively affects
performance. This is not surprising as the average node
width for that code is low at 52.

5.3 Choosing an Appropriate Number of Blocks
per Kernel

Memory transfers from the host to the GPU device are of
high throughput but initiating them induces a great latency.
The same is also true for transfers in the other direction,
from the device to the host. Thus, the number of distinct
transfers have to be minimized. The easiest way to do so is
to run a kernel on multiple blocks. For our application, it
translates to decoding multiple frames in parallel as a kernel
decodes one frame.

Yet, there s a limit to the number of resources that can be
used to execute a kernel i.e. decode a frame. At some point,
there will not be enough computing resources to do the work
in one pass and many passes will be required. The NVIDIA
Tesla K20c card features the Kepler GK110 GPU that has 13
microprocessors with 32 cores and 16 load and store units
each [16]. In total, 416 arithmetic or logic operations and
208 load or store operations can occur simultaneously.

Yet, there is a limit to the number of resources that can be
used to execute a kernel i.e. decode a frame. At some point,
there will not be enough computing resources to do the work
in one pass and many passes will be required. The NVIDIA
Tesla K20c card features the Kepler GK110 GPU that has 13
microprocessors with 32 cores and 16 load and store units
each [16]. In total, 416 arithmetic or logic operations and
208 load or store operations can occur simultaneously.

Figure 7 shows the latency to execute a kernel, to trans-
fer memory from the host to the GPU and vice versa for a

Figure 7 Effect of the number of blocks per kernel on the data transfer
and kernel execution latencies for a (2048, 1707) polar code where the
number of threads per block is 128.

given number of blocks per kernel. The number of threads
assigned per block is fixed to 128 and the decoder is built for
a (2048, 1707) polar code. It can be seen that the latency of
memory transfers grows linearly with the number of blocks
per kernel. The kernel latency however has local minimums
at multiples of 208. We conclude that the minimal decoding
latency, the sum of all three latencies illustrated in Fig. 7, is
bounded by the number of load and store units.

5.4 On the Constituent Codes Implemented

Not all the constituent codes supported by the general
purpose processors are beneficial to a GPU implementa-
tion. In a SIMT model, reduction operations are costly.
Moreover, if a conditional execution leads to unbalanced
threads, performance suffers. Consequently, all nodes based
on the single-parity-check (SPC) codes, that features both
characteristics, are not used in the GPU implementation.

Experiments have shown that implementing the SPC no-
de results in a throughput reduction by a factor of 2 or more.

5.5 Shared Memory and Memory Coalescing

Each microprocessor contains shared memory that can be
used by all threads in the same block. The NVIDIA Tesla
K20c has 48 kB of shared memory per block. Individual
reads and writes to the shared memory are much faster than
accessing the global memory. Thus, intuitively, when con-
ducting the calculations within a kernel, it seems preferable
to use the shared memory as much as possible in place of
the global memory.

However, as shown by Fig. 8, it is not always the case.
When the number of blocks per kernel is small, using the
shared memory provides a significant speedup. In fact, with
64 blocks per kernel, using shared memory results in a
decoder that has more than twice the throughput compared
to a kernel that only uses the global memory. Past a certain
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Figure 8 Information throughput comparison for a (1024, 922) polar
code where intermediate results are stored in shared or global memory.
The number of threads per block is 128.

value of blocks per kernel though, solely using the global
memory is clearly advantageous for our application.

These results suggest that the GPU is able to efficiently
schedule memory transfers when the number of blocks per
kernel is sufficiently high.

5.6 Asynchronous Memory Transfers and Multiple
Streams

Transferring memory from the host to the device and vice
versa induces a latency that can be equal to the execution
of a kernel. Fortunately, that latency can be first reduced
by allocating pinned or page-locked host memory. As page-
locked memory can be mapped into the address space of the
device, the need for a staging memory is eliminated [18].

