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Abstract A novel Distributed Particle Filter Algorithm with
Resampling Tree, called DART, is proposed in this paper,
where particles are resampled by Branch Resampling and
Root Resampling in a flexible tree-like structure. Though
sampling and weight calculation can be executed in parallel
on a group of Processing Elements, resampling is the bottle-
neck for distributed particle filters since it requires the knowl-
edge of the whole particle set. Conventional approaches to
accelerate resampling on distributed platforms often introduce
extra procedure other than the standard processing flow and
achieve acceleration limited by linear speedup. By introducing
the proposed algorithm, where Branch Resampling can be
executed in parallel with sampling and weight calculation,
the number of particles in the final sequential implemented
Root Resampling can be reduced in an exponential

relationship with the depth of the tree. With the same linear
speedup in sampling and weight calculation steps, the overall
speedup achieved in DART surpasses linear boundary and
outperforms state-of-art approaches. The corresponding im-
plementation architecture, which possesses unique features
of hardware efficiency and scalability, is also presented. The
prototype of the algorithm with 8 PEs is implemented on a
Xilinx Virtex-IV Pro FPGA (XC4VFX100-12FF1152) under
BOT system. With 8192 particles, the input observation can
achieve 63.3 kHz at a clock speed of 80 MHz.
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1 Introduction

Particle filters (PFs) [1], consisting of iterative sampling,
weight calculation and resampling, are proved to be a power-
ful tool dealing with non-linear/non-Gaussian Bayesian state
estimation problems and have been widely applied in video
tracking, indoor positioning, robotics systems and SLAM
[2–5]. In indoor positioning context, the localization error
can be reduced by about 40 % with the help of sensor infor-
mation fusion by PFs [6] and its effectiveness in non-linear
tracking is proved in [7]. [7] also shows by simulation that the
position errors decrease with increasing number of particles
up to 50000. Moreover, particle filter based map-matching
algorithm is frequently used in literature [8–11]. Most studies
[6, 7, 12, 13] uses simulation/offline-processing to verify the
accuracy of tracking systems since PF is a Monte Carlo ap-
proximation based method and the high computational com-
plexity becomes the bottleneck in implementation for such
systems that have stringent real-time requirements.
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For conventional centralized PFs, where sampling, weight
calculation and resampling are handled by a single processing
element (PE), i.e. sequentially, the processing time of one filter-
ing recursion increases significantly with the number of particles
used, which is unrealistic for real-time systems as tens of thou-
sands particles are required usually. Distributed PFs with a num-
ber of PEs that operate in parallel are proposed, taking advantage
of the inherent parallelism in the algorithm, to accelerate the
overall process of filtering by processing sampling and weight
calculation for the large group of particles simultaneously on
several PEs. But resampling is difficult to parallelize since it
requires a joint process on the whole particle set [14]. proposes
Resampling with Proportional Allocation (RPA) and
Resampling with Non-proportional Allocation (RNA) for dis-
tributed PFs to allow concurrent resampling on several PEs
while the additional particle redistribution/exchange presents a
challenge for hardware realization [15]. divides particles into a
sub-group of local PFs and process them with independent sam-
pling, weight calculation and resampling processes to increase
parallelism. However, extra particle mixing procedures among
local PFs are inevitably introduced tomaintain filtering accuracy.
The mixing step is optimized in [16] by only exchanging repre-
sentative particles with larger weights. Speedup is typically used
as the metric for comparisons of execution time and the speedup
achieved in distributed PF architecture refers to the relative exe-
cution time decrease compared to the centralized (sequential)
implementations. For instance [14–16], accelerate sampling,
weight calculation and resampling by parallel processing in mul-
tiple PEs. A linear speedup is achieved since the execution time
is reduced linearly with the number of PEs used. Despite the
achieved speedup, the extra particle redistribution steps involved
in [14–16] decrease the overall algorithm acceleration. The ap-
proach presented in [17] proposes a Hierarchical Resampling
(HR) algorithm that decomposes resampling into two granular
hierarchies and achieves a linear speedup without introducing
extra steps. Therefore, it stands out as the state-of-art reference
algorithm amongst distributed PFs.

In this paper, we are aiming at further accelerating particle
filtering process to increase its real-time capability, which is the
key for real-life use of the PFs. A Distributed PF Algorithm
with Resampling Tree (DART) is proposed. DART keeps the
same processing flow of sampling and weight calculation steps
as in classical distributed PFs such as RPA and RNA [14],
while implements resampling with a novel Resampling Tree
Scheme (RTS). Particles are resampled with one or more
Branch Resampling (BR) and one Root Resampling (RR) in
a tree structure. In DART, any BR can be executed in parallel
with sampling andweight calculation. RR is the only sequential
part of resampling after sampling and weight calculation and
the number of particle RR has to handle can be exponentially
reduced by BR process. Furthermore, RR indirectly resamples
the whole particle group, introducing no extra procedure.
Consequently, DART makes the breakthrough by achieving a

further exponential acceleration and becomes suitable for ulti-
mate real-time capacity of PFs.

Besides the algorithm, this paper also presents the corre-
sponding implementation architecture for DART. In distributed
platforms, scalability of hardware architecture is an important
and favorable characteristic. Keeping this in mind, the pro-
posed DARTarchitecture supports configurations with varying
number of PEs. Though PF systems range from simple one-
dimensional to complex multiple-dimensional scenarios, they
differ in the PEs’ sampling and weight calculation function. At
the same time, the resampling processes share common char-
acteristic that processing is mainly based on weight of the par-
ticles. So, the architecture can be readily modified and extended
to run in different applications that require customized config-
urations. Finally, hardware efficiency is achieved by minimiz-
ing the hardware design cost of the proposed algorithm.

