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Anselmo Cardoso de Paiva1 ·Rodolfo Acatauassú Nunes2 ·Marcelo Gattass3
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Abstract The present work aims to develop a methodology
for classifying lung nodules using the LIDC-IDRI image
database. The proposed methodology is based on image-
processing and pattern-recognition techniques. To describe
the texture of nodule and non-nodule candidates, we use the
Taxonomic Diversity and Taxonomic Distinctness Indexes
from ecology. The calculation of these indexes is based on
phylogenetic trees, which, in this work, are applied to the
candidate characterization. Finally, we apply a Support Vec-
tor Machine (SVM) as a classifier. In the testing stage, we
used 833 exams from the LIDC-IDRI image database. To
apply the methodology, we divided the complete database
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into two groups for training and testing. We used train-
ing and testing partitions of 20/80 %, 40/60 %, 60/40 %,
and 80/20 %. The division was repeated five times at ran-
dom. The presented methodology shows promising results
for classifying nodules and non-nodules, presenting a mean
accuracy of 98.11 %. Lung cancer presents the highest mor-
tality rate and has one of the lowest survival rates after
diagnosis. Therefore, the earlier the diagnosis, the higher
the chances of a cure for the patient. In addition, the
more information available to the specialist, the more pre-
cise the diagnosis will be. The methodology proposed here
contributes to this.

Keywords Lung cancer · Phylogenetic trees · Taxonomic
diversity index · Taxonomic distinctness · Medical image

1 Introduction

Lung nodules are a potential occurrence of lung cancer, and
early detection is essential for survival. A crucial factor that
contributes to the occurrence of this type of cancer is a high
exposure to smoking. The majority of lung-cancer cases
(around 80 %) are related to smoking. On average, smokers
have a 20 to 30 times higher risk of developing lung can-
cer [9]. Moreover, it is also known as one of the cancers with
a lower survival rate [6].

The detection of lung nodules is extremely important,
because they have a high chance of turning into cancer [16].
The detection of such nodules using Computerized Tomog-
raphy (CT) is not a simple task, since they can have a
contrast similar to other structures, low density, small size
in a complex area (e.g., connected to blood vessels or
in the borders of the lung), etc. [19]. Another factor that
makes detection difficult is the fact that specialists have
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a large number of CTs to analyze. This exhausting and
repetitive process can lead to distractions and result in a mis-
understanding of the analysis, especially when the image
simultaneously presents other anomalies. Thus, this type of
analysis is frequently vulnerable to errors [20].

For these reasons, the earlier the diagnosis, the higher
the chances of cure for the patient. Furthermore, the more
information available to the specialist, the more precise the
diagnosis will be. In the last decades, the development and
usage of digital image-processing techniques in CT have
attracted a great deal of interest, with the main goal of
increasing the diagnosis accuracy and providing the spe-
cialist with a second opinion. These techniques have been
combined to develop Computer-Aided Detection (CAD)
and Computer-Aided Diagnostic (CADx) systems [34].

In a CAD system, most often the segmentation stage
is automatic. This stage usually segments many structures
with features (shape, density, or texture) similar to lung
nodules. Therefore, it is essential that there is a stage that
removes as many non-lung nodules as possible and pre-
serves the lung nodules. This stage is called reduction of
false positives. The more non-nodules are removed, the
better the performance of the CAD system.

To illustrate the problem, in the work of [7], in the auto-
matic segmentation step for 833 exams, 607 nodules and
67067 non-nodules were segmented. As can be seen, there is
a very high number of non-nodules. Thus, the false-positive
reduction step was necessary. By applying this stage, were
removed around 97 % of the non-nodules.

Importantly, the CAD systems are not interested in speci-
fying whether the structures left over from the false-positive
reduction step (nodules and a few non-nodules) have benign
or malignant features. This discrimination is performed by
a CADx system, where only the nodules are analyzed by
shape, density, and/or texture, and classified as benign or
malignant.

Usually the detection process consists of four stages: 1)
image acquisition; 2) segmentation of nodule candidates; 3)
extraction of features from the candidates; and 4) reduction
of false positives, and classifying candidates as nodules and
non-nodules. All stages are fundamental to the success of a
CAD system. However, in this paper, we will emphasize the
feature-extraction and classification stages. In these stages,
we obtain information to reduce the rate of false positives
and false negatives. Thus, our work will contribute to the
area.

Various studies are frequently conducted with the goal
of increasing the accuracy rates of lung-cancer detection
on CAD systems. Three important common points of these
works are a high number of false positives, a high rate of
false negatives, and a reduced number of evaluation cases.
Therefore, there is a continuous need for developing CAD
systems to support the classification of lung nodules. At the

end of the paper, we present a summary of each work (see
Table 13).

This paper is organized as follows. In Section 2, work
related to the proposed methodology is presented. In
Section 3, we present the methodology used to classify
the nodule candidates extracted from CT as nodules and
non-nodules. We extract the features using the taxonomic
indexes and classify them with a support vector machine
(SVM). In Section 4, we show and discuss the results
achieved through the proposed methodology. Finally, in
Section 5, we present our final remarks about this work.

2 Related Works

After segmentation, incorrect nodule candidates may be
generated, known as false positives. One important chal-
lenge is to reduce the false positives without losing actual
nodules. Determining which texture and/or form measure-
ments should be used in combination with a computational-
intelligence system is a major difficulty in any system.

Over the years, researchers have tried to develop method-
ologies that overcome these challenges. We briefly present
some works that contribute solutions to these problems. In
this section, we present some works that are closely related
to our methodology.

In [15], a CAD-system mechanism for lung-nodule
detection is shown. Tests were performed on a data set con-
taining 167 chest radiographs with 181 lung nodules. The
system used an adaptive-threshold algorithm based on the
distance between points, applied to the nodule-segmentation
step. Immediately thereafter, measures were taken based on
the shape, intensity, and gradient to characterize the nodule
candidates. In addition, in the classification stage, a Fisher
linear discriminant classifier was used, reaching a sensitivity
of 78.1 % and a rate of four false positives (FP) per image.

