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Abstract This paper presents an innovative solution based
on Time-Of-Flight (TOF) video technology to motion pat-
terns detection for real-time dynamic hand gesture recog-
nition. The resulting system is able to detect motion-based
hand gestures getting as input depth images. The recogniz-
able motion patterns are modeled on the basis of the human
arm anatomy and its degrees of freedom, generating a col-
lection of synthetic motion patterns that is compared with
the captured input patterns in order to finally classify the
input gesture. For the evaluation of our system a significant
collection of gestures has been compiled, getting results for
3D pattern classification as well as a comparison with the
results using only 2D information.

Keywords Computer vision · Human-computer
interaction · Hand gesture recognition

1 Introduction

Human Computer Interaction (HCI) technologies and algo-
rithms are becoming more important in the last years, a time
in which users ask for new ways of communication with
computers and of interaction with virtual environments. The
user experience of high technological services is not always
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optimal and HCI might help bringing these services to the
mass market. As mentioned in [21], in the last years 3D user
interfaces (3D UI) are becoming more important in the con-
sole gaming scenario.1,2,3 Besides, in desktop computers
interfaces, the usage of the hand as input device provides
natural human-computer interaction [24]. Usability consti-
tutes a main issue in the development of HCI systems and
some of the aspects are pointed out in [11]; in [3] we find a
study devoted to improve user experience.

The ultimate goal of this work is to provide the user with
a natural interaction and a good experience when interact-
ing with a computer in contexts of application such as the
interaction with maps,4 allowing intuitive movements of the
earth surface. Other contexts of application of this approach
can be the control of multimedia menus [31] or the point of
view on a virtual environment. Other motion based gestures
recognition could allow the interpretation of sign languages
[9, 13].

The paper is structured as follows: In Section 2 the
State Of Art is exposed and the innovations of our sys-
tem are pointed out before giving an overview of it in
Section 3. In Section 4 the proposed dictionary of ges-
tures and the compilation of users executions is described.
In Section 5 the approach followed for gestures detection
is explained for later, in Section 6, presenting the signif-
icant user-independent evaluation figures and enumerating
the achieved conclusions in Section 7.

1http://wii.com
2http://www.xbox.com/kinect/
3http://playstation.com/psmove/
4Atlas Gloves: A DIY Hand Gesture Interface for Google Earth, http://
atlasgloves.org/about
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2 Related Work

There are several works focused on hand gesture recogni-
tion based on range data, as the use of depth information
has been recurrent in the last years. Some examples of the
use of depth information can be found in [7, 28] where
stereo-vision systems applied to gesture recognition are pre-
sented. In [18] they estimate the 3D trajectory of hand by
using markers. Another approach consists in the adjustment
of 3D models to 2D images [1, 32]. A recent research line
is the use of Time-of-Flight (TOF) range cameras that sup-
ply real-time depth information per pixel [31] at low cost.
An example of the use of this technology can be found
in [8] where it is used to improve people tracking in a
smart room. TOF technology can also present some prob-
lems, such as optical noise existence, unmatched boundaries
or temporal inconsistency [16]. The use of depth informa-
tion results in an enrichment of the communication between
user and machine by means of gestural interfaces. In [22]
some advantages are remarked: robustness to illumination
changes and easy segmentation even when there is camera
motion. In [2] a 3D hand model is adjusted to the cloud of
points obtained from the captured depth image. In [17, 25–
27, 29, 31] experiments, using depth sensors, are performed
over static hand gestures collections, pointing out the advan-
tages of using depth information. Another technology for
obtaining range data is the one proposed in [23] where the
scene is illuminated with a colored pattern, captured by a
common RGB camera and later processed to infer depth
information.

More concretely, there are several works which focus on
the detection of motion pattern based gestures. In [36] a sys-
tem for the detection of shape and motion based gestures is
presented, using 2D images as input. It is evaluated for four
different gestures, but only two different trajectories. Yoon
et al. [37] recognizes 26 alphabetical gestures on the basis
of features of location, angle and velocity. In [5], based on
3D motion captures obtained with an accelerometer, digits 0
to 9 drawn to the air are recognized. Kim et al. [15] presents
a solution based on neural networks fed with spatiotemporal
information. In [25] two simple motion patterns are taken
into account (i.e. MenuOpen and MenuClose) which corre-
spond to two of the gestures introduced in Section 4 (i.e. N
and S). In Section 5 of [27] a whole motion-based gestures
dictionary is proposed, it is the one used in this paper. In
[19, 35] authours perform experiments using the MSRGes-
ture3D dataset,5 which includes 12 dynamic American Sign

5http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/

Language gestures. Among these gestures, following the
taxonomy proposed in [27], we can find pose-based, pose-
motion based and compound gestures, while the approach
proposed in this paper is focused in motion-based ones.
There are other datasets, such as MSRC-12 Kinect gesture
data set [6], which includes a collection of gestures based on
human body parts movements, something out of the scope
of this work.