By proposing DART and its hardware architecture, the
main contributions of the paper are:

The proposed algorithm for distributed PFs resamples
particles with a novel Resampling Tree Scheme. An
exponential speedup in processing time of resampling
is achieved, which outperforms existing state-of-art ap-
proaches for distributed PFs.
Resampling is achieved through a Resampling Tree
Scheme, RTS, which has significant flexibility in the
way that a different tree structure with distinctive tree
depth or branches corresponds to an alternative imple-
mentation of the algorithm.
The proposed architecture possesses high scalability to
satisfy various configurations of the target system.
Achieved hardware efficiency is reflected through effi-
cient consumption of hardware resource of FPGA used
for the implementation.
The proposed approach to PFs implementation achieves
the ultimate goal of real-time capability at reasonable
cost lacking in other approaches.

The rest of the paper is organized as follows. First, a summary
of related works are presented in Section 2. Section 3 gives a
detailed description of the proposed DARTalgorithm. The hard-
ware architecture designed is then illustrated in Section 4.
Section 5 presents the evaluation and experimental results of
the algorithm as well as comparison with previous studies.
And finally, conclusion and future works are presented in
Section 6.

2 Related Work

Proposed in [1], particle filter is a Monte Carlo based method
and uses a group of weighted particles to estimate the proba-
bility density function (PDF) of the target Bayesian state
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system recursively. To solve the problem of particle degrada-
tion and sample impoverishment [18], refines the filtering pro-
cess with an efficient resampling step known as Systematic
Resampling (SR) to discard particles with negligible weights.

Due to its Monte Carlo nature, the accuracy of PFs in-
creases with larger amount of particles used. For instance,
the localization error rate drops more than 20 % to around
5 % when the number of particles used increases from 256
to 131072 [19]. In [16], one million particles are required to
reduce an average tracking error of a robotic arm to 3 mm. In
real-time indoor tracking applications using particle filters,
only tens or hundreds particles are used due to limitations in
real-time capability. A total number of 64 particles are used in
[8, 20] uses 100 particles in map-matching algorithm and up
to 250 particles are used in [9]. It is proved in [7], by simula-
tion, that increasing number of particles to 50000 helps in
reduction of position errors in indoor tracking scenario.
Therefore, PFs with better real-time capability are needed.

Distributed PF is a natural and promising solution based on
the fact that sampling and weight calculation for the group of
particles can be executed in parallel. Studies on using both
FPGAs [14, 17] and multi-core processor/GPU [15, 16, 19]
can be found in literature, showing significant speedup com-
pared to centralized implementation. These works focus on the
bottleneck of real-time use of PFs, i.e. resampling, as it requires
the knowledge of the whole particle set [14]. proposed
Resampling with Proportional Allocation (RPA) and
Resampling with Non-proportional Allocation (RNA) to accel-
erate filtering in the way that sampling, weight calculation and
resampling are all done in parallel in PEs. But they also intro-
duce additional process of particle redistribution in RPA and
particle exchange in RNA. For RPA, the main drawback is that
the execution time of the particle redistribution is not determin-
istic, which is unsuitable for hardware implementation.
Besides, the memory overhead is also tremendous since it has
to be designed to handle the worst case. In case of RNAwith a
simplified process of particle exchange, i.e., local exchange,
performance deterioration can be observed since the covariance
of particle weights is usually larger. Another way to improve
parallel execution is proposed in [15] by running several local
PFs concurrently on PEs. Still, particle mixture among PEs is
added to maintain filtering accuracy. The mixing procedure is
simplified in [16] in the way that weight sorting is performed
for particles before mixture and only particles with larger
weights are transferred among PEs. It reduces the communica-
tion traffic of the network at the same time. To overcome the
disadvantage of additional introduced procedures [17], pro-
poses a Hierarchical Resampling (HR) based resampling
scheme for distributed PFs that achieves a processing flow free
from extra steps. Also, Residue Cumulative Resampling
(RCR) is proposed in [17] according to the fact that the repli-
cation factor of a particle is related to its own weight as well as
the cumulative weight residue of the previous particle.

For distributed PFs with K PEs, Fig. 1 gives a simplified
illustration of timing for a PF system with N particles. Clearly
seen from centralized and distributed PFs, a linear speedup on
sampling, weight calculation and resampling is achieved by
scaling their processing time to 1/K. Figure 1(b) presents al-
gorithms, summarized as Type 1, that require extra steps other
than the standard flow [14–16], as presented by the dashed
part of E as these steps may appear before and/or after resam-
pling and consume a time of t0 and t1, respectively. Figure 1(c)
is referred to the HR based algorithm, Type 2, where no extra
steps are introduced and achieving a linear speedup when
omitting the startup latencies [17].

To the best of our knowledge, linear speedup is the bound-
ary for existing state-of-art algorithms. While in the practical
domain of PFs, simulation/offline processing is commonly
seen. A recent work [5] implements a complete real-time vi-
sion-based SLAM system with PF, running at 30Hz by accel-
erating PF using GPU. Clearly seen, a distributed PF algo-
rithmwith better capability in real-time performance is needed
for future systems with higher frame rates and processing
volume. By proposing DART in this paper, the current limit
of linear speedup is pushed further and an exponential speed-
up for resampling is attained with the Resampling Tree
Scheme (RTS).

3 Proposed Algorithm

This section gives a comprehensive description of the pro-
posed DART algorithm and the RTS employed.

3.1 DART Overview

For a distributed PF with N particles and K PEs, sampling and
weight calculation is processed simultaneously on K PEs,
while resampling of the weighted particles is performed with
the technique that employs RTS. RTS is responsible for gen-
erating the replication factors of every particle. Thus, by rep-
licating corresponding particles of the previous iteration, the
sampling of next iteration can be initiated.

3.2 Resampling Tree Scheme

In RTS, particles are resampled in a tree structure. Two kinds
of resampling steps, i.e., Branch Resampling (BR) and Root
Resampling (RR), constitutes the whole resampling. BR and
RR resample particles and generate the corresponding repli-
cation factor of every particle according to its weight. The
resampling tree is formed starting from the leaf nodes, which
represent the weighted particles directly generated by PEs. As
illustrated in Fig. 2, a sub-group of leaf nodes are resampled
by BR process, generating an intermediate node at a higher
level as the parent of the nodes involved in the BR. Theweight
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of the intermediate node equals to the sum of weights of the
nodes within the BR step, i.e., all its children. Sub-group of
intermediate nodes can be again resampled by BR process and
generate a parent node at a higher level in similar way. BR
processes can be repeated until reaching the level next to root,
where RR takes place by resampling all particles on this level
and producing its replication factors.