The combination of techniques presented by [13] sets
this work apart. The techniques are scale-invariant fea-
ture transform (SIFT), local binary pattern (LBP), principal
component analysis (PCA), and linear discriminant anal-
ysis (LDA). The first combinations were PCA-SIFT and
PCA-LBP, which presented a sensitivity of 85 %. The com-
bination of LDA-SIFT and LDA-LBP achieved the same
sensitivity.

In [19], the classification is aided by a cluster-based
method. Experiments were conducted using the exami-
nations of 32 patients, including 5721 images, with the
nodules previously identified by experts. As its best result,
the method achieved a sensitivity of 97.33 %, a speci-
ficity of 97.11 %, and an area under the Receiver Operating
Characteristic (ROC) curve of 0.9786.

The methodology presented in [2] shows a combina-
tion of machine-learning techniques that make up a CAD
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system. It consists of three major phases: (1) feature
extraction, (2) feature selection, and (3) classification. The
methodology is applied to a set of images that have 154 nod-
ule regions and 92 non-nodule regions, reaching an accuracy
of 96.58 %.

In [10], the authors present a method called genetic-
algorithm template matching for automatic detection of lung
nodules. The computation of the fitness function is based on
the geometric shape of the voxel, and then combined with
the global distribution of the nodule’s intensity. The authors
report a rate of 14 false positives per exam. The methodol-
ogy was performed with a set of 70 CT images with 178
nodes. It achieved a sensitivity of 85 %.

To perform lung-nodule classification, the methodology
proposed in [17] presents an approach that combines the
rule-based and SVM methods. First, the region of inter-
est (ROI) candidates’ measurements are extracted based on
shape, facilitating the withdrawal of some blood vessels.
Thereafter, further measurements of the remaining candi-
dates are extracted based on texture; finally, the aforemen-
tioned candidates are used as inputs to the SVM classifier.
The methodology was applied to a set of tests containing 50
slices, with 50 nodules and 204 non-nodules; it reached a
specificity of 92 % and an accuracy of 84.39 %.

The work proposed by [21] presents a methodology
composed of the following stages: lung segmentation, lung-
nodule candidate enhancement, feature extraction, and clas-
sification using an SVM with a radial basis function (RBF).
An image database, containing information from 32 patients
with lung nodules, was used to validate the results. They
achieved a sensitivity of 93.75 %, a specificity of 87.6 %,
an accuracy of 87.8 %, and an FP rate of 4.6 per exam.

A methodology to classify lung nodules is presented
in [25]. The regions of interest were selected manually.
To characterize a candidate, measurements were extracted
from its histogram. In the classification stage, an SVM with
an RBF was used. The methodology was validated on 75
tests. They achieved results of 10 false negatives (FN) and
2 FP, sensitivity and specificity of 96.15 % and 52.17 %,
respectively, and an accuracy of 82.66 %.

The methodology developed by [29] included a lung-
nodule detection system using segmentation, with fuzzy
clustering models and SVM classification. This method-
ology uses three types of kernels (linear, polynomial, and
RBF) for the SVM. The RBF kernel presented better results,
with 80.36 % accuracy, 76.47 % specificity, and 82.05 %
sensitivity.

The CAD developed by [7] presents an automatic
methodology for lung-nodule detection and classification.
It can be summed up in three major stages: 1) extraction
and reconstruction of the lung parenchyma, which thereafter
highlights their structures; 2) nodule candidates are seg-
mented; and 3) shape and texture features are extracted, and

then classified using an SVM. The results achieved a sensi-
tivity of 85.91 %, a specificity of 97.70 %, and an accuracy
of 97.55 %.

The methodology proposed in [31] presents a classifi-
cation method based on hybrid descriptors. The measures-
extraction step was performed using two-dimensional Prin-
cipal Component Analysis (2D-PCA) and morphological
image processing. In addition, at the classification stage,
methods for selecting the most significant descriptors were
used, and finally, Artificial Neural Network (ANN), Ran-
dom Forest (RF), Bagging, and AdaBoost were used to clas-
sify the candidates. The results achieved 90.7 % accuracy,
89.6 % sensitivity, and 87.5 % specificity.

The authors of [1] aim to detect and classify lung nod-
ules. To that end, texture descriptors based on statistics and
an SVM are used. The lung volume is extracted from a lung
CT using thresholding, background removal, hole-filling,
and contour correction of the lung lobe. Candidate nod-
ules are extracted based on experts (specialists)’ notes. After
segmentation, the nodule candidates’ features are extracted,
based on statistical techniques, and finally, the candidates
are classified using an SVM. A sensitivity of 96.31 % was
reached.

These are examples of systems that have been developed
for the detection/classification of lung nodules; Table 13
summarizes the approaches. Three common important
points of these systems are a high number of false positives,
a high false-negative rate, and a small number of cases for
evaluation, which allows for a better conclusion. Addition-
ally, the sensitivity and specificity results were unbalanced
because of either the low number of cases or the testing
methods. We explore and improve on these weaknesses as
described in the following section.

3 Materials and Methods

In this section, we show our methodology for classifying
lung nodules. In Fig. 1, we present the stages involved, from
the image acquisition to the final stage of classifying the
nodule candidates. In the first stage, we acquire the images
from the LIDC-IDRI image base [3]. Using their exams, we
extract the nodule and non-nodule candidates. After this, we
extract the features from each nodule candidate using tax-
onomic indexes, and classify them with SVM. Finally, we
validate the results.

3.1 Image Acquisition

The image database used in this work is the LIDC-IDRI [3],
available on the Internet because of an association between
the Lung-Image Database Consortium and the Image-
Database Resource Initiative. The CTs were acquired in



182 J Sign Process Syst (2017) 87:179–196

Figure 1 Proposed methodology.

different tomographs, which increases the difficulty in clas-
sifying the lung nodules. We believe that the main charac-
teristic of this image database is the diversity of acquisition
protocols. Therefore, using it makes generalization a more
difficult task for any methodology. However, a methodology
that achieves good results with this database will probably
achieve good results with other different protocols.

The samples used in this work have two types of Volumes
of Interest (VOIs): nodules and non-nodules. The nodules
were automatically segmented based on markings provided
by the LIDC’s specialists. Figure 2 shows an example of a
specialist’s marking in a CT image.