More significantly, NVIDIA GPUs with compute capa-
bility of 2.0 or above are able to transfer memory in and out
of the device asynchronously. By creating three streams—
sequences of operations that get executed in issue-order on
the GPU—memory transfers and execution of the kernel
can be overlapped, effectively multiplying throughput by a
factor of 3.

This also increases the memory footprint by a factor of
three. On the GPU, the memory footprint is

Mtotal (kbytes) = N(Wβ + Wα)BS

8000
, (10)

where B is the number of blocks per kernel—i.e. the number
of frames being decoded simultaneously—, S is the number
of streams, and where Wβ and Wα are the number of bits
required to store a β and an α value, respectively. For best
performance, as detailed in the next section, both β and α

values are represented with floating-point values and thus
Wβ = Wα = 32.

5.7 On the Use of Fixed-Point Numbers on a GPU

It is tempting to move calculations to 8-bit fixed-point num-
bers in order to speedup performance, just like we did with

the other processors. However, GPUs are not optimized
for calculations with integers. Current GPUs only support
32-bit integers. Even so, the maximum number of oper-
ations per clock cycle per multiprocessor as documented
by NVIDIA [18] clearly shows that integers are third class
citizens behind single- and double-precision floating-point
numbers. As an example, Table 2 of [18] shows that GPUs
with compute capability 3.5—like the Tesla K20c—can
execute twice as many double-precision floating-point mul-
tiplications in a given time than it can with 32-bit integers.
The same GPU can carry on 6 times more floating-point
precision multiplications than its 32-bit integer counterpart.

5.8 Results

Table 6 shows the estimated information throughput and
measured latency obtained by decoding various polar codes
on a GPU. The throughput is estimated by assuming that
the total memory transfer latencies are twice the latency
of the decoding. This has been verified to be a reasonable
assumption, using NVIDIA’s profiler tool, when the number
of blocks maximizes throughput.

Performing linear regression on the results of Table 6
indicates that the latency scales linearly with the number of
blocks, leading to standard error values of 0.04, 0.04 and
0.14 for the (1024, 922), (2048, 1707) and (4096, 3686)

polar codes, respectively. In our decoder, a block corre-
sponds to the decoding a single frame. The frames are
independent of each other, and so are blocks. Thus, our
decoder scales well with the number of available cores.

Furthermore, looking at Table 6 it can be seen that
the information throughput is in the vicinity of a giga-
bit per second. Experiments have shown that the execution
of two kernels can slightly overlap, making our through-
put results of Table 6 worst-case estimations. For example,

Table 6 Decoding polar codes on an NVIDIA Tesla K20c.

Code (N, k) Nbr of Blocks Info T/P (Mbps) Latency (ms)

(1024, 922) 208 1,022 0.6

416 1,046 1.1

624 1,060 1.6

832 1,070 2.2

(2048, 1707) 208 915 1.1

416 936 2.2

624 953 3.3

832 964 4.5

(4096, 3686) 208 959 2.6

416 1,002 4.9

624 1,026 6.9

832 1,043 9.4
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while the information throughput to decode 832 frames
of a (4096, 3686) polar code is estimated at 1,043 Mbps
in Table 6, the measured average value in NVIDIA’s pro-
filer tool was 1,228 Mbps, a 18 % improvement over the
estimated throughput.

Our experiments have also shown that our decoders are
bound by the data transfer speed that this test system is
capable of. The PCIe 2.0 standard [1] specifies a peak data
throughput of 64 Gbps when 16 lanes are used and once
8b10b encoding is accounted for. Decoding 832 frames of
a polar code of length N = 4096 requires the transfer
of 3,407,872 LLRs expressed as 32-bit floating-point num-
bers for a total of approximately 109 Mbits. Without doing
any computation on the GPU, our benchmarks measured
an average PCIe throughput of 45 Gbps to transfer blocks
of data of that size from the host to the device and back.
Running multiple streams and performing calculations on
the GPU caused the PCIe throughput to drop to 40 Gbps.
This corresponds to 1.25 Gbps when 32-bit floats are used
to represent LLR inputs and estimated-bit outputs of the
decoder. In light of these results, we conjecture that the
coded throughput will remain approximately the same for
any polar code as the PCIe link is saturated and data transfer
is the bottleneck.