In this paper we present a novel non intrusive (i.e. there
is no need of gloves or markers like in [13, 14, 34] or
accelerometers like in [5]) real-time approach to the detec-
tion of intuitive motion based gestures usable in different
application contexts. The learning phase of our approach
does not need the capture of ground-truth real data, since
the patterns are defined synthetically by using a human
arm model (see Section 5.1) making it is user indepen-
dent (differently to [5, 15, 36, 37]). During evaluation,
performed with the collaboration of several users, the sys-
tem worked properly, as the results presented in this paper
confirm (see Section 6). Thanks to the proposed normaliza-
tion (see Section 5.4) and the representativity of the chosen
arm model (see Section 5.1) the system is robust to varia-
tions in the distance to the camera, in the height of the user
and in the size of arm and hand. The use of TOF technol-
ogy, apart from providing an accurate segmentation robust
to low illumination conditions (not as in color camera based
systems [4, 28, 32, 33, 38]), offers a representative point of
the hand motion, the closest one to the camera, with no need
of application of traditional segmentation techniques.

3 System Overview

In Fig. 1, an overview of the system is presented. First of all,
the depth data range is limited to a maximum distance of 3
m, as explained in Section 4. The Point Of Interest (POI) to
be tracked is computed, storing its coordinates from frame
to frame (i.e. each pi represents the 3 coordinates of the
POI at frame i) which are an estimation of the hand trajec-
tory. More concretely, the proposed POI is the point detected
closest to the camera. An alternative POI is also proposed
for evaluating purposes, this is the geodesic center of the
segmented hand mask (see Section 5.3). Five samples trajec-
tory segments (i.e. four translation segments) are compared
with synthetically generated motion patterns (i.e. each ξai

represents the coordinates of pattern associated to gesture
a at sample i) using the Dynamic Time Warping (DTW)
distance as explained in Section 5.4. So, each translation
segment will be locally labeled with the closest synthetic
pattern. This results, along a gesture execution, in a collec-
tion of assigned labels to several translation segments. The

http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/
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Figure 1 Overview of the
system.

final label of the gesture will be the most common assigned
label.

4 Data Set

It is very important to have a representative data collection
in order to obtain significant evaluation results. For this we
use one of the dictionaries described in the dataset proposed
in [27]. This is compound of nine gestures (see Fig. 2): slaps
in 8 directions (named as the cardinal directions: N, NE,
E, SE, S, SW, W and NW) and one slap getting closer and
further to the camera (named IO, Inwards-Outwards). For
compiling this collection 11 users were asked to execute 5
repetitions of each of the 9 gestures, what makes a total of
495 videos.6 This collection is entirely used for evaluation
purposes, since the knowledge used by the detection sys-
tem is expressed by the motion patterns defined via the arm
model described in Section 5.1. For recording the videos a
TOF camera (SR4000 developed by Mesa Imaging)7 was
placed 1.5 m above the floor, with an horizontal orientation
orthogonal to the user. This camera captures depth images
with QCIF resolution (176 × 144 pixels) and a depth pre-
cision of ±1cm. It was configured to capture 30fps and to
operate in a 3 m depth range (0.3–3.3m) in order to remove
background objects. The recorded users were not asked to
keep a certain distance to the camera neither to perform the
gestures with any speed restriction. As well, the users had

6http://www-vpu.eps.uam.es/publications/papermotion/indexpaper.
html, (user: vision, password: visionpaper)
7http://www.mesa-imaging.ch/

different heights, what makes the collection certainly repre-
sentative of the potential users of the system. Some captures
of this data set can be found in Fig. 3.