Once the nodule is properly extracted, it is necessary to
acquire the non-nodules. To do so, we consider important
factors for a non-nodule database, namely:

1. The manual-extraction process is unfeasible, since we
need a large number of non-nodules to better evaluate
our methodology;

Figure 2 Example of a marking on a CT slice.

2. An automatic extraction form is needed, without any
induction or human/manual intervention; therewith, we
can guarantee a large number of non-nodules of various
types.

Based on the items above, we chose the automatic-
segmentation methodology presented in [7]. Thus, we use
non-nodule candidates that we could find in a real scenario,
since our goal is to integrate our methodology with a CAD
system.

The non-nodule database that will be used to test our
methodology was based on the segmented structures from
the work of [7]. We opted to use this strategy because: 1) no
non-nodule databases are available; and 2) we want struc-
tures with features similar to the nodules. Therefore, our test
will be applied to a complex database.

The methodology of [7] automatically detects lung nod-
ules. The methodology is divided into three phases: 1)
extraction of lung parenchyma and improvement of the
internal structures, 2) segmentation of lung-nodule-like
structures; and 3) reduction of false positives. In Phase 2,
17781 structures were segmented with nodules and non-
nodules.

With the aforementioned structures, we selected the non-
nodules (17231) for our image base, excluding nodules
(550). We know which ones are nodules from the specialist
marking. Thus, if any voxel intersects with a structure seg-
mented by [7] and nodules marked by an expert, we delete it
from the base. We repeat the process for all nodules marked
by the specialist and all 17781 structures. At the end of the
process, we will only have non-nodules (Fig. 3).

We used non-nodule candidates from [7] because their
work is consistent. Non-nodules are excluded from the
detection step and can be reused in the proposed methodol-
ogy. Their nodule-candidate database is not employed in the
present work because the database is small compared to the
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Figure 3 2D view of
non-nodule candidates.

specialist markers from LIDC-IRDI, and may thus result in
misclassification.

We analyzed a total of 21415 VOIs, and these, 4184
VOIs of nodules recovered from the markings and 17231
VOIs non-nodules. In Figure, we present three examples of
cases of structures analyzed by our methodology. Figure 4a
shows a nodule case, and Fig. 4b presents a non-nodule case.
Although Fig. 4c presents a shape similar to a lung nodule
(round), it is just a blood vessel. Blood vessels are respon-
sible for must of the errors found in methodologies that use
shape descriptors only, and this is one more reason for using
texture descriptors.

3.2 Feature Extraction

After acquiring the nodule and non-nodule candidates, they
are submitted to the feature-extraction stage, based only
on texture. For the texture description of the objects, the
indexes � and �∗ were used. These indexes are based on the
phylogenetic distance (counting the number of edges) based
on the proposed tree architecture. With this goal in mind,
we represent the individuals by voxels, and their Hounsfield
Units (HU) represent the set of species. We used a spa-
tial subdivision to apply these indexes, allowing a detailed
analysis of each extracted region.

3.2.1 Approach by Spheres and Rings

Before starting the feature-extraction stage, each
nodule/non-nodule candidate undergoes a stage that
generates annular and spherical regions for each candidate.

These approaches allow a higher number of details to be
analyzed separately in different parts of the VOIs. Thus, we
are able to analyze texture-behavior patterns starting from
the edges and working toward the center.

These approaches already show their effectiveness in
determining regions that characterize nodule candidates,
as shown in [7, 24]. We extracted six regions (rings and
spheres), with increasing radii, looking for texture details
for each candidate.

The size of each i and radius is defined by Eq. 1:

Ri = i

6R0
(1)

where R0 is the size of the radius that circumscribes the
entire sample, the full extent of the region of interest; Ri are
the smallest radii for i = 1, 2, ..., n. In this work, the best
results were obtained with three circles (n = 2), starting
from radius R0.

The ring-formation process uses the radius calculated in
Eq. 1. From each radius, another radius is generated with a

Figure 4 Three example
candidates, a nodule; b and c
non-nodules.
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Figure 5 Examples of rings.

value 20 % smaller; thus, we have two radii. Moreover, the
space formed between these two radii is equivalent to the
ring that will be generated. Figure 5 shows an example of
the ring formation.

This approach was applied to each candidate region.
This generates three spheres and three rings for each candi-
date, which are used to extract texture information via the
taxonomic indexes.

3.2.2 Phylogenetic Tree

Phylogenetic trees are used in biology to describe the evo-
lutionary relations among species, as well as verifying the
relationships among them in order to determine possible
common ancestors. In these trees, the leaves represent the
species and the internal nodes represent common ancestors
to the species. Therefore, it is possible to make an evolution-
ary connection between the studied species. The inclined
cladogram is a graphical representation used to describe the
phylogenetic relation between ancestor species [4].

These trees allow the extraction of indexes that connect
diversity, richness, and parenthood between species [28].
Figure 6 presents an example of the apes’ phylogenetic
tree, represented by an inclined cladogram, where one may
notice that a chimpanzee has a higher phylogenetic prox-
imity to humans than it does to a siamang. In this tree, the
leaf nodes are the analyzed species, the internal nodes cor-
respond to some common ancestor, and the edges indicate

the phylogenetic distance between two species. Using phy-
logenetic trees, we can compute the taxonomic indexes that
connect the species of a community.

Let the community of primates be the lung nodule. The
chimpanzee, gorilla, and human voxel intensities would be
0, 1, and 2, respectively. The primate community has six
species and the lung nodule has 65536, as each voxel may
have 65536 (16 bits) voxel-intensity values. Supposedly,
humankind has about 7 billion individuals (earth’s popula-
tion), and species 0 of the lung nodule community has on
average 100 individuals (number of voxels with intensity of
0).

The relationship between two randomly chosen organ-
isms in a phylogeny existing in a community is presented by
taxonomic-diversity (�) and taxonomic-distinctness (�∗)
indexes [26]. These indexes have three essential factors for
application: number of species, number of individuals, and
the connection structure of the species (number of edges). In
this work, we use these two indexes to discriminate between
nodule and non-nodule regions.