6 Energy Consumption Comparison

In this section the energy consumption is compared for all
three processor types: the desktop processor, the embedded
processor and the GPU. Unfortunately the Samsung Exynos
4412 SoC does not feature sensors allowing for power usage
measurements of the ARM processor cores. The energy
consumption of the ARM processor was estimated from
board-level measurements. An Agilent E3631A DC power
supply was used to provide the 5V input to the ODROID-
U3 board and the current as reported by the power supply
was used to calculated the power usage when the processor
was idle and under load.

On recent Intel processors, power usage can be calculated
by accessing the Running Average Power Limit (RAPL)
counters. The LIKWID tool suite [24] is used to measure
the power usage of the processor. Numbers are for the whole
processor including the DRAM package. Recent NVIDIA
GPUs also feature on-chip sensors enabling power usage
measurement. Steady state values are read in real-time using
the NVIDIA Management Libray (NVML) [17].

Table 7 compares the energy per information bit required
to decode the (2048, 1707) polar code. The SIMD-int8
implementation of our unrolled decoder is compared with
that of the implementation in [14]. The former uses an Intel
Core i7-4770S clocked at 3.1 GHz. The latter uses an Intel
Core i7-4960HQ clocked at 3.6 GHz with Turbo enabled.
The results for the ARM Cortex A9 embedded processor
and NVIDIA Tesla K20c GPU are also included for compar-
ison. Note that the GPU represents LLRs with floating-point
numbers.

The energy per information bit is calculated with

E (J/info. bit) = P (W)

info. T/P (bits/s)
.

It can be seen that the proposed decoder is slightly more
energy efficient on a desktop processor compared to that of
[14]. For that polar code, the latter offers twice the through-
put but at the cost of a latency that is at least 13 times greater.
However, the latter is twice as fast for that polar code.
Decoding on the embedded processor offers very similar
energy efficiency compared to the Intel processor although
the data throughput is an order of magnitude slower.
However, decoding on a GPU is significantly less energy
efficient than any of the decoders running on a desktop
processor.

The power consumption on the embedded platform was
measured to be fairly stable with only a 0.1 W difference
between the decoding of polar codes of lengths 1024 or
32,768.

Table 7 Comparison of the
power consumption and energy
per information bit for the
(2048, 1707) polar code.

Decoder Target Mem. Footprint Info. T/P Latency Power Energy

(kbytes) (Gbps) (μs) (W) (nJ/info. bit)

[14] Intel Core i7-4960HQ* 144 2.2 26 13 6

this work Intel Core i7-4770S 6 1.0 2 3 3

Intel Core i7-4770S* 6 1.3 1 5 4

ARM Cortex A9 6 0.1 14 0.8 7

NVIDIA Tesla K20c 3,408† 0.9 1100 108 118

*Results with Turbo enabled.
†
Amount required per stream. Three streams are required to sustain this throughput.
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7 Further Discussion

7.1 On the Relevance of the Instruction-Based Decoders

Some applications require excellent error-correction perfor-
mance that necessitates the use of polar codes much longer
than N = 32, 768. For example, Quantum Key Distribution
benefits from frames of 221 to 224 bits [11]. At such lengths,
current compilers fail to compile an unrolled decoder. How-
ever, the instruction-based decoders are very suitable and
are capable of throughput greater than 100 Mbps with a code
of length 1 million.

7.2 On the relevance of software decoders
in comparison to hardware decoders

The software decoders we have presented are good for sys-
tems that require moderate throughput without incurring
the cost of dedicated hardware solutions. For example, in
a software-defined radio communication chain based on
USRP radios and the GNU Radio software framework, a
forward error-correction (FEC) solution using our proposed
decoders only consumes 5 % of the total execution time
on the receiver. Thus, freeing FPGA resources to imple-
ment functions other than FEC, e.g. synchronization and
demodulation.