This dictionary of gestures was proposed following
usability criteria, slaps executed in different directions are
an intuitive way of interacting with a virtual environment.
Two usability objectives [11] were taken into account in
the gestures selection process: learnability and minimiza-
tion of support requirements. In terms of learnability, it can
be said that none of the users showed difficulties in learn-
ing the dictionary and that they only required of a brief
introduction: they were asked to perform the indicated ges-
tures as if they were interacting with a menu environment.
In terms of minimization of support requirements, it can be
said that no user presented doubts about how to execute the
gestures.

Figure 2 Gestures observed from user’s point of view.

http://www-vpu.eps.uam.es/publications/papermotion/indexpaper.html
http://www-vpu.eps.uam.es/publications/papermotion/indexpaper.html
http://www.mesa-imaging.ch/
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Figure 3 Depth captures of the proposed gestures for user 1. Notice
that the temporal coordinate of the captures evolves from left to right.

5 Methodology

Our approach consists of the definition of synthetic motion
patterns which will be compared with the hand motion
estimations computed from the real data set videos.

5.1 Motion Pattern Modelling

An arm model, responding to human anatomy, has been pro-
posed for the definition of the considered motion patterns.
We consider two arm segments (see Fig. 4): the upper arm
represented by the vector −→

rU which goes from the shoulder
to the elbow and the lower arm reprensented by −→

rL , from the
elbow and to the wrist. The hand is not considered explic-
itly in this model, since the variation that could introduce is
non significant in comparison with the ones shown by the
arm movements. The lengths for these upper and lower seg-
ments were defined with fixed length:

∣
∣−→rU

∣
∣ = ∣

∣−→rL
∣
∣ = 1.

Finally, the vector that describes the trajectory of the wrist

to be analized is −→
r = −→

rU +−→
rL . In Fig. 4 some set-ups of the

arm model are shown. Notice that for a variation of �θ in
angles θx and θy for the upper segment, the lower segment
presents a variation of 2�θ , acumulating this way the varia-
tion of the upper segment. The expression of the vectors −→

rU
and −→

rL are the following:

– For gestures N and S (see Fig. 4a):

−→
rU = [

0, −sin(θx), cos(θx)
]

−→
rL = [

0, −sin(2θx), cos(2θx)
]

where θx ∈ [0, π/2]. For gesture N θx goes from π/2
to 0, while for gesture S from 0 to π/2. Notice that these
two motion patterns are contained in plane yz.

– For gestures E and W (see Fig. 4b):

−→
rU =−sin(ψ0)

[

cos(θy),
cos(ψ0)

sin(ψ0)
, −sin (θy)

)
]

−→
rL = [−cos(2θy − π/2), 0, sin(2θy − π/2)

]

where θy ∈ [π/4, 3π/4] and ψ0 = 25◦×πrad
180◦ . ψ0 is

the angle formed by the upper segment of the arm and
−ŷ. For gesture E θy goes from 3π/4 to π/4, while
for gesture W from π/4 to 3π/4. Notice that these two
motion patterns are contained in plane xz.

– For NE, SE, SW and NW : a rotation about the z axis is
performed over the gestures N and S (see Fig. 4c). This
rotation matrix, R, is:

R =

⎡

⎢
⎢
⎣

sin
(

θz
0

)

cos
(

θz
0

)

0 0
−cos

(

θz
0

)

sin
(

θz
0

)

0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

(a) N and S gestures. (b) E and W gestures. (c) NW and SE gestures.

Figure 4 Model set-ups of the arm model. −→
rU is a vector that goes

from the shoulder to the elbow and −→
rL from the elbow to the wrist. The

angles θx and θy are variables which define the trajectory of the arm
in Fig. 4a, b, while ψ0 and θz

0 are fixed angles that define the position

of the elbow at the beggining of the execution of the movement in
Fig. 4b and c respectively. ψ0 is the angle formed by −→

rU and −ŷ (see
Fig. 4b). θz

0 indicates the rotation angle applied to N and S gestures,
which results in the set-up shown in Fig. 4c.
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and so, the homogenous coordinates for vectors −→
rU and−→

rL are:
−−→
rhom
U = R × [

0, −sin(θx), cos(θx), 0
]′

−−→
rhom
L = R × [

0, −sin(2θx), cos(2θx), 0
]′

where θx ∈ [0, π/2] , as for gestures N and S,
θz

0 = π/4 for gestures NW and SE and θz
0 =

3π/4 for gestures NE and SW. The application of
these rotation matrixes implies that the modelled pat-
terns are contained in the plane xz rotated about the
z axis.