The taxonomic diversity index (�) considers the abun-
dance of the species and the taxonomic relation between
them. Therefore, its value expresses the mean taxonomic
distance between any two individuals, randomly picked
from a sample [26]. This index is defined by

� =
∑∑

i<j wij xixj

[n(n − 1)/2] (2)

where xi(i = 0, ..., s) is the abundance (number of voxels)
of the ith species, xj (j = 0, ..., s) is the abundance of the
j th, s represents the number of species, n is the total num-
ber of individuals and wij is the distance from species i to
species j in the taxonomic classification.

The taxonomic-distinctness index (�∗), in turn, repre-
sents the mean taxonomic distance between two individuals,
with the constraint that they belong to different species [26].
This index is defined by

�∗ =
∑∑

i<j wij xixj
∑ ∑

i<j xixj

(3)

where xi(i = 0, ..., s) is the abundance (number of vox-
els) of the ith species, xj (j = 0, ..., s) is the abundance
of the j th, s represents the number of species and wij is

Figure 6 Example of ape
phylogenetic tree. Source: [4].
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Table 1 Correspondence
between biology terms and our
work.

Biology Our methodology

Community Region (volume) of interest (VOI) of

the CT image

Species Number of HU in the VOI

Richness of species: number of Number of voxels found in the VOI

species found in a certain region

Individuals Number of voxels of a particular

species contained in the VOI

Relative abundance: number of Number of voxels found in the VOI

individuals of a certain species that have the same HU value

existing in a given area

the distance from species i to species j in the taxonomic
classification.

Many architectures in the literature represent species
through trees, such as the architecture called ”rooted tree
in the shape of an inclined cladogram” [23]. In the present
work, we adapt this architecture to find a higher discrimi-
nation between the nodule and non-nodule classes, where,
according to [22], a community in which the species are dis-
tributed in many kinds must present a higher diversity than
a community where most species belong to the same kind.

Phylogenetic trees, pooled with the taxonomic diversity
and distinctness indexes, are used in biology to compare
behavior patterns of species in different areas. To imple-
ment this idea, the first step is to make a correspondence
between the terms used in biology and those used in our
methodology. Table 1 shows this correspondence.

3.2.3 Tree 1—Rooted Tree Shaped as an Inclined
Cladogram

With the candidate region extracted (Section 3.2.1), the tree
is created. In Fig. 7, a tree is shown where the species
are represented by Hounsfield Units (HU), which can vary
between +32768 and −32768. We apply a simple change to

make every value positive, with the goal of making the index
calculations simpler: We move the lowest negative value so
it starts from zero, after which 65536 species are possible.

The relation between species is considered from left to
right. The relation between a species i and j has wij = (j −
i) + 1 edges, for i = 0, and wij = (j − i) + 2 edges, for
i > 0.

3.2.4 Tree 2—Rooted Tree Shaped as an Inclined
Cladogram, Excluding Species with No Individuals

Following the same logic as the calculation of the indexes
for the previous tree, we developed another architecture,
which has the characteristic of eliminating species with no
individuals, thus resulting in reorganizing the edges for the
remaining species. The distances between species (wij ) are
computed traversing this modified structure.

3.2.5 Tree 3—Rooted Tree Shaped as an Inclined
Cladogram, Modifying the Edges

The third proposed tree has the same combination process
between species as Tree 1, where the only difference is in
the computation of the number of edges, adding a weight

Figure 7 2D image of VOI
with its corresponding
phylogenetic tree. Species are
HU and individuals are the
number of voxels in the species.
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for the more distant species pair. Thus, wij is computed by:
wij = 2∗ (j − i) edges, for i = 0, and wij = 2∗ (j − i)+1
edges, for i > 0.

3.3 Pattern Recognition

The last stage of the methodology is classifying the candi-
dates into nodules and non-nodules. Feature vectors were
obtained in the feature-extraction step by computing the tax-
onomic indexes � and �∗ based on the phylogenetic tree,
and considering two spatial approaches: spheres and rings.
These values are used by the SVM classifier with the radial
base function (RBF) [27].

SVM is a powerful, state-of-the-art algorithm with strong
theoretical foundations, based on the Vapnik-Chervonenkis
theory. SVM has strong regularization properties. Regular-
ization refers to the generalization of the model to new data.
This characteristic was the main reason for choosing this
classifier in our work. The accuracy of an SVM model is
highly dependent on the selection of kernel parameters, such
as C and λ for an RBF. We used the LibSVM software [8]
to estimate both of these parameters. All of the sample val-
ues were normalized between −1 and 1 to improve the
SVM performance. Thus, we can guarantee improved per-
formance without mischaracterizing the original value of the
feature.

3.4 Result Validation

After concluding the-pattern recognition stage, it is neces-
sary to validate and discuss the results. This methodology
uses metrics commonly applied in CAD/CADx systems for
the performance analysis of systems based on image pro-
cessing. These metrics are sensitivity, specificity, and accu-
racy [11]. To analyze our results in more detail, we apply
the variation coefficient, which calculates the dispersion of
a sample with respect to its mean [30], and the chi-square
test (χ2), which is responsible for testing hypotheses [5].
In [12], the authors use Receiver Operating Characteristic
(ROC) curves as another way to measure the performance of
computer-based detection techniques. An ROC curve indi-
cates the true-positive rate (sensitivity) as a function of the
false-positive rate (1 - specificity). Finally, we use a disper-
sion graphic of the mean accuracies with their respective
standard deviations (calculated from the mean accuracy of
the five random tests).

Equations 4, 5, 6 represent the formulas used to calculate
the sensitivity, specificity and accuracy, respectively.

Sensitivity = T P

T P + FN
(4)

Specif icity = T N

T N + FP
(5)

Accuracy = T P + T N

T P + T N + FP + FN
(6)

where TP is true positive, FN is false negative, TN is true
negative, and FP is false positive.

Equations 7 and 8 represent the formulas for the variation
coefficient and the chi-square test, respectively.

CV = S

x
(7)

where S is the standard deviation and x the average.

χ2 =
∑

[(o − e)2/e] (8)

where o the observed frequency for each class and e is the
expected frequency for that class.

