J Sign Process Syst (2016) 83:113-128
DOI 10.1007/s11265-015-1089-y

@ CrossMark

Achieving SCA Conformance Testing with Model-Based

Testing

Julien Botella! - Jean-Philippe Delahaye? -

Eddie Jaffuel® - Bruno Legeard!* . Fabien Peureux!*

Received: 31 January 2015 / Revised: 8 June 2015 / Accepted: 16 November 2015 / Published online: 10 December 2015

© Springer Science+Business Media New York 2015

Abstract The Software Communications Architecture
(SCA) is a software architecture provided and published
by the Joint Tactical Networking Center (JTNC). Facing
the multiplicity of the waveforms and the diversity of the
platform architectures and form factors, the original aims
of the SCA are to facilitate the waveform development in
terms of portability and waveform deployments onto hetero-
geneous Software Defined Radio (SDR) platforms. In this
paper, we present an approach using Model-Based Testing
(MBT) to ensure the conformance of a software radio plat-
form with SCA requirements. In this approach, an MBT
model is developed on the basis of SCA specifications, and
conformance tests and scripts are generated and then run on
the targeted software radio platform. This approach has been
developed within a French research project, called OSeP,

P4 Fabien Peureux
fpeureux @femto-st.fr; peureux @smartesting.com

Julien Botella
botella@smartesting.com

Jean-Philippe Delahaye
jean-philippe.delahaye @intradef.gouv.fr

Eddie Jaffuel
eddie.jaffuel @econsult.fr

Bruno Legeard
legeard @smartesting.com; blegeard @femto-st.fr

Smartesting R&D Center, 25000 Besancon, France
2 DGA/CELAR, French MoD, 35170 Bruz, France
eConsult, 25870 Cussey-sur-1’Ognon, France

4 Institut FEMTO-ST, UMR CNRS 6174, 25030 Besancon,
France

with results regarding modeling for automated test genera-
tion for SCA conformance testing. The techniques involved
in this project focus on functional requirements and auto-
matically generate Java executable test scripts, which aim to
evaluate the functional conformance of the software imple-
mentation with respect to their associated requirements.

Keywords Software communications architecture
(SCA) - Conformance testing - Model-based testing
(MBT) - Dynamic testing

1 Introduction

The Software Communications Architecture (SCA) is an
open architecture that provides designers information on
how hardware and software artefacts are to interoperate
within a Software Defined Radio (SDR). The SCA specifi-
cations, provided by the Joint Tactical Networking Center
(JTNC) [11], set out requirements for behavioral specifi-
cations, interface specifications, application program inter-
faces (APIs), and rules. This architecture, made up of three
main components (SCA Core Framework, CORBA middle-
ware, and POSIX-based operating system) thus provides a
framework in which the interoperability of products devel-
oped under this architecture is enhanced and assured. How-
ever, due to the multiplicity and diversity of the platform
and form factors, the conformity of a given implementation
with SCA requirements still remains a challenging and com-
plex activity. Indeed, the increase of variable expectations
regarding norms coupled with the growing technology het-
erogeneity lead to deploy a mess of standards, which can
be supported by numerous devices and implemented with
various softwares that can include previously developed
code. Moreover, a lot of waveforms can be implemented

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s11265-015-1089-y-x&domain=pdf
mailto:
mailto:botella@smartesting.com
mailto:jean-philippe.delahaye@intradef.gouv.fr
mailto:eddie.jaffuel@econsult.fr
mailto:

114

J Sign Process Syst (2016) 83:113-128

in radio software, which have to communicate with many
different radios with only a small change in software param-
eters. To build radios that are able to support operations
in a wide variety of domains without losing the ability
to communicate with each other, the SCA specifications
provide a way to ensure the interoperability of compliant
products.

To assess and validate such a compliance, conformance
testing is today a widely-used approach. Conformance test-
ing is done to determine whether a system meets a specified
standard. One key goal of conformance testing is to ensure
interoperability between systems, on the basis of agreed
norms and standards. Conformance tests are designed to
concentrate on areas critical to interoperability, including
testing the system reaction to erroneous behavior. One spe-
cific challenge in the area of conformance testing is the
design of the test suites, and leads to the following ques-
tions:

— How the right tests can be designed?

— How can be agreed, at the level of standard working
group committees, on the content of the conformance
test suite?

— How the bidirectional traceability matrix between con-
formance tests and the standard can be developed and
maintained when the specifications change?

In this paper, we provide first results obtained by using
Model-Based Testing (MBT) [18] from UML and OCL
models [16] to evaluate the functional conformance of a
software implementation with respect to the Software Com-
munications Architecture. MBT refers to a particular type
of software testing processes and techniques consisting
to automatically derive abstract test cases from high-level
abstract models, to generate concrete tests from abstract
tests, and to manually or automatically execute the resulting
concrete test cases to obtain the verdict of each test.

MBT is an increasingly widely-used approach that has
gained much interest in recent years. It is today getting
closer and closer to an industrial reality: theoretical concepts
(and associated tools) to derive test cases from specifica-
tions are indeed now mature enough to be applied in many
application areas [20]. Initially proposed to address func-
tional testing [7], MBT has also been used for a few years
to perform conformance testing in several areas of industry.
We can mention for example projects about the ETSI con-
formance testing process [8] and about the GlobalPlatform
compliance program [10].

Besides, we have conducted this last project about the
deployment of a Model-Based Testing approach to produce
compliance test suites for GlobalPlatform specifications [1].
The MBT integration has been a concrete success story,
and has motivated the experimentation of this same MBT
approach for SCA conformance testing. In this context, our

@ Springer

main goal was to explore and evaluate the technical fea-
sibility and the relevance of applying such a Model-Based
Testing process for SCA conformance testing. This proof
of concept approach, developed and experimented within
a French research project called 0SeP! in partnership
with DGA MI (French DoD), aimed to generate test cases
using an MBT solution to validate the conformance of a
software radio platform with SCA requirements. Indeed,
while some works address SCA conformance (e.g., design
method [17], design framework [15] as well as static anal-
ysis for compliance testing [9]), using an MBT solution to
derive conformance testing in this context defines a novel
and complementary approach.

The rest of the paper is organized as follows. Section 2
briefly describes the principles of the MBT approach and
introduces the MBT solution used to conduct the experi-
ments. Section 3 provides a short description of the MBT
conformance testing process applied to GlobalPlatform and
summarizes the lessons learnt in this domain. Section 4
gives a detailed description of the application of the MBT
solution and process to a subset of SCA 2.2.2 specifica-
tions and discusses the obtained results. Finally, Section 5
concludes the paper and proposes some perspectives to this
work.

2 Model-Based Testing Principles and Motivation

The MBT approach, which is used in this paper to com-
pute conformance test cases, is depicted in Fig. 1, in which
solid arrows define automated tasks whereas dotted arrows
indicate tasks requiring manual design.

This approach takes as input a behavioural UML [16] and
OCL [19] model (1), allowing the test generation engine
both to determine relevant contexts of execution, and to
predict the expected system behaviour (2). Each abstract
generated test case (abstract because they are defined at the
level of the input model) is typically an abstract sequence
of high-level actions (operations) specified in the UML
test model. Moreover, test generation algorithms make it
possible to produce and maintain a bidirectional traceabil-
ity matrix between generated test cases and initial system
requirements. The generated abstract test cases are next
concretized (3) to be automatically executed on the testing
platform composed of the wrapper code generated from the
model and the executable code of the components. Finally,
a test report, including verdict assignments computed by
comparing expected and obtained results, is automatically
produced by the testing framework (4).