7.3 Comparison with LDPC codes

LDPC codes are in widespread use in wireless communi-
cation systems. In this section, the error-correction perfor-
mance of moderate-length polar codes is compared against
that of standard LDPC codes [3]. Similarly, the performance
of the state-of-the-art software LDPC decoders is compared
against that of our proposed unrolled decoders for polar
codes.

Figure 9 Error-correction performance of the polar codes of length
2048 compared with the LDPC codes of length 1944 from the 802.11n
standard.

Table 8 Information throughput and latency of the polar decoders
compared with the LDPC decoders of [10] when estimating 524,280
information bits on a Intel Core i7-2600.

Decoder N Rate Latency Info. T/P (Mbps)

total (ms) per frame (μs)

[10] 1944 1/2 17.4 N/A 30.1

2/3 12.7 N/A 41.0

3/4 11.2 N/A 46.6

5/6 9.3 N/A 56.4

this work 2048 1/2 2.0 3.83 267.4

2/3 1.0 2.69 507.4

3/4 0.8 2.48 619.4

5/6 0.6 2.03 840.9

The fastest software LDPC decoders in literature are
those of [10], which implements decoders for the 802.11n
standard and present results for the Intel Core i7-2600 x86
processor. That wireless communication standard defines
three code lengths: 1944, 1296, 648; and four code rates:
1/2, 2/3, 3/4, 5/6. In [10], LDPC decoders are implemented
for all four codes rates with a code length of 1944. A lay-
ered offset-min-sum decoding algorithm with five iterations
is used and early-termination is not supported.

Figure 9 shows the frame-error rate (FER) of these codes
using 10 iterations of a flooding-schedule offset min-sum
floating-point decoding algorithm which yields slightly bet-
ter results than the five iteration layered algorithm used in
[10]. The FER of polar codes with a slightly longer length
of 2048 and matching code rates are also shown in Fig. 9.

Table 8 that provides the latency and information
throughput for decoding 524,280 information bits using the
state-of-the-art software LDPC decoders of [10] compared to
our proposed polar decoders. To remain consistent with the
result presented in [10], which used the Intel Core i7-2600
processor, the results in Table 8 use that processor as well.

While the polar code with rate 1/2 offers a better cod-
ing gain than its LDPC counterpart, all other polar codes
in Fig. 9 are shown to suffer a coding loss close to 0.25
dB at a FER of 10−3. However, as Table 8 shows, there is
approximately an order of magnitude advantage for the pro-
posed unrolled polar decoders in terms of both latency and
throughput compared to the LDPC decoders of [10].

8 Conclusion

In this work, we presented low-latency software polar
decoders adapted to different processor architectures. The
decoding algorithm is adapted to exploit different SIMD
instruction sets for the desktop and embedded processors
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(SSE, AVX and NEON) or to the SIMT model inherent
to GPU processors. The optimization strategies go beyond
parallelisation with SIMD or SIMT. Most notably, we pro-
posed to generate a branchless fully unrolled decoder, to
use compile-time specialization, and adopt a bottom-up
approach by adapting the decoding algorithm and data rep-
resentation to features offered by processor architectures.
For desktop processors, we have shown that intra-frame par-
allelism can be exploited to get a very low-latency while
achieving information throughputs greater than 1 Gbps
using a single core. For embedded processors, the princi-
ple remains but the achievable information throughputs are
more modest at 80 Mbps. On the GPU we showed that
inter-frame parallelism could be successfully used in addi-
tion to intra-frame parallelism to reach better speed, and
the impact of two critical parameters on the performance
of the decoders was explored. We showed that given the
right set of parameters, GPU decoders are able to sustain
an information throughput around 1 Gbps while simulta-
neously decoding hundreds of frames. Finally, we showed
that the memory footprint of our proposed decoder is at
least an order of magnitude lower than that our the state-
of-the-art polar decoder while being slightly more energy
efficient. These results indicate that the proposed soft-
ware decoders make polar codes interesting candidates for
software-defined radio applications.
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