By performing BR and RR, the resampling tree is formed
with node representing a weighted particle and any nodes
except the leaf ones have a weight equivalent to the sum of
weights of its children. In a resampling tree with depthD as in
Fig. 2, certain constraints are necessary when constructing the
tree. For intermediate nodes on depth 2 to D, they are gener-
ated by BR processes from the immediate previous level. The
branching factor of these nodes defines the number of chil-
dren, which is also the number of particles taken in a BR. In
RTS, it is required that all nodes on the same level have the
same branching factor. Therefore, in the example of Fig. 2, the
branching factor of nodes on depth 2 is 2 as every node is
generated by resampling 2 nodes on depth 1 and the branching
factor is 3 for nodes on depth 3.

3.2.1 Determine the Tree Topology

With the above constraint that branching factor remains the
same for all nodes on one level, the topology of a resampling

tree with N leaf nodes can be determined by the tree depth D
together with a set of branching factor on each level, f db
(2 ≤ d ≤D). The formed resampling tree has a height of D + 1
with root included and the tree is both a complete and full tree.

Every node on level d (2 ≤ d ≤D) has f db child nodes.
It can be seen, the number of nodes on level d (2 ≤ d ≤D)

scales to 1/ f db the number on level d-1. In order to keep an
integer number of nodes on each level, the total number of leaf
nodes/particles N is preferred to have multiple divisors. The
resampling tree is impossible to grow up from a leaf node by
BR when N is a prime number. Thus, the branching factor for
each level should satisfy the requirement as in

f db
���nd−1 2≤d≤Dð Þ; ð1Þ

where nd is the number of nodes on level d, i.e., the branching
factor on level d is a divisor of the number of nodes on previ-
ous level d-1. The analytical form of nd is further expressed as

nd ¼
N ; d ¼ 1

N

∏
d

j¼2 f
j
b

; 2≤d≤D

8><
>: : ð2Þ

Apart from branching factor, the depthD defines the height
of the tree. A level of nodes resampled by BR will increment
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the value ofD by 1. The height of the tree can grow as long as
an appropriate branching factor satisfying Eq. (1) can be se-
lected. In practice the topology of the tree corresponds to an
implementation of a resampling process and D should be se-
lected with care in terms of hardware consumption and filter-
ing accuracy. The influences of D on these issues are further
discussed in Section 5.

The flexibility of RTS is reflected in the tree topology.
Starting from the same set of leaf nodes, a different tree depth
D or distinctive branching factor for different levels would
form an alternative tree structure. In this way, the scheme is
configurable in terms of depth and branching factor, resulting
in diverse topologies of the resampling tree.

3.2.2 Calculating the Final Replication Factor

After the tree topology is determined, the resampling
can be conducted by BR and RR as described before.
Every node except the root will have a replication factor
generated in its relevant BR or RR process. The final
replication factor of a leaf node, which corresponds to a
particle, is obtained as the product of the replication
factor of itself and all its ancestors on level 2 to D.
As depicted in the shaded area of Fig. 2, the leaf node
a on depth d = 1 has an ancestor pad on each level with
depth d (2 ≤ d ≤D). So the final replication factor of a is
the product of the replication factor of a, pa2 through-
out paD.

At this stage, the RTS can be represented by RTS(N,D, f db )
which resamples N weighted particles with a resampling tree

topology defined by D and f db , generating the replication fac-
tor ri (1 ≤ i ≤N) for each particle.

3.2.3 Statistical Analysis

This part gives a statistical proof that RTS is equivalent to
standard SR [18].

Consider employing the basic resampling technique of SR
for all resampling processes, the replication factor expectation
of a particle in standard SR is represented in

E ri
� � ¼ Nω i

X N

j¼1
ω j

ð3Þ

from a statistical viewpoint where N is the total number of
particles, E ⋅ð Þ is the expectation function, ωi and ri is the
weight and replication factor of ith particle, respectively.

While in the proposed RTS with tree depth of D and

branching factor f db for the BR process on depth d
(2 ≤ d ≤D), one particle is resampled, both directly and indi-
rectly, by BR on depth 1 throughD-1 and RR on depthD. For
the BR on depth d, it resamples on fb

d + 1 particles so the

expectation of intermediate replication factor for one particle
with weight ω i

d is expressed in

Ed ¼ f dþ1
b ω i

dX f dþ1
b

j¼1
ω j
d

1≤d≤D−1ð Þ: ð4Þ

Besides, it also generates a particle on the next depth d + 1
with weight equals to the sum of all particles within the re-
sampling as shown in

ω i
dþ1 ¼

X f dþ1
b

j¼1
ω j
d 1≤d≤D−1ð Þ: ð5Þ

RR resamples all the particles on depth D and the number of
particles is nD in Eq. (2). Similarly, the replication expectation
of a particle in RR is given in

ED ¼ nDωi
DX nD

j¼1
ω j
D

: ð6Þ

Combining the knowledge of how final replication factor of a
particle is calculated and Eqs. (2), (4) ~ (6), the expectation
can be reduced to the same form as in Eq. (3).

E ri
� � ¼ ∏D−1

d¼1Ed ⋅ED

¼ E1⋅E2⋯ED−1⋅ED

¼ f 2bω
i
1X f 2b

j¼1
ω j
1

⋅
f 3bω

i
2X f 3b

j¼1
ω j
2

⋯
f Db ω

i
D−1X f Db

j¼1
ω j
D−1

⋅

N

∏D
j¼2 f

j
b

ωi
D

X N

∏D
j¼2 f j

b

j¼1 ω j
D

¼ Nωi
1X nD

j¼1
ω j
D

¼ NωiX N

j¼1
ω j

:

ð7Þ

As can be seen from the above equations, the replication
factor in both RTS and traditional resampling has the same
expectation statistically. This guarantees that the proposed al-
gorithm accelerates resampling process without sacrificing fil-
tering accuracy. The performance is further discussed in
Section 5.