"http://osep.univ-fcomte. fr (last access June 2015).

http://osep.univ-fcomte.fr

J Sign Process Syst (2016) 83:113-128

115

O

ﬁ """"""" ’[UML/OCL Model]

1. Modeling

A

2. Generation

A

Test Generation Engine

A 4

[Abstract Test Cases]

A

Test Publisher

ﬁ

8. Concretfiaﬁqn
_l \[Adaptation Layer

ﬁ

4. Analysis

v
Test Scripts]

im

Testing Framework

System
Under Test

Figure 1 Model-Based Testing Process.

In the present paper, the tooled solution experimented to
generate conformance test cases is mainly based on the Cer-
tifylt MBT tool [3], provided by the company Smartesting,?
which was originally developed to generate and manage
functional test cases as shown in [4]. This software is a test
generator that takes as input a test model written with a
subset of the UML notations called UML4AMBT [5], which
captures the behavior of the System Under Test (SUT). Con-
cretely, a UML4AMBT test model consists of UML class
diagrams to describe the static view of the system (with
classes, associations, class attributes and operations), UML
Object diagrams to list the concrete objects used to com-
pute test cases and to define the initial state of the SUT
(and possibly state machines to specify behavioral aspects).
Moreover, operations of the class diagrams are annotated
with OCL constraints to specify the dynamic aspects of the
SUT. OCL expressions provide the expected level of formal-
ization necessary for Model-Based Testing modeling since
an operational interpretation of the OCL postconditions
makes it possible to determine its effect (this specific inter-
pretation of OCL, called OCL4MBT [6], basically consists
to interpret the OCL equality as an assignment). That is why

Zhttp://www.smartesting.com (last access June 2015).

such UML4MBT test models have a precise and unambigu-
ous meaning, so that these models can be understood and
processed by the Certifylt technology. This precise mean-
ing makes it possible to simulate the execution of the test
models and to generate test cases in an automated manner
by applying predefined model coverage strategies. In this
way, the generated test cases contain the sequence of stim-
uli to be executed, but also the expected results (to perform
the verdict assignment) obtained by resolving the associated
OCL constraints. Compared with a manual (traditional) test
design approach, such an MBT approach is known to bring
the following benefits:

— MBT modeling is a process that fosters close commu-
nication of the stakeholders.

— The forced communication process builds up a common
perception and understanding of the requirements in the
given domain and helps to concentrate on areas critical
to interoperability.

— Reducing information and emphasizing different per-
spectives in the conformance MBT model make it
easier to master trade-off and balance of the generated
conformance test suite.

— It helps to reduce maintenance costs due to the “single-
point” information in the MBT model and the “by-
design” traceability between the model and standard
requirements.

The next section describes the GlobalPlatform compli-
ance program for which this test generation process, based
on the Smartesting solution, has been firstly experimented
to produce conformance test suites. The obtained results and
the lessons learned from this experience, which have moti-
vated the use of this process for SCA conformance testing,
are also introduced.

3 GlobalPlatform Compliance Program

GlobalPlatform is a cross industry and not-for-profit asso-
ciation, whose members are payment organizations such
as American Express, MasterCard, or Visa International,
telecom operators, like AT&T, France Telecom, NTT or
Verizon and industrial leaders (AMD, Apple, Blackberry,
Gemalto, Nokia, Samsung, etc.). As shown in Fig. 2, Glob-
alPlatform identifies, develops and publishes specifications
facilitating secure and interoperable deployment and man-
agement of multiple embedded applications on secure chip
technology.

The proven technical GlobalPlatform specifications are
regarded as the international industry standard for build-
ing a trusted end-to-end solution serving multiple actors
and supporting several business models. These freely
available specifications provide the foundation for market

@ Springer

http://www.smartesting.com

116 J Sign Process Syst (2016) 83:113-128

Figure 2 GlobalPlatform
Standard Presentation.

GlobalPlatform is the standard for managing
applications on secure chip technology ——

-

gy
=
iy

\

TRUSTED EXECUTION

ENVIRONMENT MESSAGING

SECURE ELEMENT
Across several market sectors and in converging sectors

/, A\
A ot
S @) I m @
\ /
PREMIUM y PR = = T A A T A
CONTENT FINANCIAL TELECOM GOVERNMENT AUTOMOTIVE HEALTHCARE RETAIL TRANSIT

convergence Or innovative new cross-sector partnerships.
The technology has been adopted globally across finance,
telecom, mobile, healthcare, retail and transit sectors. Glob-
alPlatform also supports an open compliance program
ecosystem to ensure the long-term interoperability of secure
chip technology. Recent research conducted by Eurosmart
confirmed that 2012 shipments of microcontroller smart

secure devices (secure chips) is over 7 billion units, of which
2.6 billion units leverage GlobalPlatform technology.

For a standardization body like GlobalPlatform, the com-
pliance program is a strategic mission. Since 2007, the
GP Compliance Program is managed using a unified pro-
cess [2], which is described in Fig. 3. The Specifications
Working Group is in charge to define the specifications

Compliance secretariat

Authorized organization

— V Evolution request |
Test Suite
it suiie Test Suite
Maint
| / aintenance

\; TestFest J

GUSBALPLATFORM

Figure 3 Process of the GlobalPlatform Compliance Program.

@ Springer

J Sign Process Syst (2016) 83:113-128

117

and the configurations. The Compliance Working Group
reviews the coverage of the compliance test suite, and
arbitrates interpretation of the specifications when nec-
essary. Finally, the Compliance Secretariat manages the
test suite creation and maintenance, and also organizes
the TestFests. A TestFests consists of 3 or 4 days face-to-
face meeting involving the GlobalPlatform Secretariat, the
testing tool providers (usually 3 to 5 companies) and the
product vendors (usually 2 to 4 companies). The ultimate
goal of a TestFest is to qualify the testing tools (softwares
as well as test harnesses), regarding a given compliance test
suite.

During a TestFest, all tests of the test suite are exe-
cuted on every testing tools. The tests remain unchanged all
along the TestFest, even if some test cases, considered as
not relevant by the involved participants, may be excluded
from. The product under test remains also unchanged dur-
ing the TestFest: only the testing tool providers may correct
their software or test harness during the TestFest when
expected results are marked as wrong. At the end of the
TestFest, each testing tool must give the same result as
the expected result for each product, otherwise the testing
tool will not be qualified. This process, required by the
GlobalPlatform Secretariat for all testing tool providers and
product vendors, thus allows the compliance ecosystem to
be equipped with qualified testing tools and so qualified
test laboratories.

Figure 4 MBT Process for
GlobalPlatform Compliance
Testing.

[& Option 1
[Option 2
specification'TASTLE

—

MEctobjective Charter.

Test
Designer

Test Suite
deliverable

Hence, the development of a well-formatted and correct
compliance test suite (from the standard specifications point
of view) is crucial to ensure the success of these events,
which constitute today a keystone to make efficient the
GP Compliance Program. To achieve this goal, GlobalPlat-
form group has been using Model-Based Testing, using the
tool Certifylt provided by the company Smartesting, to pro-
duce its compliance test suites for more than 5 years. At
GlobalPlatform, Model-Based Testing is therefore a key
technology that supports the strategic conformance activ-
ity. It enables the automatic derivation of abstract tests from
UMLA4AMBT models describing the expected GlobalPlat-
form requirements, the generation of the corresponding con-
crete tests, and finally their manual or automated execution
on the different testing tools.

Figure 4 gives an overview of the Model-Based Testing
process instantiated to specifically address the GlobalPlat-
form conformance issues.