4 Results and Discussion

In this section, we present the results achieved with the lung-
nodule classification methodology described in Section 3.
The analysis of the results follows this strategy:

1) Acquisition of the images used to train and test the
methodology;

2) Evaluation of the feature-extraction process;
3) Evaluation of the classification results for all

test/training proportions of the tests performed with
the methodology. For each proportion (e.g., 20/80 %),
we calculate the means of the sensitivity, specificity,
accuracy, variation coefficient, and ROC curve [12]
for each tree. Concluding the analysis of the results by
performing tests in parallel for all trees, we constructed
two more methods of evaluating our results, the χ2

test and the dispersion graph, based on the standard
deviation of the mean accuracy;

4) Finally, we perform a comparative analysis with other
works.

Figure 8 allows a better visualization and understanding
of the flow of all the tests.

4.1 Images Acquisition

The images used to test and validate our methodology were
native from the LIDC-IDRI image base [3]. A total of 833
exams were used for the application. We divided our image
database into four groups, with training/testing percentages
of 20/80 %, 40/60 %, 60/40 %, and 80/20 %. For each group,
the individuals were randomly chosen for training and test-
ing. The SVM performed five classifications, which were
evaluated in terms of sensitivity, specificity, and accuracy.
At the end of the process, we obtained the mean of each
measurement. Our goal is to show that our methodology
is robust to diverse and complex situations. Therefore, we
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Figure 8 Results analysis flow.

divide the samples in random proportions for training/testing,
going from the worst case (20/80 %) to the best case (80/20 %).
From the methodology’s validation strategy, we showed
that the methodology had good performance in all tests.

We are aware that the 80/20 % group, for example, may
have a risk of overfitting; however, our purpose with these
groups is to show that the methodology performs well with
the best and the worst training/testing cases.

This image database has a file containing information
about the nodule marking, as performed by four specialists.
The nodule contours and characteristics are only marked for
nodules between 3 mm and 30 mm. For nodules smaller
than 3 mm, the only markings refer to their center of mass.
In addition to the markings, the files also provide informa-
tion about the properties of the lung nodules: smoothness,
internal structure, calcification, sphericity, spiculation, tex-
ture, and malignancy. All nodules, with no distinction, were
used in the training and testing of the proposed methodol-
ogy. Since the method is based solely on the candidate’s
texture information, details concerning shape and size make
no difference, because the taxonomic indexes (� and �∗)
are invariant to spatial properties [22].

4.2 Feature Extraction

In all experiments, we applied the techniques and
approaches described in Section 3. We applied the indexes

� e �∗ for each candidate, as well as for each approach
(ring and sphere). Thus, the composition of the feature base
is two features for each candidate and two for each ring and
sphere, resulting in fourteen features.

4.3 Classification

In this section, we describe how each feature base is
formed for classification, according to the three types of tree
described in Section 3. For each tree, we extract 14 features
from each nodule/non-nodule candidate. These features are
divided into four scenarios:

1. In the first scenario, each candidate is represented by
two features extracted using the indexes � and �∗ (two
features per candidate).

2. In the second scenario, each candidate is represented
by eight features. Two of these features are the same
as described for scenario 1, which are joined to six
other features extracted using the indexes in the annu-
lar regions. For each ring (there are three), we extract
two features using the two indexes, (� and �∗), thus
resulting in a total of eight features.

3. In the third scenario, each candidate has eight fea-
tures. Two of them are as described for scenario 1. The
other six are extracted using the indexes in the spheri-
cal regions. For each sphere (from a total of three), we
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Table 2 Results of experiments for the tree 1.

MA CV MS MSp MA CV MS MSp

Training/test Scenario 1 Scenario 2

20/80 94.82 0.31 % 89.86 93.72 96.46 0.34 % 91.28 95.25

40/60 95.09 0.25 % 89.58 93.84 96.84 0.21 % 92.72 95.89

60/40 95.26 0.17 % 90.24 94.12 96.92 0.13 % 93.84 96.2

80/20 95.45 0.46 % 90.06 94.24 97.32 0.37 % 93.81 96.5

CV-m 0.28 % – 0.31 % 0.26 % 0.36 % – 1.30 % 0.56 %

Scenario 3 Scenario 4

20/80 96.1 0.10 % 93 95.40 96.68 0.22 % 93.04 95.84

40/60 96.85 0.18 % 94.11 96.20 97.25 0.27 % 94.27 96.55

60/40 97.01 0.25 % 94.9 96.47 97.46 0.34 % 95.48 97.00

80/20 97.08 0.12 % 94.97 96.60 97.30 0.21 % 95.59 96.91

CV-m 0.47 % – 0.97 % 0.56 % 0.35 % – 1.27 % 0.55 %

Mean Accuracy (MA), Coefficient of Variation in each ratio (CV), Mean Sensitivity (MS), Mean Specificity (MSp) and Coefficient of Variation
measurements in the proportions (CV-m).

extracted two features using the two indexes (� and
�∗), thus resulting in eight measurements.

4. In the fourth and last scenario, we join all the features.
Thus, each candidate is now represented by 14 features.
They include two features extracted in the first sce-
nario, six extracted from the rings (scenario 2), and six
extracted from the spheres (scenario 3), which results in
14 measurements.

After the composition of each scenario, we made the divi-
sions according to the proportions described in Section 4.1.
Five tests were carried out for each proportion. For the
results analysis, only the means of each proportion are
presented.

In the next sections, we present the results for the three
trees, highlighting in bold the best and the worst results of
each tree.

4.3.1 Tree 1

For the experiments of tree 1 (Table 2), we obtained the
best mean accuracy of 97.46 % for the 60/40 % proportion
present in scenario 4, with a variation coefficient around
0.34 %; meaning that the dispersion had little variation with
respect to the mean accuracy. The mean accuracy and speci-
ficity were, respectively, 95.48 % and 97 %, with a mean
area under the ROC curve of 0.952. In the worst case for
the experiments of this tree, we have scenario 1 with the
20/80 % configuration presenting a 94.82 % mean accuracy,
with a mean sensitivity of 89.86 %, and a mean specificity
of 93.72 %. The coefficient of variation was 0.31 %. In addi-
tion to good average accuracy in the best and worst cases,

the low values of the coefficients of variation of the CV-
m allow us to affirm that this tree presents good results,
regardless of the proportion and scenario used.