3.3 Accelerating Particle Filtering

In a DART particle filtering system, the processing time of
one recursion can be significantly reduced using the proposed
RTS. Resampling is done with a series of BR steps plus a final
RR procedure. As described above, BR only resamples among
a sub-group of nodes, i.e., particles. Therefore, any BR can be
initiated as long as the nodes it deals with are prepared. When
PEs have done sampling and weight calculation for a sub-
group of particles, BR can start resampling them while PEs
are sampling remaining particles of the whole particle set.
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This feature is also observable in Fig. 2; BR is only dependent
on the nodes it takes in, so BR is processed in parallel with
sampling and weight calculation steps. RR is the only resam-
pling procedure that requires the knowledge of the whole par-
ticle set, thus it is sequentially implemented after all weights of
particles are calculated. It can be seen that the number of
particles RR has to handle is drastically reduced. Referring
to Eq. (2) where depth equals D, the number of nodes on the
level next to root is nD. By setting a constant branching factor
f constb , nD is exponentially reduced with tree depth D as in

nD ¼ N= f constb
D−1

: ð8Þ

Since the processing time of resampling has a linear rela-
tionship with the number of particles, the time consumed by
the final sequentially implemented resampling also achieves
an exponential decrease. Furthermore, as RR indirectly
resamples the whole particle set, no extra processing is needed
and this also proved in Section 3.2.3 that RTS is equivalent to
standard SR.

As a summary, in a DART implementation of K PEs and N
particles DART(N, K), the filtering process is presented in the
pseudo-code shown in Table 1 when resampling is done with

RTS(N, D, f db ) (2 ≤ d ≤D).

4 Proposed Hardware Architecture

This section presents the hardware architecture designed for
the proposed DART(N, K) algorithm under an resampling im-

plementation of RTS(N, D, f db ) (2 ≤ d ≤D).
The distributed implementation of particle filter has K PEs,

so K particles with their corresponding weights are generated
simultaneously. Despite the flexibility in RTS that branching
factor of BR process on each level can choose distinctive

values, the branching factor on depth 2, f 2b, is set to K to
ensure a minimal design cost. In this way, every time K
weighted particles are sampled by PEs, the BR on depth 1 is
initiated without extra delay and the control logic is also
simplified.

Figure 2 gives an overall view of the architecture for DART
withK = 4 Processing Elements (PEs) as an example. Each PE
is responsible for sampling and weight calculation steps while
the central part, Resampling Tree Module (RTM), implements
the resampling using RTS, completing a whole iteration of the
PF. BRM #d (1 ≤ d ≤D-1) corresponds to a module responsi-
ble for the BR on depth d and RRM is the module
implementing the final resampling of RR. Finally, the
Replication Factor Generation (RFG) module calculates the
final replication factor for each particle combining the results
of RR and all previous BRs. As PEs responsible for sampling
and weight calculation are similar in generic distributed

implementations, the following subsections mainly focus on
the RTM that implement the RTS for DART.

4.1 First BR Module

Although BR on different depth levels does similar process-
ing, the First BR Module (FBRM) is designed in a different
way fromRemaining BRModules (RBRMs) in terms of hard-
ware implementation and efficiency. In order to avoid the
situation where replication factor for every particle needs to
be calculated and stored, the architecture of Intermediate
Resampling proposed in [17] is adopted as the FBRM to cut
down the overhead of required memory. As a result, particle
states together with weights are transferred between PEs and
RTM as shown in Fig. 3. Figure 4 shows the architecture for
the FBRM, which pipelines the BR on depth 1 when K = 4
particles and weights are produced. It employs the basic re-
sampling strategy of SR to produce resampled particle states.
Upon receiving particle weights w0 ~w3, the temporary sum
of weights (TSW) is calculated where TSWi equals to the sum
of the first i + 1 (0 ≤ i ≤ 3) weights and the sum of weights
S = TSW3. Also, weight mean value S/K is used to update
the variable U used in SR. Every IR stage compares all
TSWs with the resampling variable Ui (0 ≤ i ≤ 3) to determine
which particle is resampled. As depicted in the detailed struc-
ture of one FBRM stage in the right side of Fig. 4, when U3

and TSWs has the value provided, the resampled particle is p3
since TSW3 is the first one no less thanU3. Then, according to
the select signal, resampled particle states are sent back to each
PE to be stored in the particle state memory. On the other
hand, the sum of weights is also passed down to the next
BR unit as a single weight prepared for the BR process on
next depth level. In this way, K particle states with the same
index in each PE share the same final replication factor gen-
erated by RTM since they are resampled within the same BR
process. So, the memory consumption for recording replica-
tion factors is significantly reduced a factor of 1/K. Interested
readers can also refer to [17] for details.

4.2 Remaining BR Module

For the Remaining BR Modules (RBRM) resample particles
on depth 2 toD-1 of the resampling tree also employ the same
resampling technique with the FBRM. But, differences can be
observed that the first BR is pipelined and resamples K parti-
cles every cycle throughout the sampling and weight calcula-
tion process while BR on depth other than 1 takes place less

often. Generally in RTS(N, D, f db ) with the above presented

hardware implementation ( f 2b set to K), the BR on depth d
(2 ≤ d ≤D-1) need to resample f dþ1

b particles every ∏D�1
j¼2

f dþ1
b cycles. As a result, the timing constraint is relaxed and

RBRMcan be implemented without pipeline and simplified to
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reduce hardware consumption. Every RBRM only needs one
stage of the FBRM architecture for the main resampling task.

As depicted in Fig. 5(a) with branching factor equals to 4, four
prepared weights w0 ~w3 initialize the BR. Same as described

Table 1 Pseudo-code for DART.

BR #1
(FBRM)

BR #2
(RBRM)

BR #D-1
(RBRM) RRM

Particle 
Index and 

Replication 
Factor 

Memory

Particle 
State 

Memory

Particle 
State 

Memory

Particle 
State 

Memory

Particle 
State 

Memory

PE0

PE2

PE1

PE3

state
weight

state
replication 

factor

replication 
factor

state

state

weight

state
weight

state

weight

state
replication 

factor

state
replication 

factor

Resampling Tree Module

To/From 
PEs To PEs

RFG

...