The process starts on the left at the textual requirements,
from which a test designer team derives the Test Objective
Charter and a UML test model. This model, based on the
UMLA4MBT notation, represents the expected behavior of
the Application Protocol Data Unit (APDU) specified in the
GlobalPlatform standard. It includes UML class diagrams,
state machines and OCL constraints to formalize the con-
trol points and observation points, the expected dynamic
behavior described in the standard, the business entities

Test Design Reference implementation

" ||Option 1
" ||Option 2
r|Option 3

W
Smartesting
Certifylt

Model

Adaptation) Layer spec

GlobalPlatform
Compliance
Working Group

@ Springer

118

J Sign Process Syst (2016) 83:113-128

SCA 2.2.2 Application Requirements List version 2.2
July 8, 2010

SCA 2.2.2 Specification - Main Body

AP0011

A log producer shall only output log records that contain an
enabled CosLwLog::LogLevel value.

3.1.2.2.1

Manual

APP_TC_001

AP0012

Log producers shall use their component identifier attribute in the
producerld field of the CosLwLog::ProducerLogRecord.

3.1.2.2.1

Manual

APP_TC_001

AP0013

Log producers and CF components that are required by this
specification to write log records shall operate normally in the
absence of a log service or in the case where the connections to a
log are nil or an invalid reference.

3.1.2.2.1

Manual

APP_TC_001

AP0063

A component (e.g., Resource, DomainManager, etc.) that
cC events shall impl the CosEventComm
PushConsumer interface.

3.1.23.1

Manual

APP_TC_029

AP0064

A component (e.g., Resource, Device, DomainManager, etc.) that
produces events shall implement the CosEventComm
PushSupplier interface and use the CosEventComm
PushConsumer interface for generating the events.

3.1.23.1

Manual

APP_TC_029

AP0065

A producer component shall not forward or raise any exceptions
when the connection to a CosEventComm PushConsumer is a nil
or invalid reference.

3.1.2.3.1

Manual

APP_TC_029

AP0069

The connectPort operation shall make a connection to the
component identified by its input parameters.

3.1.3.1.1

.5.1.3 |Automated

ConnectPort

APP_TC_015

AP0069

C002

A port may support several connections. The input connectionld is|
a unique identifier to be used by the disconnectPort operation
when breaking a specific connection.

3.13.1.1

.5.1.3 [Manual

APP_TC_015

AP0070°

The connectPort operation shall raise the InvalidPort exception
when the input connection parameter is an invalid connection for
this port.

3.13.1.1

.5.1.5 [Automated

ConnectPort InvalidPort Exception

APP_TC_014

AP0070

€004%

The InvalidPort exception indicates one of the following errors
has occurred in the specification of a Port association:

1. errorCode 1 means the Port component is invalid (unable to
narrow object reference) or illegal object reference.

3.13.1.1

3.1 [Automated

ConnectPort InvalidPort Exception

APP_TC_014

AP0071

The connectPort operation shall raise the OccupiedPort exception
when unable to accept the connections because the port is already
fully occupied.

3.13.1.1

.5.1.5 [Automated

ConnectPort Occupied Port Exception

APP_TC_015

AP0072

The disconnectPort operation shall break the connection to the
component identified by the input connectionld parameter.

3.13.1.1

.5.2.3 |Automated

DisconnectPort Test

APP_TC_012

AP0073°

The disconnectPort operation shall raise the InvalidPort exception
when the input connectionld parameter is not a known connection

to the Port component.

3.13.1.1

.5.2.5 [Automated

DisconnectPort Test

APP_TC_012

Figure 5 Studied Excerpt of SCA 2.2.2 Application Requirements List Version 2.2 [12].

associated with the test, and some data for the initial test
configuration. Model elements such as transitions or deci-
sions are linked to the requirements defined in the Test
Objective Charter in order to ensure bi-directional traceabil-
ity between these requirements and the model, and later to

Figure 6

the generated test cases and related test plan. Such models
are precise and complete enough to allow automated deriva-
tion of tests. This derivation is a fully automated process
supported by the Smartesting Certifylt testing tool, which
generates abstract test cases to cover the items of the Test

specfications

Test generation

strategies

MBT Process for SCA Conformance Testing.

@ Springer

Test execution
environnement

Unit

J Sign Process Syst (2016) 83:113-128

119

v (22Modéles
v = components

» 4 Associations

» B BaseApplicationinterfaces
£ BaseDevicelnterfaces

» B3 FrameworkControlinterfaces

» £ FrameworkServicesinterfaces

» EJinitialModelState

» E3StandardEvent
[E Main
= Logger

» = NamingService

» £l COMPONENT_IDENTIFIERS

» £l COMPONENT_NAMES

» 27, (UMLPrimitive Types)

Figure 7 Model Structure for SCA Packages.

Objective Charter file. Each generated test case is typically
a sequence of APDUs, with input parameters and expected
output values for each action.

An adaptation layer can be used to link some abstract
values from the model with some concrete test values.
Such generated test sequences are similar to the high-level
test sequences that would be designed manually in action-
word testing [14]. Therefore they are easily understood by
humans, e.g., GlobalPlatform Compliance Testing Group,
and complete enough to be delivered and directly executed
on a targeted system by a manual tester.

1 o1 Q DomainManager

raises_dme
egtions

+ domain®; + comainanagy 6§ icentifier : COMPONENT_IDENTIFIERS

In this context, the major added values of the MBT
process have been the following:

Test case generation is an automated process and so
more predictive and less error-prone than manual pro-
cesses. Moreover, it gives to the generated test cases a
clear functional coverage metrics from the viewpoint of
the Test Objective Charter.

It provides test suite for integration to the Product ven-
dors in-house systems and remains open to any testing
tools suppliers (let the market decide the best tools).
All generated assets (test suites, adaptation layer speci-
fications) are kept in sync because they are derived from
one common asset: the test model is used as the unique
reference implementation.

It supports product variants or options (enabling to
reuse all or some parts of the test model).

From 2007 till present, the GP Compliance Program has
been using this Model-Based Testing approach to produce
its compliance test suite. The metrics of the last GP Com-
pliance Program in 2014 are the following (i.e. the previous
versions of the test suites are not taken into account): about
6000 tests have been generated for 15 active compliance test
suites. For a further description of this MBT process and
related feedback, a more detailed presentation can be found
in [1]. On the basis of this success story, we have decided
to apply this MBT approach for SCA specifications con-
formance issues. The next section describes this work and
introduces the obtained results.

g DomainManagerExceptions
Qcbrpanvanager
owss_fm
041 jeManager
! - [FoeManager
+ ek e TS fleMangy
[Fiemanagerexceptions
sl ffeManager
.mp
= |+ mounfoints
B

name : MOUNT_POINT_NAMES

(X
04 MountPaint
15
0.4 fleSystem
Q FleSystem
1SN ; Boolean

0.4 fieSystem
+4

=} fies
Eigs
Crd name : FILE NAMES
[type : FILE TYPES
(=3 companentidentifier : COMPONENT_IDENTIFIERS
Lro componentName : COMPONENT_NAMES
LFB referencesinvalicroperty : Bodlean
&ov referencesNonBastingFile : Bodlean

L]

Figure 8 Class Diagram of the SCA Model.