5.2 Motion Pattern Definition

The direction in which the defined intervals are covered
depends on the direction of execution of the specific gesture,
for example, in the case of gesture N θx for −→

rU begins in π/2
and ends in 0 while for gesture S is the other way around.
In order to consider different speeds in the execution of the
gestures 6 different patterns per gesture are presented: 1 for
the whole arc , 1 for each half and 1 for each third. This
makes 6 synthetic patterns per gesture. The selected length
for these patterns was 5 samples (i.e. 4 translation segments)
what defines the temporal window used for the comparison
of synthetic and real patterns (see Fig. 1).

For the definition of the IO synthetic pattern no angles
or arm model were considered, just a simpler approach was
followed: the pattern was defined as a sequence of move-
ments in the z axis. Three kinds of translations segments
(i.e., an homogeneous motion interval) were considered: I,
translation getting closer to the camera; O, moving away
from the camera; S, staticity between two frames (applying
the normalization described in Section 5.4 spurious trans-
lations are considered as staticity). Following the line of
considering different execution speeds, various motion pat-
terns (composed by 4 translation segments) were defined:
IIII, IIIS, IISS, SSOO, SOOO, OOOO, IIIO, IIOO and
IOOO. For example, if the execution of the gesture is very
fast and only 5 samples are captured during it, the expected
segments pattern would be IISS or SSOO. While, if the exe-
cution is slower sequences such as IIII or OOOO could be
detected.

5.3 Motion Pattern Capturing

In order to capture a representative trajectory of the hand
motion it is important to choose an easily traceable point.
An unstable point would present noisy translations that
could produce wrong estimations of the hand motion. The
use of range information provides us with a robust to illu-
mination and easy to detect POI, the closest to the camera.

For the detection of this point it is not even necessary to
previously segment the image.

With the intention of showing the advantages of using
depth information, we also present an approach that makes
no use of depth information (except for the depth range
limitation): it extracts the tracking point considering the
segmentation mask image resulting from the depth range
limitation as binary (considering foreground all the pixels of
the depth image with value over zero). In this case, the cho-
sen tracking POI is the geodesic center of the binary mask,
which is estimated by performing the ultimate erosion [20]
up to a point.

5.4 Patterns Comparison

The comparison between two patterns is performed, not
over the absolute coordinates of the trajectory, but over the
translation of the POI between two frames. For calculating
the distance between two patterns a previous normaliza-
tion is performed, consisting of setting to one the length of
each displacement between two sucesives samples frames
of the POI. This solution has been used in problems such as
hand writing recognition [10] or motion hand based gestures
detection, like in [36] where the length of the translations
is not used as a feature, something equivalent to fixing
their length. In order to filter spurious errors in the detec-
tion of the tracked point when it is static (for gesture IO),
this normalization is only applied when the magnitude of
the translation of the POI between consecutive frames is
over the third of the maximum one within the gesture exe-
cution. This defines an enough wide range of speeds for
the proposed gestures which are intuitively executed in an
homogenous way. The presented normalization makes the
system independent to variations in the distance to the cam-
era, in the angle of view, in the heigth of the user and in the
size of the arm.

Once the synthetic (see Section 4) and captured motion
patterns (see Section 5.3) are normalized, they are com-
pared. The Dynamic Time Warping (DTW) distance has
shown good performance when comparing temporal pat-
terns executed at different speeds, concretely it has been
widely applied to speech recognition problem [30]. An
example of its application to hand gesture recognition can be
found in [36]. Notice that each new captured motion pattern
has four translation vectors, which describe the hand trajec-
tory for five frames. It is then compared with each of the
synthetic motion patterns present in the collection described
in Section 5.1. This way we obtain a histogram of incidence
of the closest synthetic patterns to this new captured motion
pattern. The most common one gives us the label to assign
to the gesture capture. If there is a tie between labels, the
label ’Unknow’ is the one assigned.
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6 Experiments

6.1 Experimental Set-up

This section presents two different evaluation scenarios,
both of them user independent since the learning process is
performed using synthetic data and the evaluation is done
with 11 different users (see Section 4):

1. 2.5D scenario: the tracked POI is the closest point to
the camera and its depth coordinate (apart from x and y
coordinates) is used for modelling the trajectory.