Figure 3 Architecture of DART.

J Sign Process Syst (2017) 88:29–42 35



in FBRM, all TSWand S/K are calculated and used to resam-
ple particles. Every cycle, one particle is resampled and the
variableU is updated. And the select signal is used to generate
the replication factor for each weight in the BR process. When
all factors are generated, they are stored in the intermediate
replication factor memory for this level and used in calculating
the final replication factor later on. At the same time, the sum
of all weights is sent to the next BR as a single weight pre-
pared except for the last level of BR on depthD−1, the weight
sum is stored in collective weight memory for RR to process.

4.3 RR Module

When all process of BR is completed and necessary collective
weights are saved, the final RRModule is invoked to resample
the last nD (Eq. (2)) particles. There are many ways of
implementing the architecture of RRM with the main goal to
generate the replication factor of all particles based on
weights. Figure 5(b) is a RRM architecture employing a
RCR based scheme to generate replication factors, refer to
[17] for detailed processing flow. With prepared parameter

Q= nD /S where S is the sum of all nD particles, every time a
weight wi is read out from the collective weight memory, the
corresponding replication factor ri is obtained as the integer
part of temp, which is calculated by Q*wi + l. l is the current
residue whose value is a random number ~U(0,1) for the first
weight. For weights followed-up, the residue equals to the
decimal part of temp generated by the previous weight and
is recursively updated every time a replication factor is
calculated.

For implementing RCR based resampling, the finite preci-
sion effect studied in [21] which would lead to the situation
that the sum of all calculated replication factors is smaller than
the total number of particles. The issue is handled the same
way as in [17] so that the last replication factor is the differ-
ence between total number of particles and the sum of all
already calculated replication factors.

4.4 Replication Factor Generation Module

Once a replication factor is generated by RR, it is used in
calculating final replication factors related to it. RR will only
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generate nD replication factors so each one is related to ∏D
j¼3

f j
b final factors under the replication factor sharingmechanism

by FBRM. The final replication factor of a particle is
obtained in the way shown in Fig. 6. The counter,
whose value increments from 1 to nD, is used to index
the corresponding weight for RR as well as the group
of generated intermediate replication factors by BR. RR
generate replication factor riD and a group of factors rid
(2 ≤ d ≤D-1) is indexed out from the memory for inter-
mediate factors with number of r id equals to ndr
(2 ≤ d ≤D-1) for each level d. All these replication fac-
tors are processed in the multiplier matrix, generating

∏D
j¼3 f

j
b results to be stored in the final replication factor

memory.

ndr ¼ nd=nD ¼ ∏D
j¼dþ1 f

j
b 2≤d≤D−1ð Þ : ð9Þ

4.5 Hardware Scalability

With the above presented architecture of DART which pipe-
lines the BR on depth 1, hardware scalability can be observed.
FBRM is the module interacting with PEs and it can be easily
extended by adding more stages to support more PEs
connecting to the RTM. At the same time, the number of
RBR units in RTM reflects the tree depth D in RTS and every
RBRM responsible for BR on depth d is able to resample
particles according to the branching factor defined. So, the
proposed architecture is able to support implementing RT al-
gorithm with various tree topologies. Also, it has features of
deterministic execution with no extra procedure similar to
particle redistribution or mixture and the replication factor
sharing scheme in FBRM guarantees efficient consumption
and use memory.

5 Evaluation & Experimental Result

In this section, experimental results regarding the evaluation
of the proposed algorithm are presented in terms of filtering
performance, processing time and resource consumption.

5.1 Filtering Performance

Firstly, the simulated filtering performance of the DARTalgo-
rithm is illustrated in Figs. 7 and 8 in comparison to RPA [14]
since RPA is equivalent to standard SR theoretically. With
Root Mean Square Error (RMSE) as criterion, the experiment
is conducted under BOT [18] model using particle numbers
varying from 1024 to 8192 with a 1024 step size. For simplic-
ity in setting the variable in a DART(N, K) algorithm with

RTS(N, D, f db ), branching factors f db (2 ≤ d ≤D) are all set to
K, referred to as RTS(N,D, Kconst). Figure 7(a) presents DART
with K = 4 PEs and two tree depth D = 3 and 4 are studied.
While for Fig. 7(b),K = 2, 4, 8 with a fixed tree depthD = 3 are
depicted. When filtering with a minimum of 1024 particles
with D = 4 and K = 8, there are only 2 particles for the last
resampling of RR, therefore, no further increment to D and
K is made in the experiment.

As can be seen from the two graphs, the performance of
DART is lower compared to RPA with fewer particles. The
reason for the phenomenon is that the RTS employed in
DART will make the resulting resampled particles less di-
verse. Since the final replication factor of a particle after re-
sampling in RTS is the product of intermediate replication
factors itself and all its ancestors, any factor equals to zero
would lead to a zero final replication factor. The less diverse
particle would cause sample impoverishment and reduce the
filtering accuracy. However, for larger number of particles,
DARTconsistently shows slightly better accuracy. For particle
number greater than 3072, the filtering performance is
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maintained when compared to RPA with particle diversity
above 40 %. Figure 8 presents the particle diversity, which is
the percentage of particles having non-zero replication factors
after resampling, for RPA and DART during the simulation.
For all presented tree topologies in DART, a particle diversity
drop of around 10 % is observed. The diversity will increase
as the particle number rises from 1024 to 8192. For the same
number of particles with different tree topology, the diversity
will decrease for deeper tree topology. The reason for this is
that the possibility of a zero final replication factor will in-
crease as the number of intermediate replication factors in-
volved in calculating a final one grows linearly with tree
depth. This can be mitigated by increasing branching factors
as seen in Fig. 8 that diversity increases together with
branching factor (since branching factors are set to the same
value of PEs). For a larger branching factor, the number of BR
processes will decrease and the influence of BR on final rep-
lication factors will also decrease. Consequently, for a given
number of particles, the tree topology can be tuned for the
desired filtering performance as well as to required hardware
implementation resource, which can be found in Section 5.3.