E NamingService
0.1
+ comainManagers S s - namingService
Q ApplicationFactory
at + applicationFactaries
owns._ > g Mo : COMPONBT NAMES
(g e : COMPONENT_JDENTIFIERS
Q Application
s + appiications
= G 'o=™ier : COMPONENT_IDSNTIFISRS
g ™ : COMPONRNT NAMES
Q Ressource Q RessourceFactory
g '91er | COMPONENT_IOENTIFIERS (g e | COMPONSNT_IOSNTIFIERS
S

g OdmAddedEvent

g OdmRemovedEvent

@ Springer

120

J Sign Process Syst (2016) 83:113-128

4 Experiments on SCA 2.2.2 Specifications

The development of radio protocols, within Software
Defined Radio (SDR) design context, requires the respect of
the de facto Software Communication Architecture (SCA)
standard [11]. To test SCA compliance and interoperabil-
ity between SDR platforms, we have studied the adaptation
of the MBT approach introduced in the previous section. In
the context of the SCA 2.2.2 functional specifications con-
formance testing, the conducted experimentation is mainly
focused on the “Domain manager” function to “install /
uninstall Application” nominally, including exception man-
agement [12].

In the rest of the paper, the overall presentation will thus
target this part of the specifications, which takes the form of
a matrix, as shown in Fig. 5. Regarding the identification of
the requirements to be tested, the more important columns
are the first that displays the SCA requirements identifier,
and the third that expresses the requirements/criterion state-
ments. The data in the other columns (test method, test case
name and test case number) indeed relate to the test suite,
provided by the Joint Tactical Radio System and Evaluation
Laboratory (JTRS / JTEL), which we plan to automatically
generate using the MBT process.

4.1 MBT Process for SCA Conformance Testing

Figure 6 describes the overall MBT process that has been
deployed on the aforesaid subpart of SCA 2.2.2 specifi-
cations (functional requirements at the level of the SCA
core framework) introduced in Fig. 5. This MBT process,
directly inspired by the MBT process defined to address
the GlobalPlatform compliance program, has been adapted
for the SCA conformance testing context (available specifi-
cations, testing conformance goals, available technologies),
and organised in three steps:

1. Modeling for Test Generation from SCA speci-
fications. From functional SCA 2.2.2 requirements,
the MBT model is developed using the UML subset
UMLAMBT (in an eclipse-based modeling environ-
ment) and is checked for consistency. This MBT model
captures the expected behavior of the SDR platform with
respect to the considered perimeter of the SCA specifi-
cations. It should be noted that the UML4MBT test mo-
del does not contain UML state diagrams since they are
not necessary to capture the behavioral aspects of the
SDR platform (OCL constraints are indeed sufficient).

2. Automated Test Generation. Test selection criteria
are chosen to guide the automatic test generation so
that it produces a test suite aligned with the test strat-
egy. In the context of SCA conformance testing, SCA

@ Springer

requirements are linked to elements of the model, and
the coverage of these requirements drives the test gen-
eration. The UML4MBT model makes it possible to
simulate the execution of the model, to use it as an ora-
cle by predicting the expected outputs of the system
under test, and to provide traceability matrix that gives
clear functional coverage metrics.

3. Automated Test Execution on a Test Bench. Once
the test suite has been generated, the test cases are run.
Test execution may be manual, i.e. by a physical person
or may be automated using a test execution environ-
ment that provides facilities to automatically compute
the test cases and record test verdicts. In our context, the
tests are generated in Java language and automatically
executed using the JUnit framework.

The next subsections detail each of these steps, and
exemplify the approach using test model, test case genera-
tion and test execution results and illustrations.

4.2 From SCA Specifications to MBT Model

The UML test model is specified on the basis of the
UMLA4MBT modeling language introduced before. More
precisely, the test model is composed of a class diagram to
represent the static view of the system (using classes, asso-
ciations, enumerations, class attributes and operations) and
an object diagram to list the concrete objects used to com-
pute test cases and to define the initial state of the system.
In addition, Object Constraint Language (OCL) expressions
are associated with the UML class operations to provide
the expected level of formalization to precisely describe the
dynamic behaviors.

The global structure of the UMLAMBT test model
conforms with the architecture proposed in the SCA
specifications. Hence, one dedicated UML package has
been created to model each specified SCA interface,
as shown in Fig. 7.

The different artefacts of the UML4MBT test model, i.e.
the class diagram, the OCL constraints (including ad-hoc
OCL comment tagging to allow requirements traceability)
and the object diagram, are now described in the next three
subsections, respectively.

4.2.1 Class Diagram

The different entities of the system have been specified
using a UML class diagram as shown in Fig. 8, which
depicts the class diagram of the SCA test model. Each class
may contain one or several operations (not displayed in the
figure to keep it readable), which correspond to the services
that can be applied to the system.

J Sign Process Syst (2016) 83:113-128

121

4.2.2 OCL Constraints

The expected behavior of each specified operation is
described by OCL constraints to determine its effects. It
allows the Smartesting Certifylt tool to predict them in
an automated manner. For instance, Fig. 9 introduces the
constraints of the operation mount ().

To manage conformance requirements traceability, the
OCL effects are tagged to associate the requirements
identifiers with the current OCL statement. As illus-
tration, in Fig. 9, the green expressions (specific line
comment) starting with the keywords REQ (for high
level requirements) and AIM (for sublevel requirements)
associate the OCL code with the requirements identi-
fiers that the OCL statement precisely covers. When
a test case executes this statement, it is referenced
as covering the requirements defined by the annotated
identifier.

This tagging mechanism makes it very easy to link initial
conformance requirements with the corresponding model
behavior. It enables to automatically produce the require-
ments traceability matrix at the same time as the generated
test cases: when a test case executes the annotated state-
ment, this test case is indeed automatically referenced as
covering the annotated requirements.

4.2.3 Object Diagram

Finally, the class diagram is instantiated using an object dia-
gram that allows to determine the initial state of the system
to be tested. Several object diagram can be created to cover
various scenarios and/or various configurations depending
of the testing objectives. Usually, one such diagram is cre-
ated for each test suite to address the specific testing goals
and functional features of them. It also enables to take
into account numerous customizations and specific valua-
tion of parameters regarding the implementation under test.
Figure 10 depicts an excerpt of such a model, by provid-
ing an object diagram that instantiates the class diagram
previously given in Fig. 8.

4.3 Test Generation from the MBT Model

Such UML4MBT models have a precise and unambigu-
ous meaning, so that the behavior of those models can be
automatically understood and manipulated by the Smartest-
ing Certifylt test generation engine. This precise meaning
makes it possible to simulate the execution of the model,
to use it as an oracle by predicting the expected output of
the system under test, and finally to provide traceability
matrix that gives a clear functional coverage metrics from

B *Main R *DiagrammeObjet1 [% mount }

lbelf.reset[xceptions() and
2let invalidFileName :
3let mountPointAlreadyExists :
ilet invalidFileSystem : Boolean = fileSystem.isNull in

6---8REQ: 3.1.3.4.3.5.1

8then
---@AIM: MOUNT_OK

1
p newMountPoint.name = mountPointName and

newMountPoint.fileSystem = fileSystem and
self.mountPoints->includes(newMountPoint)

---@AIM: MOUNT_KO
if (invalidFileName)
then
---@AIM: INVALID_FILE_NAME
) self.raiselnvalidFileNameException()
1 else
2 if (mountPointAlreadyExists)
then
---@AIM: MOUNT_POINT_ALREADY_EXISTS
25 self.raiseMountPointAlreadyExistsException()
26 else
27 true
28 endif
29 endif

1

1

1

1

14
15else
1

1

1

1

31 and if (invalidFileSystem)
32 then
---@AIM: INVALID_FILE_SYSTEM

34 self.raiselnvalidFileSystemException()
35 else
3 true

endif
38endif

Figure 9 OCL Constraints of the Operation mount () .