4.3.2 Tree 2

The data presented in Table 3 show the results for the
means of accuracy, sensitivity, and specificity for the five
tests performed on each scenario and each proportion, as
well as the coefficients of variation for the mean accuracy
values.

For tree 2, the best mean accuracy was 99.22 % in the
80/20 % proportion present in scenario 4. The coefficient
of variation was of 0.19 %, showing that the dispersion had
very little variation with respect to the mean accuracy. The
mean sensitivity and specificity were 98 % and 98.82 %,
respectively, with an area under the ROC curve of 0.985. As
the worst result for the tree 2 experiments, we found sce-
nario 1 in the 60/40 % configuration, presenting 89.72 %
mean accuracy, with a mean sensitivity and specificity of
84.61 % and 88.95 %, respectively, and, finally, a coefficient
of variation of 0.4 %. We obtained expressive results with
this tree, with a high average accuracy in all scenarios and
proportions, as well as low average coefficients of variation
(CV-m).

4.3.3 Tree 3

Table 4 contains the results of the five tests performed for
each scenario and proportion, calculated as the mean val-
ues of sensitivity, specificity, accuracy, and coefficients of
variation.
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Table 3 Results of experiments for the tree 2.

MA CV MS MSp MA DP MS MSp

Training/test Scenario 1 Scenario 2

20/80 90.93 0.95 % 81.93 88.61 99.43 0.16 % 91.34 97.25

40/60 90.32 0.86 % 84.54 88.81 99.55 0.09 % 91.74 97.43

60/40 89.72 0.40 % 84.61 88.72 99.59 0.11 % 91.9 97.56

80/20 89.96 0.90 % 84.62 88.95 99.56 0.17 % 92.51 97.73

CV-m 0.58 % – 1.59 % 0.16 % 0.07 % – 0.53 % 0.21 %

Scenario 3 Scenario 4

20/80 99.17 0.27 % 91.56 97.18 99.36 0.13 % 93.51 97.89

40/60 98.99 0.05 % 94.76 97.94 99.12 0.12 % 96.57 98.49

60/40 99.17 0.11 % 95.38 98.2 99.33 0.17 % 96.79 98.64

80/20 99.2 0.28 % 95.2 98.43 99.22 0.19 % 98 98.92

CV-m 0.10 % – 1.91 % 0.55 % 0.11 % – 1.99 % 0.44 %

Mean Accuracy (MA), Coefficient of Variation in each ratio (CV), Mean Sensitivity (MS), Mean Specificity (MSp) and Coefficient of Variation
measurements in the proportions (CV-m).

Tree 3 presents its best mean accuracy of 97.65 % using
the 60/40 % proportion of scenario 4; the coefficient of
variation is around 0.17 %, indicating a little dispersion
with respect to the mean accuracy. The mean sensitivity and
specificity are 95.24 % and 97.10 %, respectively, with an
area under the ROC curve of 0.952. As the worst results of
tree 3, we highlight the one present on scenario 1, using the
proportion 20/80 %, with a 94.88 % mean accuracy, a mean
sensitivity and specificity of 89.35 % and 93.64 %, respec-
tively, and a coefficient of variation of 0.23 %. In summary,
this tree shows its effectiveness by the elevated values of the
mean accuracy and the low variation in its mean coefficients
(CV-m). Therefore, good results can be obtained regardless
of the scenario or proportion used.

Figure 9 presents a dispersion graph with the best and
worst results of each tree, where we can observe the vari-
ation of the standard deviation (indicated by the bar) with
respect to the mean accuracy (red dot). The experiments
with the best results (“b”), except t2-b-e15, had little vari-
ation. This indicates little difference on the accuracy found
in each experiment, obtaining a mean standard deviation of
0.142. As a negative characteristic, we note experiments t2-
w-e2 and t2-w-e4, both on tree 2, which resulted in a mean
standard deviation of 0.790 and an oscillation of almost 1 %.

Table 5 presents the SVM parameters for the best results
of each tree; i.e., parameters C and λ of the five tests com-
prising each experiment performed. To ensure that the RBF
kernel of the SVM used by our methodology showed the

Table 4 Results of experiments for the tree 3.

MA CV MS MSp MA CV MS MSp

Training/test Scenario 1 Scenario 2

20/80 94.88 0.23 % 89.35 93.64 96.27 0.37 % 91.45 95.15

40/60 95.25 0.44 % 89.64 93.96 96.91 0.46 % 92.55 95.87

60/40 95.27 0.44 % 89.62 93.97 96.94 0.27 % 93.78 96.21

80/20 95.53 0.34 % 89.8 94.2 97.20 0.22 % 94.37 96.54

CV-m 0.28 % – 0.21 % 0.24 % 0.41 % – 1.40 % 0.62 %

Scenario 3 Scenario 4

20/80 95.88 0.30 % 92.75 95.17 96.67 0.20 % 92.51 95.71

40/60 96.58 0.35 % 93.54 95.88 97.19 0.21 % 94.32 96.52

60/40 96.86 0.20 % 95.00 96.43 97.65 0.17 % 95.24 97.10

80/20 97.08 0.31 % 95.15 96.65 97.37 0.15 % 95.55 96.95

CV-m 0.54 % – 1.23 % 0.69 % 0.42 % – 1.45 % 0.65 %

Mean Accuracy (MA), Coefficient of Variation in each ratio (CV), Mean Sensitivity (MS), Mean Specificity (MSp) and Coefficient of Variation
measurements in the proportions (CV-m).
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Figure 9 Dispersion graph.
Legend: “t”? = tree. “b”? = best
or “w” = worst. “e” =
experiment number.

best results, we performed the tests with the best result of
each tree. Table 6 shows the average results for the accuracy,
sensitivity, and specificity of each kernel.

To reduce the errors and increase the generalizability
of our methodology, we conducted another test procedure
using the k-fold test methodology, assuming k = 10. Table 7
presents the results for the three trees.