5.2 Timing Analysis

Processing timing reduction is the most significant contribu-
tion of the algorithm. For DART(N, K) with RTS(N, D, Kconst)

implemented with the above described architecture in
Section 4, the timing of processing is analyzed to better illus-
trate how BR is processed in parallel with sampling and
weight calculation steps. As presented in Fig. 9, one filtering
recursion starts with sampling particles. After an initial latency
of LS, weight calculation can be initiated. Also, a latency of LW
is observed before PEs generate the weights of the corre-
sponding particles. Weight calculation for all N particles will
continue for N/K cycles.

Meanwhile, as soon as the first few particles with weights
are generated, BR on level 1 will start resampling of particles

with f 2b ¼ K. Since BR on level 1 is pipelined by FBRM, it
will also consume a total ofN/K cycles after the startup latency
of LFBR. As for BR on level 2, it needs to resample K every K
cycles. Without a pipelined structure, the RBRM for level 2
will resample a total number of N/K particles inN/K cycle. An
initial weight sum delay of 1 cycle is added to calculate the
sum of weights for the BR after the LFBR latency.

In order to make the timing for a whole recursion better
visible from Fig. 9, every BR on level 3 through D-1 spans a
period of N/K cycles. Every time the level goes up by 1, an
extra cycle delay is added for calculating the sum of weight.
As BR on deeper levels takes place less often, the RBRM on
these levels only needs to resample K particles when their
weights are fully prepared. The period before BR on these
levels actually starts resampling is denoted by the BR IDLE
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period as in Fig. 9 after the weight sum delay. The IDLE
period also represents the time consumed waiting weights to
be calculated by previous level of BR.

After BR on levelD-1 finishes, all collective weight for RR is
obtained. As RR only resamples nD weights, the time needed is
nD together with a startup latency of LR. Finally, the total time for
an iteration in DART can be represented by T as expressed in

T ¼ LS þ LW þ LFBR þ D−1þ N=K þ LR þ nD
¼ N = K þ N = KD−1 þ L ;

ð10Þ

where L denotes the total startup latency for all processes togeth-
er with D-1 included since these parts are independent of N.

For better comparison with other PF architectures, the time
required for one filtering iteration in different distributed PFs
[14–17] with N particles and K PEs is shown in Table 2 in
analytical form. L in all expressions includes the startup laten-
cy and other minor parts which are independent from N. From
the table we see that distributed PFs proposed in [14–16] share
the same feature that final resampling of particles is conducted
utilizing all PEs and achieve linear speedup. Nevertheless,

they all introduce extra steps after the distributed resampling,
which are mainly designed for maintaining filter accuracy by
particle redistribution [10-RPA], exchange [10-RNA, 14], and
mixing [15]. The extra time needed is denoted with TRPA,
TRNA, TMIX and TEXCHANGE, respectively. HR [17] outperforms
[14–16] by eliminating the extra process in distributed PFs,
and achieves a linear speedup. For DART with RTS(N, D,
Kconst), the part N/K is further reduced to N/KD-1, which is
the number of particles resampled by RR and will decrease
exponentially when the tree depth grows linearly.

The speedup achieved is further illustrated in Fig. 10 com-
pared to centralized PF when omitting the constant latency of L.
HR has a linear speedup proportional to the number of PEs
against centralized implementation, which is also the limit of
current algorithms. The speedup of RPA and RNA is below the
linear boundary due to extra processing time of TRPA and TRNA,
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Figure 9 Timing of DART.

Table 2 Time for one iteration in different PFs architectures.

Architecture Time for one iteration

RPA [14] 2N/K + L + TRPA
RNAwith local exchange [14] 2N/K + L + TRNA
Distributed resampling with particle mixing [15] 2N/K + L + TMIX

Distributed resampling with
representative particles exchange [16]

2N/K + L + TEXCHANGE

HR [17] 2N/K + L

DARTwith RTS(N, D, Kconst) N/K +N/KD-1 + L
Figure 10 Speedup of HR and DART compared to centralized PF.
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respectively. For DARTwith RTS(N,D, Kconst), tree depthD = 3
and D = 4 are presented in the figure. As part of the processing
time can be reduced exponentially with increasing resampling
tree depth, the overall speedup achieved surpasses the linear
boundary and is more noticeable with deeper tree topology.

A prototype of DART is developed on a Xilinx Virtex-IV
Pro FPGA (XC4VFX100-12FF1152), which implements a dis-
tributed PF under the classical Bearings-Only Tracking (BOT)
[18] scenario with K = 8 PEs and a total number of N = 8192
particles. Each dimension of particle states and particle weights
use 18 and 16 bits respectively [14]. The tree depthD is chosen
as 3 and all branching factors for BR are set to K, so the central
RTM module in Fig. 3 implements FBRM, one RBRM and
RRM. In [17], the implemented PF needs 2150 clock cycles to
complete one iteration with L = 102 in HR based architecture.
For DART based architecture, the iteration time is 1257 clock
cycles with L = 105 where LS = 5 cycles, LW = 49 cycles,
LFBR = 12 cycles and LR = 37 cycles. The part of the final se-
quential resampling in [17] N/K = 1024 cycles is reduced to N/
KD-1 = 128 cycles in DARTand a significant overall processing
time reduction of 41.5 % is achieved. The prototype is able to
support a maximum clock frequency of 94 MHz and given the
clock frequency at 80 MHz, the input observation frequency
can be up to 63.6 kHz.

5.3 Resource Consumption

While achieving significant speedup, two extra things regard-
ing the hardware resource requirement to implement DART
should be noted. The first one is the extra memory required for
storing intermediate replication factors generated by BR.With
the help of replication factor sharing mechanism, the memory
needed to store replication factors for N particles is reduced to
N/K size in [17], which is denoted by M. Since the same
mechanism is also employed in DART, the memory used for
final replication factors remains the same. Extra memory is
used for intermediate replication factors generated by BR on
depth 2 through D-1. BR on depth 2 needs exactly the same

memoryM for storing N/K replication factors ( f 2b =K). While
for BR on depth 3 to D-1, nd (3 ≤ d ≤D-1) replication factors
are generated on depth d as analyzed before. The size scales

by 1/ f dþ1
b when depth increments from d to d + 1. Therefore,

as shown in

ndþ1 ¼ nd= f dþ1
b 2≤d≤D−1ð Þ ð11Þ

and

limD→∞
X D−1

i¼2
ni þM < M*limD→∞

X D−1

i¼2

1

2

� �i−2

þ M ¼ 3M ;

ð12Þ

the total memory required to store replication factors in DART
will not exceed 3M as the minimum value of any branching
factor is 2.