Boolean = (mountPointName = MOUNT_POINT_NAMES::INVALID_NAME) in
Boolean = (self.mountPoints->exists(mp|mp.name=mountPointName)) in

7if (not(invalidFileName) and not(mountPointAlreadyExists) and not(invalidFileSystem)) = true

0 let newMountPoint:MountPoint = MountPoint.alllInstances()->any(mp|mp.name=MOUNT_POINT_NAMES: :UNDEFINED_NAME) in

@ Springer

122

J Sign Process Syst (2016) 83:113-128

the conformance requirements point of view. Basically, the
test generation algorithm carries out a systematic coverage
of all the behaviors of the test model, which are tagged with
a requirements identifier as shown in previous subsection.
Each test corresponds to a sequence of operations taking
the form of a 3-part structure: a first subsequence places the
system in a specific context (preamble) to exercise a given
behavior annotated by requirements, a second subsequence
invokes this behavior, and finally a last subsequence allows
returning to the initial state so that test cases can be executed
automatically in one single computation sequence. It should
be noted that this 3-part structure can be completed by one
or more observation function calls, which allow observing

the system state at any time during the test execution to
make the verdict assignment more precise and relevant.

Once test generation procedure is computed, a window
of the test generator, see Fig. 11, shows the set of generated
test cases (at the left), and the sequence of called opera-
tions (at the top right) with the list of covered requirements
identifiers (at the bottom right).

The generated test cases, which therefore include stim-
uli and expected outputs, can be exported to a large variety
of format including customizable HTML or XML files,
or directly to a scripted executable format computable
in any testing framework (simulated system or real test
bench). Within SCA case-study, the generated test cases are

g DomainManagerInstance : DomainManager

+ domal w‘ Excentions + domainManager [—Fé idertifier = 100
g DomainMana; nce : DomainMana: + coainManager
+ thevanager
+ -axwmmw + fileManager 2] dosticatio

1=

=2

Figure 10 Excerpt of one Object Diagram.

@ Springer

12 e | Mountpoint £1a
— g e —
4] Flesysteminstance : Fiesystem || £ messowcarastzoce : nassoss
] nulFteSystem ; FileSystem | |
) [Q@ isg _—mmmmdwl File : FileSystem
Gen | £ fleSystemwinsadReterencingUnexistingProperty : Flesystem
+ Fledystem ‘

gmmm:m

'@nm:m

+ flles

v lles |

f\OMQENNVE_O

[CA CompmenName = NAME O
EEL
E‘eb’mzw
[_Fénameﬂva_o

] sadReferencinglnvalidProperty : File
LF\O type = SAD

[-F‘e name = NAME 0

LF‘Q referencesInvalidProparty = true

: File

e

J Sign Process Syst (2016) 83:113-128

123

published as executable JUnit files. Automation relies on
the implementation of keywords, which are defined by the
operations of the UML model, and the test data, which are
defined by the abstract attributes and values in this model.
Finally, to ensure a fully automation, an adaptation layer
(that is manually designed) concretizes the abstract test data
of the model (operation names, inputs, outputs) into con-
crete API calls and values. This layer can be seen as a
table mapping the abstract data of the UML test model to
the concrete ones of the system under test. Thus, test pub-
lisher and adaptation layer make it possible to automatically
derive executable test cases and offer the benefit of pro-
viding a structured and repeatable process. Such executable
test suites can indeed be delivered to SDR manufacturers
and platform providers in order to check, at a early stage
of their development process, the compliance of their prod-
ucts. Moreover, automating test execution is a key aspect
of regression testing (i.e. re-running test cases from existing
test suites to build confidence that software changes have
no unintended side-effects). Without test automation, testers
have to execute the tests manually for each release of the
application: a costly and time-consuming process.

Figures 12 and 13 respectively depict an example of gen-
erated JUnit file and the corresponding Java library that
declares the UML keywords that have to be implemented.

'©00

These files are automatically generated by the Smartesting
Certifylt testing tool. However, even if the Java keyword
library file is automatically generated from the UML test
model, it has to be manually documented. This file has
indeed to be manually designed since it directly depends
on the implementation to be tested. To achieve that, for
each keyword (representing the UML operations of the test
model), the implementation activity consists to complete its
definition by manually implementing the stub (identified by
the TODO comments) with the corresponding concrete code
instructions.

To perform this manual task, the generated files allow
the user to document the commands as well as the concrete
data to be used in order to concretize and execute the gener-
ated test suite. Once this automation design is completed (an
example is given in Fig. 14), the generated test cases can be
exported and executed using a JUnit engine and the related
test execution report can be computed and delivered.

Indeed, the last phase consists of exporting, in a JUnit
test execution environment, the abstract test cases and the
completed interfaces, which define the prototype of each
operation and link the abstract structures and data of the test
cases to the concrete ones. Within the SCA compliance test-
ing context, each abstract test case is exported as a JUnit
test case, and all the test cases belong to a unique JUnit

Smartesting Certifylt 6.0 — SCA [/Users/yakaldir/Work /Smartesting /workspaceRSA/SCA]

Project Preferences Help
JE@I ® + @ | B | 2 HTML publisher ~

5 Stories '\, &) Tests ', £_ Requirements ',

Q_ Search stories |

7

2 0 ‘

Test detail
Steps

2 Default model instance

i Artifacts | status [Tests I_F" Initialized model instance
tJ|E & Project —_— 12 - FileManagerinstance.mount(NAME_O, FileSysteminstance)
| B b suite — T & DomainManagerinstance.installApplication(INVALID_NAME)
=% k DomainManager::installApplication() v o1 ® DomainManagerinstance.checkApplicationFactoriesIsEmpty()
< 03.1.3.2.3.6.3 < 1
(1 INSTALL_APPLICATION_KO v 1
1 INVALID_FILE_NAME « 1
7 installApplication (c6-fc-0f)
® & DomainManager::installApplication() 1 @
I 3 DomainManager::installApplication() 1 —
H @ DomainManager::installApplication() v 3 Tags of the suite reached by the test (bold for current step)
I 3 DomainManager::uninstallApplication() 1 REQ:
#H % DomainManager::uninstallApplication() v 1 3.1.3.4.3.5.1
#H & FileManager::mount() 9 + 3.1.3.2.3.6.3
E & FileManager::mount() L4 1
H % FileManager::mount() v 1 i -
E & FileManager::mount() v 1 y 2 ‘j KO
H & FileManager::mount() 1 2.3.6
H % FileManager::mount() v 1
® FileManager::mount() ®© 0
E & FileManager::unmount() v 1
® & FileManager::unmount() 1
=il | Reached tags / Activated tags / Parameters / Model instance /

Figure 11 Smartesting Certifylt GUI with Generated Test Cases.

@ Springer

124 J Sign Process Syst (2016) 83:113-128

package Smartesting.SCA.suite;
import junit.framework.TestCase;[]
/%
REQUIREMENTS:
3.1.3.2:3:6.3
3 1
public class InstallApplication__c6_a4_38_ extends TestCase {
private AdapterImplementation adapter;
public void setUp() throws Exception {
adapter = new AdapterImplementation(new TypesAdapterImplementation());
}

public void testInstallApplication__c6_a4_38_() throws Exception {
adapter.componentsFrameworkServicesInterfacesFileManagermount(FileManager. FileManagerInstance, MOUNT_POINT_NAMES.NAME_@, FileSystem.FileSystemInstance);
adapter.componentsFrameworkControlInterfacesDomainManagerinstallApplication(DomainManager.DomainManagerInstance, FILE_NAMES.INVALID_NAME);
adapter.componentsFrameworkControlInterfacesDomainManagercheckApplicationFactoriesIsEmpty(DomainManager .DomainManagerInstance);

public void tearDown() throws Exception {
adapter.closeAdapter();
i

}

Figure 12 Example of Generated JUnit Test File.