2. 2D information scenario: this second scenario was
set-up considering the input images as binary masks
as explained in Section 5.3. The depth information
is implicitally used in the set-up of the camera (see
Section 4), resulting in a segmentation mask, but this
info is not used in the estimation of the hand trajectory.
In this case, the tracked POI is the geodesic center of the
binary mask, obtained with an iterative algorithm pro-
cess [25]. Although the depth information is used for
the calculation of this mask the z coordinate is not used
in the comparison of the patterns.

The comparison of the results obtained for these two set-ups
will permit to obtain conclusions about the utility of using
depth information in hand gesture recognition.

6.2 Results

This section compiles the results obtained for the two
evaluation scenarios introduced in Section 6.1:

1. 2.5D scenario: the resulting confussion matrix can be
found in Table 1. The obtained accuracy rate is 0.951.

2. 2D information scenario: The obtained accuracy rate is
0.780 (see Table 2).

Table 1 Confusion matrix for the 2.5D scenario.

U N S W E SW NW SE NE IO

N 0 52 0 0 0 0 0 0 0 3

S 1 0 50 0 0 0 0 0 0 4

W 1 0 0 53 0 0 0 0 0 1

E 0 0 0 0 55 0 0 0 0 0

SW 0 0 0 0 0 55 0 0 0 0

NW 2 2 0 0 0 0 51 0 0 0

SE 2 0 0 0 0 0 0 51 0 2

NE 1 0 0 0 1 0 0 0 53 0

IO 0 1 0 2 0 0 0 0 1 51

Gestures described in Section 4 and “U” for Unknown.

From the results compiled in Table 1 there are several
aspects to point out:

– The label IO is the one assigned more times erro-
neously. It introduces 10 false negatives for executions
of other gestures. This is due to the fact that the users
tend to introduce the hand in the interaction area (and
move it away) with upward and downward trajectories.
These patterns are present in the definition of other
gestures, apart from IO, producing misclassifications.

– When the assigned labels within an execution results on
the same score for 2 or more gestures the assigned label
is Unknown (U). This situation produces 7 misclassifi-
cations.

– Without taking into account the missclassifications pro-
duced by the inclusion of the IO gesture (i.e. the only
one which translation is fundamentally takes place in
the depth coordinate), the obtained accuracy rates are,
0.873 for the 2D scenario and 0.977 for the 2.5D one.
So, the use of depth information improves the results
even when the gestures are apparently detectable using
only 2D information.

Table 2 presents not such good results, mainly due to the
instability of the geodesic center. Since no depth informa-
tion is considered, the representative point to be tracked
needs to be estimated on the basis of a segmentation which
is noisy due to variation in its shape and size. So, noisy
translations are added to the real translations of the hand.

As far as we know, no user-indepent evaluations have
been performed for motion based gestures detection, con-
sequently we enumerate the evaluation figures of some
works in which the absence of overlap between train and
evaluation corpora is not ensured. In [36] a 0.97 accuracy
rate is obtained in separating only two motion patterns. [5]
presents results for an intrusive approach based on the use
of an accelerometer: obtaining 0.93 for 5-fold cross valida-
tion and 0.98 for 10-fold cross validation, in the detection

Table 2 Confusion matrix for the 2D scenario.

U N S W E SW NW SE NE IO

N 0 51 0 0 0 0 0 0 0 4

S 1 0 26 0 0 1 0 0 0 27

W 1 0 0 37 0 0 16 0 0 1

E 0 0 0 0 38 0 0 6 9 2

SW 0 0 0 1 0 47 1 0 0 6

NW 2 4 0 2 0 0 44 1 0 2

SE 2 0 0 0 0 0 0 49 0 4

NE 1 2 0 0 0 0 0 0 51 1

IO 0 1 0 1 0 0 7 1 2 43

Gestures described in Section 4 and “U” for Unknown.
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of 0 to 9 digits. Kim et al. [15] separates 6 gestures on the
basis of the posture and motion of the hand, obtaining an
accuracy of 0.975 for the best setup. In [37], the highest
accuracy rate in the detection of 26 gestures drawn to the
air is 0.932. In [25], two of the considered gestures were N
and S, obtaining a mean recall of 0.938 in their detection.
So we can say that our approach achieves results compara-
ble to the ones of the State Of Art, even when they do not
present user-independent evaluations.