To ensure that the result of our approach is promising.
We performed tests with three classic texture-analysis tech-
niques: histogram (first-order statistics) [18], Gray-Level
Co-Occurrence Matrix (second-order statistics) [14, 33],
and Gray-Level Run Lengths (high-order statistics) [18]. As
can be seen in the Table 8, the proposed methodology had
better results than the other techniques.

To show that our methodology is promising and has
good generalization ability, new experiments were per-
formed with all the features representing each VOI; i.e.,
14 measures per VOI. Nonetheless, only the most signif-
icant features were selected for inclusion in the database.
The selection was done using the stepwise technique [32].
Table 9 shows the descriptors that were selected by stepwise
for each tree. Moreover, Table 10 shows the results for the
performed tests, taking into account the selected measures
using SVM with the RBF kernel.

As can be seen in Table 10, after selecting the best mea-
sures, the results can reach significant values; therefore, we
were very close to the best results of each tree. We believe
that the results, together with all the measures, showed
a better performance because one feature might highlight
(emphasize) something that another might not.

Concerning with χ2 test, we will assume that H0 is:
Regardless of the tree used, we will have a good result; i.e.,
we can obtain similar or approximated values. For a level
of significance (α of 0.05), we have two degrees of freedom
(G), and the value of χ2E is 0.3. We mapped the value of
χ2E established, and found it as 5.99. χ2E is lower than
χ2T ; therefore, we accept hypothesis H0 as true [5].

In the experiments described in Tables 2, 3 and 4, we
found that the best results presented values above 97 %
for the average rate of accuracy, 95 % for mean sensi-
tivity, and 96 % for mean specificity. The highest value
obtained among all the experiments was 99.22 % for the
mean accuracy in tree 2.

We believe that tree 2 presents the best result because of
the elimination of species with no individuals. Therefore, in
a community in which the species actually have individuals
and are organized according to them, the diversity among
the species becomes higher, as shown in [22].

Table 5 SVM parameters for
the best results of the three
trees.

Tree 1 2 3

Test C λ C λ C λ

1 64 0.012332 256 0.0129283 128 0.2432132

2 128 0.201239 512 0.10109874 512 0.18896578

3 1024 0.21203 128 0.0982348 512 0.121353

4 512 0.112234 1024 0.12123923 256 0.012

5 256 0.0102309 512 0.123762 2048 0.0223723
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Table 6 Results for other SVM kernels.

Tree 1 2 3

Kernel MA MS MSp MA MS MSp MA MS MSp

Linear 87.11 59.22 96.05 92.47 79.22 97.01 87.78 60.25 96.21

Polynomial 81.78 30.11 98.33 90.83 68.08 98.62 82.68 31.55 98.42

Sigmoidal 66.66 40.11 75.17 80.38 42.25 93.44 66.64 39.07 75.14

RBF 97.46 95.48 97 99.22 98 98.92 97.65 95.24 97.10

Mean Accuracy (MA), Mean Sensitivity (MS), and Mean Specificity (MSp).

To reliably compare the three trees described by our
methodology, we performed a final test with the same
database using the 80/20 % proportion. To do so, we
prepared five random bases respecting the established pro-
portion, after which we performed the experiments in each
base with each tree.

Table 11 presents the means of sensitivity, specificity,
accuracy, and coefficients of variation and, finally, the result
of the χ2 test for α = 0.05 and G = 2, considering that
H0 is: Regardless of the tree, the result will be the same or
nearly the same. If we compare the obtained values accord-
ing to [5], we have: χ2E calculated = 0.5 and the χ2T

established = 5.99. By doing so, the value χ2E is lower
than χ2T , it shows that the hypothesis H0 is true.

To ascertain our results more rigorously, we performed
the χ2 test for all proportions of each tree. In other words,
from the five tests that composed each mean of the results,
we analyzed only the best one for each proportion of the
three trees. Table 12 shows the values calculated for χ2.
These values allow us to ascertain even more our hypothesis
H0, for an α of 0.05 and degree 2.

The promising results presented in Tables 2, 3, 4 and 11
show the high rates of correct detections achieved by the
indexes. One reason for this is related to the distribution of
the HU of the non-nodules, which is more heterogeneous

Table 7 Results for k-fold tests.

Tree MA MS MSp

1 94.84 95.5 96.27

2 95.16 96.18 97.07

3 94.91 96.01 96.89

Mean Accuracy (MA), Mean Sensitivity (MS), and Mean Specificity
(MSp).

(high diversity, many species) than the nodules. That is, a
nodule region has lower diversity, since there is a unifor-
mity in the HU that forms the carcinogenic region, which
is an aspect not found in non-nodule regions. These differ-
ences between the number of species present in the nodule
and non-nodule regions are strongly highlighted by the com-
putation of the indexes, enabling the SVM to successfully
converge in the separation of classes.

4.4 Comparison with Other Related Works

The comparison with other works in the area was difficult,
since none of the works cited in this article supplied the
exams used. The only piece of information provided was
the database used. Therefore, we were unable to perform
a rigorous evaluation of our method with respect to other
works.

Our objective with Table 13 is to provide an overview
(exam database, complexity of the methodology, etc.) of
the results found in the related works and in our work.
Thus, we intend to show that our methodology is promising
since, compared to other works, we achieved results above
97 % for various types of situations: 1) classification using
only texture; 2) large and complex samples; and 3) several
sample configurations for training and testing.

Table 8 Comparison of results with other texture descriptors.

Technique MA MS MSp

Histogram 81.91 72.4 84.44

Gray-Level Co-Occurrence Matrix 84.26 75.54 86.18

Gray Level Run Lengths 85.34 81.55 86.56

Proposed method 99.2 98 97.69

Mean Accuracy (MA), Mean Sensitivity (MS), and Mean Specificity
(MSp).
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Table 9 Results of stepwise feature selection.