test suite. Figure 15 shows the interface of the JUnit Eclipse ~ example, in Fig. 15, it shows the code to compute a given
environment supporting the management of the executable test).

test suite and its computation to assign the test verdict. In

Fig. 15, each line in the left window frame corresponds to 4.4 Lessons Learnt from our Experiments

a test case and gives its verdict. The green mark means that

all the test cases are in success, i.e. the execution gives the ~ This Model-Based Testing approach has been successfully
expected results with respect to the specifications, and so applied on a subpart of the SCA 2.2.2 specifications, and
it demonstrates that the tested scenario is implemented cor- this project has enabled to implement a fully automated
rectly with respect to the SCA specifications. Other frames and suitable conformance testing approach for SCA stan-
of the Eclipse interface can be used to display implementa- dard. Moreover, the results obtained using this Model-Based
tion details about the test suite or a selected test case (for Testing process give some valuable benefits regarding the

backage Smartesting.SCA;
import Smartesting.SCA.TypesDeclaration.ApplicationFactory;[]

public class AdapterImplementation implements AdapterInterface {
private TypesAdapterInterface typesAdapter;

public AdapterImplementation(TypesAdapterInterface typesAdapter){
this.typesAdapter = typesAdapter;
}

@0verride
public void componentsFrameworkServicesInterfacesFileManagermount(
FileManager receiverInstance, MOUNT_POINT_NAMES mountPointName,
FileSystem fileSystem) throws Exception {
// TODO Auto-generated method stub

}

@0verride
public void componentsFrameworkControlInterfacesDomainManagercheckApplicationFactoriesIsEmpty(
DomainManager receiverlInstance) throws Exception {
// TODO Auto-generated method stub

}

Figure 13 Example of Generated Java Keyword Library.

@ Springer

J Sign Process Syst (2016) 83:113-128

125

conformance testing challenges introduced in Section 1.
The main lessons learnt from these experiments are the
following:

1. The UML modeling style (the UML4MBT language)
is adequate to design such SCA MBT models. The
SCA specifications are also precise enough to spec-
ify the OCL constraints related both to the func-
tional behaviours of the APIs and to the conformance
requirements they have to ensure. The interpretation of
the specifications was easy, and no specific problem
appeared during the modeling phase.

2. The annotation of the MBT model by SCA require-
ments (at the level of OCL constraints) is a good way
to ensure an appropriate and relevant coverage of the
SCA specifications during automated test generation.
The requirements identifiers appear in the test scripts
in order to ensure the traceability link from the require-
ments to the automated test. Therefore, this enables

Figure 14 Java Implementation
of the Keyword Library.

import
import
import
import
import
import
import
import

public

static String tab = " :

PrintStream ps;
int ok = 0;

int ko = 0;

private
private
private
private

@0verride

String filelogs =
FileOutputStream filelLog;
PrintStream pfilelog;

int appFactorySegLength = @;

to easily and precisely retrieve which conformance
requirements are concerned when a test execution fails.

3. Finally, due to a natural mapping between the mod-
eled operations and the SCA APIs of the SDR platform,
automated test execution was straightforwardly man-
aged. More concretely, the (nearly always) one-to-one
mapping between the abstract UML operations (resp.
attributes and data) and concrete system APIs (resp.
variables and values) has made the concretization step
very simple.

In the same way as for GlobalPlatform experiments,
some other benefits, directly inherited from well-known
advantages of the MBT approaches [7] (and already demon-
strated on software radio protocol during a previous exper-
iment [13]) have also been noticed. For instance, this MBT
approach for SCA compliance testing reduces test mainte-
nance costs because only the test model has to be managed
instead of the test cases. Moreover, conformance tests being

SCA.TypesDeclaration.COMPONENT_NAMES;
SCA.TypesDeclaration.FILE_NAMES;
SCA.TypesDeclaration.MOUNT_POINT_NAMES;
SCA.TypesDeclaration.0dmAddedEvent;
SCA.TypesDeclaration.0OdmRemovedEvent;
SCA.TypesDeclaration.SOURCE_CATEGORY_TYPE;
SCA.TypesDefinition.COMPONENT_IDENTIFIERS;
SCA.TypesDefinition.FileSystem;

class AdapterImplementation implements AdapterInterface {

"./fileLog.txt";

public void componentsFrameworkControlInterfacesDomainManagercheckApplicationFactories(
SCA.TypesDefinition.DomainManager receiverInstance,
SCA.TypesDefinition.ApplicationFactory applicationFactory,
SCA.TypesDeclaration.COMPONENT_IDENTIFIERS out_identifier,
COMPONENT_NAMES out_name) throws Exception {
// TODO Auto-generated method stub

}

@0verride

public void componentsFrameworkServicesInterfacesFileManagerunmount(
SCA.TypesDefinition.FileManager receiverInstance,
MOUNT_POINT_NAMES mountPoint) throws Exception {

final FileManager fm =

try {

TypesAdapter.getConcreteValue(receiverInstance);

fm.unmount (mountPoint.toString());

ps.println("0K

ok++;

File System unmounted");

listMountedFileSystems(fm);
} catch (NonExistentMount e) {

ps.println("K0 :

ko++;

}

Non Existent Mount Exception : File System");

private void listMountedFileSystems(FileManagerOperations fm) {

ps.printin(tab + "List of Mounted Types : "
0; i < fm.getMounts().length; i++) {
ps.println(tab + "Mount Point :

+ " \n File System

for (int i =

+ fm.getMounts().toString());

+ fm.getMounts() [i].mountPoint
: " + fm.getMounts() [i).fs.toString());

@ Springer

J Sign Process Syst (2016) 83:113-128

e OO0 Java - PseudoDeviceTest/src/Smartesting/SCA/suite/Mount__c6_e2_16_.java - Eclipse SDK - /Users/yakaldir/Work/Smartesting/workspaceOsep e
Fiy NS O QS G v (9 s O i E D [e e (Q Quick Access ‘ & | §ava
Package Explorer a'l’UUnit 2 W | 1J] Adapterimplemen [J) Adapterinterfac [J] TypesAdapterint [3) Mount__c6_e2_16 2 = s = 8
Workspace BEI BB 0\; By ¥ f:uckage Smartesting.SCA.suite; EE

Finished after 0,027 seconds

® import junit.framework.TestCase;

B Failures: 0 /*
” ‘ REQUIREMENTS:

> EgSmanes(ing.SCAAsuile.Mount <6_e2_16_ [Runner: JUnit 4] (0,000 s)

» i) Smartesting.SCA.suite.Unmount__c6_2f_31_ [Runner: JUnit 4] (0,001 s)

Runs: 24/24 B Errors: 0

*/

3:1.3.4.3.5.1

public class Mount__c6_e2_16_ extends TestCase {

»] Smartesting.SCA.suite.Mount_c6_e4_c7. r: JUnit 4] (0,000 s) private AdapterImplementation adapter;
b i) Smartesting.SCA.suite.Mount__c6_88_79_|f t 4] (0,000 s) X X X
»] Smartesting.SCA.suite InstallApplication_c6_ad_38_ [Runner: JUnit 4] 0,00 public; void setUp() throws Exception { .
Ba o . adapter = new AdapterImplementation(new TypesAdapterImplementation());
P Fjt] Smartesting.SCA.suite.InstallApplication__c6_bb_e0_ [Runner: JUnit 4] (0,0C }
» Fi) Smartesting.SCA.suite.Mount__c6_14_25_[t 4] (0,000 s)
> fafgSma. SCA.suite.InstallA 4] (0,00(public void testMount__c6_e2_16_() throws Exception {
P Fjt] Smartesting.SCA.suite.UninstallApplication__c6_2d_17 r: JUnit 4] (0 adapter.componentsFrameworkServicesInterfacesFileManagermount(FileManager. FileManagerInst
> E;J Smartesting.SCA.suite.Unmount__c6_93_0c_ [Runner:) 0,000 s)
» fi] Smartesting.SCA.suite.Mount_c6_7e_3c r: JUnit 4] (0,000 s) . . .
»] Smartesting.SCA.suite.Mount_c6_66_17_ t 4] (0,000) a public void tearDown() throws Exception {
> bg‘Sm;mesnng.SCAAsul(e.Ins(allAppl|cauon_c6_e0_d ner: JUnit 4] (0,00 adapter.closehdapter();
» i} Smartesting.SCA.suite.Mount__c6_7f_72_ [Runne] (0,000 s)
» i) Smartesting.SCA.suite.Unmount__c6_05_6e_ [Runner: J 4] (0,000 s) }
» Eit) Smartesting.SCA.suite.UninstallApplication__c6_0b_91_ [Runner: JUnit 4] (0
» i) Smartesting.SCA.suite.UninstallApplication__c6_ff_Oe_ [Runn nit 4] (0,1