6.3 Computational Cost

We can express the computational cost as a function
depending on the number of translation segments for each
motion pattern, N , and the number of synthetical pat-
terns, NSynPat , contained in the collection described in
Section 5.1. We have consider, as significant, the periods
necessary for performing a sum, TS , a product, TP , and a
square root Tsqrt . The different stages considered on this
work will present the following computational times per
frame:

1. POI sampling: In the case of the 2.5D scenario, this is
the time needed to compute the position of the clos-
est pixel, for what is necessary to perform width ×
height − 1 comparisons, so TA−3D = (width ×
height − 1) × (N + 1) × TS . In the 2D scenario we
have to take into account the time for extracting the
geodesic center of the binary mask as described in [25],
TA−2D = 4.311 msec.

2. Trajectory computation: This is the time needed for cal-
culating the trajectory vector on the basis of the point
coordinates, TB = 3 × N × TS .

3. Trajectory Normalization: as described in Section 5.4,
TC = N × (5 × TS + 6 × TP + Tsqrt ).

4. DTW computation: TD = N2 × NSynPat × (5 × TS +
3 × TP + Tsqrt ).

Current Float Point Units offer a solution for the com-
putation of arithmetic operations with dedicated hardware,
achieving computational times in the same order of mag-
nitude for sum, product and squared root. On the basis of
Pentium speed tests8 we can establish the following relation
between TS , TP and Tsqrt , defining T0 as the reference com-
putational time: TS � TP = T0 and Tsqrt = 2 × T0. Doing
so, and on the basis of the presented expressions, we obtain
a total computational time of T = TA + TB + TC + TD =
TA + T0 × N × (16 + 10 × N × NSynPat ). With N = 4
and NSynPat = 54 we obtain T = TA + 8704 × T0. A
CPU performance test was run on an Intel(R) Core(TM)2
Duo CPU E7500 @ 2.93Ghz with 2.98GB RAM, as in [25],

8http://www.obliquity.com/computer/speedtest.html

Table 3 Computational Costs per frame and Accuracy for the two
considered scenarios.

Scenario→ 2.5D 2D

Comp. cost(msec/f rame) < 0.136 < 4.321

Accuracy 0.951 0.780

being the obtained T0 below 1nsec. So T3D = TA−3D +
8704 × T0 = 135419 × T0 (T3D < 0.136 msecs) and
T2D = TA−2D + 8704 × T0 (T2D < 4.321 msecs).

As shown in Table 3, the described approaches require
much less than 1/25sec per frame, enabling real-time HCI.

7 Conclusions

In this paper a non intrusive motion-based hand gesture
detection system using range data is presented. It is able to
work in real-time allowing the interaction between a user
and a virtual environment or computer menu. It is robust to
the relative camera position and to the speed of execution
of the gestures. It is, as well, user-independent, being able
to work with a collection of gestures executed by users of
different heights and arm’s sizes. A novel definition of the
motion patterns, based on human anatomy, is presented: the
obtained results bear witness to its remarkable representa-
tion capacity. A significant data set of depth videos has been
compiled and made available for researching purposes (see
Section 4).

From the results we confirm that the use of depth infor-
mation for the hand trajectory estimation implies a sig-
nificant increase in gesture detection accuracy rate. Our
approach (2.5D scenario) works without the need of apply-
ing any segmentation algorithm (apart from limitating the
depth range of the capture) or calculating the geodesic
center of the hand mask, as in the 2D scenario, which
means a lower computation time (see Table 3). The achieved
accuracy rate for the proposed dictionary, performing a user-
independent evaluation , is 0.951, a very promising value, as
already mentioned, comparable to the results of the State Of
Art. The experiments performed in this work also show that
the 2.5D approach performs better that the 2D, even without
considering the only gesture with a clear translation just in
the depth coordinate, the IO gesture.

In the light of the results described in Section 6 we
consider two main future work lines:

– The use of a Hidden Markov Model in order to man-
age the temporal sequence of detected labels. This
could solve some misclasification situations in which
the order of the detections is relevant.

http://www.obliquity.com/computer/speedtest.html
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– The use of color-depth registration approaches [12]
could improve the quality of the hand motion estima-
tion, and make feasible the detection of more complex
gestures.
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