Another resource requirement is the multiplier needed in
the multiplication matrix in Replication Factor Generation. It
is noted that the number of multipliers needed in the matrix is

Nm, equals to ∏D
j¼3 f

j
b, in order to calculate Nm final replica-

tion factors simultaneously. So, the branching factor and tree
depth should be chosen with care to avoid excessive hardware

resource consumption as Nm rises significantly when D or f db
(3 ≤ d ≤D) increases linearly.

The resource requirements of the prototype implementation
with 8192 particles is also presented and compared to other
works shown in Table 3, where the centralized column are
data 8 times the resource of a centralized particle filter with
1024 particles, which corresponds to the system running 8
centralized PFs simultaneously, keeping the same 8192 parti-
cles in total. The percentage in brackets under RT column is
the utilization of the FPGA chip. Compared to HR [17], the
prototype requires slightly more hardware resources and con-
trol logic for execution of extra BR and generating final rep-
lication factors during RR. As a result, RT consumes slightly
more slices, slice flip flops and 4-input LUTs than the other
two. While regarding the requirement for block RAMs,
one more block RAM is needed to store the intermedi-
ate replication factors generated by BR process. Also
increased with respect to HR is the DSP48 component
used for generating the final replication factors in the

multiplier matrix where Nm= ∏D
j¼3 f

j
b ¼ 8 with D = 3 and

f 3b ¼ 8. Still, the block RAMs and DSP48s consumption
are less than centralized implementation since replica-
tion factor sharing mechanism among PEs is also uti-
lized the same with HR [17].

6 Conclusion & Future Work

This paper proposes a novel distributed Particle Filter
algorithm with Resampling Tree Scheme, which

Table 3 Resource consumption for centralized, HR and RT based PF.

Resource Centralized HR [17] RT

Slices 20008 20731 21444(50.84 %)

Slice flip flops 30360 30008 30438(36.08 %)

4-input LUTs 35344 36667 37855(44.88 %)

Block RAMs 80 52 53(14.10 %)

DSP48s 72 58 66(41.25 %)
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parallelize Branch Resampling of sub-groups of particles
with sampling and weight calculation steps. The final
sequential implemented Root Resampling has much
fewer particles to handle. Specifically, the number of
particles in Root Resampling, as well as the processing
time, could decrease exponentially with the depth of the
resampling tree when compared to sequential centralized
PFs. Therefore, with the same linear speedup in sam-
pling and weight calculation procedures, the overall
speedup of DART surpasses linear boundary and outper-
forms state-of-art distributed PFs.

The algorithm also has high flexibility as featured in
the resampling tree topology. Moreover, the proposed
hardware architecture possesses favorable features of de-
terministic execution, hardware efficiency and scalabili-
ty. The case study of filtering performance in Bearings-
Only Tracking scenario proves its lossless performance
compared to standard resampling with larger particle
numbers.

Future work will be implementing the algorithm un-
der a more application specific context of indoor local-
ization based on fusion of information coming from
different sensors (inertial sensors and radio frequency
signals) to realize a real-time system for accurate posi-
tioning and tracking of a moving object using particle
filters.

Acknowledgments This research is supported by the National Natural
Science Foundation of China (61204030, 61302129), Zhejiang
Provincial Natural Science Foundation of China (LY15F020008),
Zhejiang Provincial Nonprofit Technology Research Projects
(2014C31045) and China Scholarship Council.

References

1. Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel
approach to nonlinear/non-Gaussian Bayesian state estimation. IEE
Proceedings F Radar and Signal Processing, 140(2), 107–113.

2. Sankaranarayanan, A. C., Srivastava, A., & Chellappa, R. (2008).
Algorithmic and architectural optimizations for computationally ef-
ficient particle filtering. IEEE Transactions on Image Processing,
17(5), 737–748.

3. Gentner C., Munoz E., Khider M., Staudinger E., Sand S., &
Dammann A. (2012). Particle filter based positioning with 3GPP-
LTE in indoor environments. Position Location and Navigation
Symposium (PLANS), IEEE/ION, 301–308.

4. Hongjun, Z., & Sakane, S. (2008). Sensor planning for mo-
bile robot localization-a hierarchical approach using a
Bayesian network and a particle filter. IEEE Transactions
on Robotics, 24(2), 481–487.

5. Kai, W., Yun-Hui, L., & Luyang, L. (2014). A simple and parallel
algorithm for real-time robot localization by fusing monocular vi-
sion and odometry/AHRS sensors. IEEE/ASME Transactions on
Mechatronics, 19(4), 1447–1457.

6. Sz-Pin H., Jun-Wei Q., Chi-Chung L., & Yu-Chee T. (2014).
Wearable localization by particle filter with the assistance of
inertial and visual sensors. 11th International Conference on
Wearable and Implantable Body Sensor Networks (BSN),
52–57.

7. Arshad, I., Syed, W. S., & Shamin, K. (2014). Non-linear
moving target t racking: a part ic le fi l ter approach.
International Journal of Computer and Communication
System Engineering, 1(1), 20–26.

8. Tian, Q., Salcic, Z., Wang, K. I., & Pan, Y. (2015). A hybrid indoor
localization and navigation system with map matching for pedes-
trians using smartphones. Sensors, 2015, 30759–30783.

9. Putta R., Misra M., & Kapoor D. (2015). Smartphone based Indoor
tracking using magnetic and indoor maps. Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP), 2015 I.E.
Tenth International Conference on, pp. 1–6.

10. Qian J., Ma J., Ying R., Liu P., & Pei L. (2013). An improved
indoor localization method using smartphone inertial sensors.
Indoor Positioning and Indoor Navigation (IPIN), 2013
International Conference on, pp. 1–7.