P Fjk] Smartesting.SCA.suite.Unmount__c6_63_35_ [Runner: JUnit 4] (0,000 s)
P Fjt]Smartesting.SCA.suite.InstallApplication__c6_ad_d2_ [Runner: JUnit 4] (0,0C

> '5}] Smartesting.SCA.suite.InstallApplication__c6_fe_72_ [Runner: JUnit 4] (0,00
» i Smartesting.SCA.suite.Mount__c6_e0_c7_ (R r: JUnit 4] (0,000 s)
»] Smartesting.SCA.suite.Mount_c6_df_68_ [Runner: JUnit 4] (0,000 s)
» Fii) Smartesting.SCA.suite.Mount__c6_74_df_ [Runner: JUnit 4] (0,000 s)
> E{J‘Smanesting.SCA.sulte.Un|nstalIAppIication_c6_42_72_ [Runner: JUnit 4] (0

Problems

= Failure Trace =

Figure 15 Example of Eclipse Test Execution Report.

based on the same model, they are generated for vari-
ous implementations, releases, and versions of a single
application. This unique reference ensures efficient regres-
sion testing and makes easier all maintenance and upgrade
activities.

Nevertheless, contrary to the GlobalPlatform experience,
this case-study has been conducted as a first experimen-
tal evaluation to investigate the technical feasibility and the
relevance of applying a Model-Based Testing process to
address SCA conformance testing. In this way, we have
developed a proof of concept approach, which still requires
to be validated in a large-scale context, in particular to
assess the effective capacity of the proposed MBT approach
to manage possible alternative interpretations and/or imple-
mentations of the SCA specifications.

Moreover, even if the experiments on a fragment of the
SCA specifications have been successfully conducted and
we have obtained results that are undeniably very promis-
ing, additional extensive experiments are needed to ensure
the approach is effectively suitable for all the features
defined by the SCA specifications, and not only for the
studied fragment.

Finally, to propose an industrial deployment of this MBT
solution, we also need to increase the readiness level of its
supporting tooling, especially by offering an enhanced inte-
gration of the Certifylt MBT tool with the SDR execution
platforms and test beds. To ease modeling, we could also

@ Springer

Declaration Search [l Console & % % REEE | A E-r8-= 0

<terminated> Smartesting.SCA.suite [JUnit] /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home/bin/java (22 oct. 201

Writable Smart Insert =1

implement a library of model patterns dedicated to SDR
units. It could help engineers to reduce the time spent dur-
ing the modeling phase, and could allow them to write a
test model devoid of noisy specified data from a compliance
point of view.

5 Conclusion and Further Work

Since last 10 years, Model-Based Testing (MBT) has seen
an increasing interest in different industrial areas of soft-
ware and system testing. This is due to the fact that benefits
of MBT, such as facilitation to define and automate spe-
cialized testing strategies, help to tackle the challenges of
ever more complex softwares and systems. In the context
of conformance testing, several deployments of MBT led
by industrial consortium (GlobalPlatform for instance) have
shown that these techniques may help a standardization
organization to better conduct and master their compliance
program.

In this paper, within a French research project called
OSeP, we investigate and report about a small but suc-
cessful technical proof of concept of applying Model-Based
Testing to validate interoperability between SDR platforms
and to assess their conformance with the SCA specifi-
cations. To achieve and automate this process, we have
developed and extended an existing Model-Based Testing

J Sign Process Syst (2016) 83:113-128

127

toolchain in order to manage automated SCA conformance
testing generation. Basically, we make use of the Smartest-
ing Certifylt test generator to generate abstract test cases
from a UML model specifying the SCA requirements.
These test cases are next exported as JUnit test scripts to be
executed on the SDR platform under test in order to validate
its compliance with the modeled SCA requirements.

Experiments have been conducted on a fragment of
the SCA 2.2.2 functional specifications focusing on the
“Domain manager” function to “install / uninstall Applica-
tion” nominally, including exception management. Model-
ing this functional fragment of the SCA specifications was
finally quite simple, and automated test generation tech-
niques have provided the corresponding tests to be run on
the SDR platform. Moreover, the use of dedicated anno-
tations in the UML model, to support requirements trace-
ability from the test model to the executable test scripts,
makes the solution suitable to precisely validate or invali-
date conformance requirements. Therefore, experimentation
feedback using this automated Model-Based Testing gener-
ation process are very encouraging for SCA conformance
testing.

The perspective of this project is to continue to extend
the coverage of the functional SCA specifications by the
UML model, and so to improve the generated conformance
test suite. Indeed, this first empirical evaluation needs to
be further investigated by addressing a larger part of the
SCA specifications to definitively demonstrate its relevance
and effectiveness to achieve SCA compliance testing within
large-scale and various SDR deployments. As future work,
we also plan to propose a deeper integration of the tools
(in particular regarding the link between test generation tool
and the execution platform) to increase the readiness level
of the solution, and to foster its use by engineers.

Acknowledgments This work has been supported by the ANR
ASTRID project 0SeP (On-line and Off-line Model-Based Testing of
Security Properties, ANR 11 ASTR 002). See http://osep.univ-fcomte.
fr (last access June 2015).

References

1. Bernabeu, G., Jaffuel, E., Legeard, B., & Peureux, F. (2014). MBT
for GlobalPlatform compliance testing: Experience report and
lessons learned. In Proceedings of the 25" International Sympo-
sium on Software Reliability Engineering (ISSRE’14) (pp. 66-70).
Naples: IEEE Computer Society Press.

2. Bernabeu, G., & Lavabre, N. (2013). Model-based testing for
a world-wide compliance program. In 15" User Conference on
Advanced Automated Testing (UCAAT’13). Paris France. http://
ucaat.etsi.org/2013/presentations/Keynote_MBT%20for%20a%20
Compliance%20Program-GlobalPlatform-GilBernabeu.pdf. (last
accessed January 2015).

3. Bernard, E., Bouquet, F., Charbonnier, A., Legeard, B., Peureux,
E., Utting, M., & Torreborre, E. (2006). Model-based testing

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

from UML models. In Proceedings of the International Workshop
on Model-Based Testing (MBT’06), LNI, vol. 94 (pp. 223-230).
Dresden: GI.

. Bernard, E., Legeard, B., Luck, X., & Peureux, F. (2004). Gen-

eration of test sequences from formal specifications: GSM 11-11
standard case study. International Journal of Software Practice
and Experience, 34(10), 915-948.

. Bouquet, F., Grandpierre, C., Legeard, B., & Peureux, F. (2008).