Features Tree 1 Tree 2 Tree 3

� X X X

�∗ X X X

Ring 1 +� X

Ring 2 +� X

Ring 3 +� X

Ring 1 +�∗

Ring 2 +�∗ X

Ring 3 +�∗ X X

Sphere 1 +� X X

Sphere 2 +� X

Sphere 3 +�

Sphere 1 +�∗ X X

Sphere 2 +�∗ X

Sphere 3 +�∗

The best result of the means of each tree can be analyzed
in Table 13, which shows our improvements in compari-
son with most of the other works. Even if we compared
the same number of exams used on the methodologies, only
studies [7, 29] used the same set of images. For compari-
son with those that developed CADs, we will refer only to
the classification stage. The CAD developed by [29] shows
a value inferior to those presented here for the three trees
for sensitivity, specificity, and accuracy. However, for the
methodology presented by [7], we highlight the comparison
for the results obtained in tree 2, which presents superior
values for the tree measures. In summary, the proposed
methodology reached a mean accuracy comparable to the
best results found in recent literature for the classification of
lung-nodule candidates.

4.5 Discussion

The proposed methodology was evaluated by applying a set
of 833 exams from the LIDC-IDRI database, divided into
training/testing proportions of 20/80 %, 40/60 %, 60/40 %,

Table 10 Results for tests after feature selection.

Tree MA MS MSp

1 94,24 95.5 95.97

2 97.09 97.87 98.12

3 94.94 94.97 96.29

Mean Accuracy (MA), Mean Sensitivity (MS), and Mean Specificity
(MSp).

Table 11 Experimental results for the three trees.

Tree MA CV MS MSp

1 97.79 0.27 % 99 99.39

2 98.84 0.23 % 99.24 99.37

3 98 0.37 % 98.98 99.27

χ2 0.5

Mean Accuracy (MA), Mean Sensitivity (MS), Mean Specificity
(MSp), Coefficient of Variation of mean Accuracy (CV), and value of
χ2.

and 80/20 %. The experimental results allow the formula-
tion of the following conclusions:

1. The use of taxonomic indexes � and �∗ combined with
phylogenetic trees lead to good results in lung-nodule
classification. We believe that this kind of indexes
deserve diversified studies and tests.

2. The use of regions extracted based on rings and spheres
allowed good individual results, but, when combined,
presented the best result among all the trees. In other
words, with these approaches, we were able to analyze
individually, with higher detail, each nodule and non-
nodule region.

3. Using only texture for nodule and non-nodule charac-
terization, the taxonomic indexes � and �∗ in com-
bination with the phylogenetic trees, presented a good
result, independently of the analyzed form.

4. The large number of individuals found does not com-
promise the methodology, since the taxonomic indexes
� and �∗ have the advantage of being independent of
the sample effort (number of individuals) [22].

5. Finally, it is important to highlight that the LIDC-
IDRI database is extremely complex and diversified;
i.e., contains countless different cases of lung nodules.
This database has exams that were extracted by various
tomographs, making it harder to detect, classify, or even
diagnose through CAD/CADx systems [7, 29].

All these items add value to our methodology. The
texture-analysis properties, through the taxonomic indexes

Table 12 Result of the χ2 for all proportions.

Proportion χ2

20/80 0.86

40/60 0.78

60/40 0.48

80/20 0.42
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Table 13 Comparison of results with related works.

Work Descriptors/classifiers Database Ac % Se% Sp%

[15] Adaptive threshold algorithm, JSRT – 78.1 –

features of shape, intensity, and

gradient, Fisher Discriminant

Linear classifier.

[19] Random forest, clustering. LIDC – 97.33 97.11

[2] Machine learning, Wavelet JSRT 96.58 – –

Transform, K-Near neighbor,

K-means.

[10] Genetic-algorithm template – – 85 –

matching, geometric shape,

distribution of intensity.

[13] Scale-Invariant Feature Transform, ELCAP/LI – 86 97

Local Binary Pattern, Principal

Component Analysis, Linear

Discriminant Analysis.

[17] Feature based on shape and 3AHG 84.39 – 92

texture, combines rule-based,

SVM.

[25] Measurements based on texture, NBIA/ELCAP 82.66 96.15 52.17

histogram, SVM.

[21] Threshold method, voxel feature, NSRCT-LUNG/LIDC 87.8 93.75 87.6

SVM.

[29] Fuzzy clustering models, SVM LIDC-IDRI 80.36 82.05 76.47

with three kernels (linear,

polynomial, and RBF)

[7] Quality threshold clustering, LIDC-IDRI 97.55 85.91 97.7

genetic algorithm, diversity index,

SVM.

[31] 2D-PCA, minimum redundancy University of Istanbul 90.7 89.6 87.5

maximum relevance, ANN, RF,

Bagging, and AdaBoost.

[1] Texture features based on LIDC – 96.31 –

statistical techniques and SVM.

Tree 1 Phylogenetic tree, �, �∗, 97.4 95.48 97

texture features

Tree 2 With spheres and rings, SVM. LIDC-IDRI 99.2 98 98.92

These techniques

Tree 3 Were used for all trees. 97.6 95.24 97.1

Accuracy (Ac), Sensitivity (Se), Specificity (Sp).

of diversity (�) and distinction (�∗) combined with
the phylogenetic trees, showed a good response to the
experiments. Moreover, the complexity of the LIDC-IDRI
database allows a more precise conclusion to the results.

5 Conclusion

Lung cancer stands out as having the highest mortality rate,
as well as one of the lowest survival rates after the diagnosis
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(5 years, for 14 % to 20 % of the patients). Early diagnosis
represents a considerable increase in the patient’s survival
probability. The present work showed a methodology for
classifying lung nodules based on the taxonomic diversity
(�) and distinction (�∗) indexes in conjunction with phylo-
genetic trees, and used a Support Vector Machine to classify
lung-nodule candidates into nodules and non-nodules; thus,
proving to be a useful tool for specialists.

The attained results demonstrate the promising perfor-
mance of the texture-extraction techniques by the indexes
presented herein. Another important factor with respect to
the good results was the creation of the phylogenetic tree.
This tree contributes greatly to the discrimination between
nodules and non-nodules. Although the database used is
robust and ensures a great diversity of nodules to be ana-
lyzed, more tests with other databases are needed to improve
our methodology, making it more robust and generic.

Lastly, the methodology presented in this work can inte-
grate a CAD/CADx tool for the detection and diagnosis of
lung cancer, with the intent of classifying segments sus-
pected to be nodules and non-nodules, and thus make the
analysis of exams by the specialist more flexible and less
exhausting.
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