11. Bao, H., & Wong, W. (2014). A novel map-based dead-reckoning
algorithm for indoor localization. Sensors, 3, 44–63.

12. Valentin R., & Mahesh K. M. (2013). HiMLoc: indoor smartphone
localization via activity aware pedestrian dead reckoning with se-
lective crowdsourced WiFi fingerprinting. International
Conference on Indoor Positioning and Indoor Navigation.

13. Yuan Y., Yubin Z., & Kyas M. (2014). GeoF: a geometric Bayesian
filter for indoor position tracking in mixed LOS/NLOS conditions.
11th Workshop on Positioning, Navigation and Communication
(WPNC), 1–6, 12–13.

14. Bolic,M., Djuric, P. M., &Hong, S. (2005). Resampling algorithms
and architectures for distributed particle filters. IEEE Transactions
on Signal Processing, 53(7), 2442–2450.

15. Zhang Y., Sathyan T., Hedley M., Leong P. H. W., & Pasha A.
(2012). Hardware efficient parallel particle filter for tracking in
wireless networks. 2012 I.E. 23rd International Symposium on
Personal Indoor and Mobile Radio Communications (PIMRC),
pp. 1734–1739.

16. Chitchian, M., Simonetto, A., Amesfoort, A. S., & Keviczky,
T. (2013). Distributed computation particle filters on GPU
architectures for real-time control applications. IEEE
Transactions on Control Systems Technology, 21(6), 2224–
2238.

17. Pan, Y., Zheng, N., Tian, Q., Yan, X., & Huan, R. (2013). Hierarchical
resampling algorithm and architecture for distributed particle filters.
Journal of Signal Processing Systems, 71(3), 237–246.

18. Carpenter, J., Clifford, P., & Fearnhead, P. (1999). Improved parti-
cle filter for nonlinear problems. IEE Proceedings of Radar, Sonar
and Navigation, 146(1), 2–7.

19. Kerem P., & Oguz T. (2011). Parallelization of particle filter
based localization and map matching algorithm on multicore/
manycore archi tec tures . IEEE Inte l l igent Vehic les
Symposium, pp. 820–826.

20. Xu Y., Liu J., Ma L., & Peng L. (2010). WLAN indoor
tracking method via improved particle filter algorithm.
Pervasive Computing Signal Processing and Applications
(PCSPA), 2010 First International Conference on, pp.
1078–1082.

21. Bolic M., Hong S., & Djuric P. M. (2002). Finite precision
effect on performance and complexity of particle filters for
bearing-only tracking. Conference Record of the 36th
Asilomar Conference on Signals, Systems and Computers,
vol. 1. pp. 838–842.

J Sign Process Syst (2017) 88:29–42 41



Qinglin Tian received his B.S. de-
gree in electrical engineering from
Zhejiang University, China, in
June 2011. Since then he has been
pursuing the Ph.D. degree in
Department of VLSI Design at
College of Electrical Engineering,
Zhejiang University, China. He
was a visiting scholar at University
of Auckland, New Zealand from
2014 to 2015. His research interests
include design and implementation
of indoor tracking and navigation
systems, FPGA-based optimization
and acceleration of signal process-

ing algorithms in related area, computer architecture and hardware-software
co-design.

Yun Pan received his B.S. degree
in Department of Information
Science & Electronic Engineering,
Zhejiang University, China, in
2002, and Ph.D. degree in
Depar tmen t o f E lec t ron ic
Engineering, Tsinghua University,
China, in 2008. He joined Institute
of VLSI Design, College of
Electrical Engineering, Zhejiang
University in 2008 as a post-doctor.
He is currently an Associate
P r o f e s s o r i n C o l l e g e o f
Information Science & Electronic
Engineering, Zhejiang University.

His current research interests include on-chip communication, mobile com-
puting, application-specific heterogeneous architecture design, mobile em-
bedded systems and healthcare micro systems. He has published more than
40 academic papers, coauthored 2 books and 1 chapter, and held more than
10 Chinese patents in these areas.

Zoran Salcic (SM IEEE) holds a
chair in computer systems engi-
neering at the University of
Auckland. He has the BE (‘72),
ME (‘74) and PhD (‘76) degree
in electrical and computer engi-
neering (Sarajevo University).
His main research interests in-
clude complex digital systems,
custom-computing machines, em-
bedded systems and their imple-
mentation, design automation
tools, hardware-software co-de-
sign, models of computation and
languages for concurrent and dis-

tributed systems, and cyber-physical systems. He has published more
than 300 peer-reviewed journal and conference papers and several books.
He is a Fellow of the Royal Society New Zealand and recipient of
Alexander von Humboldt Research Award in 2010.

Ruohong Huan received her B.S.
d eg r e e i n Depa r tmen t o f
I n f o rma t i o n Sc i e n c e and
Electronic Engineering, Zhejiang
University, China, in 2002, her
M.S. degree in Department of
I n f o rma t i o n Sc i e n c e and
Electronic Engineering, Zhejiang
University, China, in 2005 and her
Ph.D. degree in Institute of
Electronics, Chinese Academy of
Sciences, China, in 2008. She is
currently an Associate Professor in
College of Computer Science and
Technology, Zhejiang University

of Technology, China. Her current research interests include image process-
ing and target recognition, video processing and human behavior recognition.
She has published over 30 academic papers in journals or proceedings.

42 J Sign Process Syst (2017) 88:29–42


	DART: Distributed Particle Filter Algorithm with Resampling �Tree for Ultimate Real-Time Capability
	Abstract
	Introduction
	Related Work
	Proposed Algorithm
	DART Overview
	Resampling Tree Scheme
	Determine the Tree Topology
	Calculating the Final Replication Factor
	Statistical Analysis

	Accelerating Particle Filtering

	Proposed Hardware Architecture
	First BR Module
	Remaining BR Module
	RR Module
	Replication Factor Generation Module
	Hardware Scalability

	Evaluation & Experimental Result
	Filtering Performance
	Timing Analysis
	Resource Consumption

	Conclusion & Future Work
	References