A test generation solution to automate software testing. In Pro-
ceedings of the 3¢ Int. Workshop on Automation of Software Test
(AST’08) (pp. 45-48). Leipzig: ACM Press.

. Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F., Vacelet,

N., & Utting, M. (2007). A subset of precise UML for model-
based testing. In Proceedings of the 3" 4 International Workshop
on Advances in Model-Based Testing (AMOST’07) (pp. 95-104).
London: ACM Press.

. Dias-Neto, A., & Travassos, G. (2010). A Picture from the

Model-Based Testing Area: Concepts, Techniques, and Chal-
lenges. Advances in Computers, 80, 45-120. ISSN 0065-2458.

. ETSI: Conformance Testing. http://www.etsi.org/technologies-

clusters/technologies/testing. (last accessed January 2015).

. Ezick, J., & Springer, J. (2011). The benefits of static compli-

ance testing for sca next. In Wireless innovation forum conference
on communication technologies and software defined radio (SDR-
WinnComm’11).

GlobalPlatform (2001). GlobalPlatform Card Specification Ver-
sion 2.2.1. http://www.globalplatform.org/specificationscard.asp.
(last accessed January 2015).

JTNC Standards, Joint Tactical Networking Center, Final/15
V.2.2.2: JTRS/JPEO Software Communications Architecture
Specification (2006). http://jtnc.mil/sca/Pages/default.aspx. (last
access January 2015).

JTRS Test and Evaluation Laboratory (2010). SCA 2.2.2 Appli-
cation Requirements List version 2.2 Release Notes. https://jtel.
spawar.navy.mil/docs/sca_2_2_2_application_requirements_list_v2.
2.pdf.(last access January 2015).

Li, S., Bourdelles, M., Acebedo, A., Botella, J., & Peureux, F.
(2012). Experiment on using model-based testing for automatic
tests generation on a software radio protocol. In Proceedings of
the 9" Int. Workshop on Systems Testing and Validation (STV’12),
pp. 79-84. Paris, France.

Nguyen, H., Hackett, M., & Whitlock, B. (2006). Global Soft-
ware Test Automation: A Discussion of Software Testing for
Executives. Happy About books. ISBN 1-6000-5011-5.
Riccobene, E., & Scandurra, P. (2014). A formal framework for
service modeling and prototyping. Formal Aspects of Computing,
26(6), 1077-1113.

Rumbaugh, J., Jacobson, 1., & Booch, G. (2005). The Unified
Modeling Language Reference Manual, 2"%: Addison-Wesley.
ISBN 0-3212-4562-8.

. Seignole, V., Hachet, O., Counil, B., & Balp, H. (2010). Method

and system for encapsulating a plurality of software com-
ponents compatible with the CCM standard into a software
standard compatible with the SCA standard. WO Patent App.
PCT/EP2009/065,831. Google Patents.

Utting, M., & Legeard, B. (2006). Practical Model-Based Testing
- A tools approach. Morgan Kaufmann, San Francisco, CA, USA.
ISBN 0-1237-2501-1.

Warmer, J., & Kleppe, A. (1999). The Object Constraint Lan-
guage: Precise Modeling with UML, 2"¢: Addison-Wesley. ISBN
0-2013-7940-6.

Zhu, H., & Belli, F. (2009). Advancing test automation technology
to meet the challenges of model-based software testing. Infor-
mation and Software Technology, 51, 1485-1486. ISSN 0950-
5849.

@ Springer

http://osep.univ-fcomte.fr
http://osep.univ-fcomte.fr
http://ucaat.etsi.org/2013/presentations/Keynote_MBT%20for%20a%20Compliance%20Program-GlobalPlatform-GilBernabeu.pdf
http://ucaat.etsi.org/2013/presentations/Keynote_MBT%20for%20a%20Compliance%20Program-GlobalPlatform-GilBernabeu.pdf
http://ucaat.etsi.org/2013/presentations/Keynote_MBT%20for%20a%20Compliance%20Program-GlobalPlatform-GilBernabeu.pdf
http://www.etsi.org/technologies-clusters/technologies/testing
http://www.etsi.org/technologies-clusters/technologies/testing
http://www.globalplatform.org/specificationscard.asp
http://jtnc.mil/sca/Pages/default.aspx
https://jtel.spawar.navy.mil/docs/sca_2_2_2_application_requirements_li st_v2.2.pdf
https://jtel.spawar.navy.mil/docs/sca_2_2_2_application_requirements_li st_v2.2.pdf
https://jtel.spawar.navy.mil/docs/sca_2_2_2_application_requirements_li st_v2.2.pdf

128

J Sign Process Syst (2016) 83:113-128

'%N\l

Julien Botella received his
Master of Science degree
in Computer Science in
2006 from the University of
Franche-Comté. From 2006 to
2008, he was R&D Engineer
at the Inria (French Research
Institute for Computer Science
and Applied Mathematics) in
Besangon. From 2008, he is
technical leader and senior
consultant at Smartesting.
He is an expert in automated
test generation and execu-
tion approaches with a large
experience of developing and

automating Model-Based Testing techniques for both functional and
security testing.

Jean-Philippe Delahaye
received his MS in Telecom-
munications from Telecom
ParisSud and his Master
Degree in Electronics from the
University of Paris 11, both
in 2003. He received in 2007
his Ph.D. Degree in Electron-
ics from the University of
Rennes 1. In 2007, he joined
the French armament procure-
ment agency in Information
Warfare Technology Center
as a technical system engineer
in software radio (SDR). He
is currently the expert for the

French Programme CONTACT working in SDR standardization. His
interests include middleware and software architectures for embedded
systems, component-based software engineering and testing.

multi-component systems, etc.).

@ Springer

Eddie Jaffuel received
his engineering degree in
Software Engineering from
ENSIMAG (Mathematics and
Computer Sciences) in 1998.
He worked as a consultant at
Smartesting during 8 years.
In 2012, he founded the inde-
pendent service company
eConsult, specialist in test
production with Model Based
Testing solution. Eddie Jaffuel
is an expert in modeling and in
Model-Based Testing solution
to various domains (auto-
motive, smartcards, telecom,

Bruno Legeard is professor
of Software Engineering at the
University of Franche-Comté
and Scientific advisor for
Smartesting Solutions & Ser-
vices. He is co-author of the
book “Practical Model-Based
Testing - A tools approach”
(Elsevier) published in
2006. He started working on
Model-Based Testing in the
mid 1990’s and has exten-
sive experience in applying
Model-Based Testing to
large information systems,
e-transaction applications and
embedded softwares. He is member of the French Software Testing
Committee Board, and co-leads the Model-Based Testing certifica-
tion within the International Software Testing Qualification Board
(ISTQB).

Fabien Peureux received his
Ph.D. degree in Computer
Science from the University
of Franche-Comté in 2002,
where he works since 2003
as assistant professor and
does his research activities
with the FEMTO-ST Insti-
tute. Since 2005, he is also
senior scientific consultant
for the Smartesting com-
pany. His main expertise is
focused on the automation
of validation process in the
domains of smartcard appli-
cations, information systems
and embedded softwares, with a particular interest in Model-Based
Testing techniques and agile approaches.

	Achieving SCA Conformance Testing with Model-Based Testing
	Abstract
	Introduction
	Model-Based Testing Principles and Motivation
	GlobalPlatform Compliance Program
	Experiments on SCA 2.2.2 Specifications
	MBT Process for SCA Conformance Testing
	From SCA Specifications to MBT Model
	Class Diagram
	OCL Constraints
	Object Diagram

	Test Generation from the MBT Model
	Lessons Learnt from our Experiments

	Conclusion and Further Work
	Acknowledgments
	References

