
J Sign Process Syst (2016) 84:435–446
DOI 10.1007/s11265-015-1081-6

Improving Code Density with Variable Length Encoding
Aware Instruction Scheduling

Heikki Kultala1 ·Timo Viitanen1 · Pekka Jääskeläinen1 · Janne Helkala1 ·
Jarmo Takala1

Received: 30 January 2015 / Revised: 21 July 2015 / Accepted: 30 October 2015 / Published online: 7 December 2015
© Springer Science+Business Media New York 2015

Abstract Variable length encoding can considerably
decrease code size in VLIW processors by reducing the
number of bits wasted on encoding No Operations(NOPs).
A processor may have different instruction templates where
different execution slots are implicitly NOPs, but all com-
binations of NOPs may not be supported by the instruction
templates. The efficiency of the NOP encoding can be
improved by the compiler trying to place NOPs in such way
that the usage of implicit NOPs is maximized. Two dif-
ferent methods of optimizing the use of the implicit NOP
slots are evaluated: (a) prioritizing function units that have
fewer implicit NOPs associated with them and (b) a post-
pass to the instruction scheduler which utilizes the slack
of the schedule by rescheduling operations with slack into
different instruction words so that the available instruc-
tion templates are better utilized. Three different methods
for selecting basic blocks to apply FU priorization on are
also analyzed: always, always outside inner loops, and
only outside inner loops only in basic blocks after testing
where it helped to decrease code size. The post-pass opti-

� Heikki Kultala
heikki.kultala@tut.fi

Timo Viitanen
timo.2.viitanen@tut.fi

Pekka Jääskeläinen
pekka.jaaskelainen@tut.fi

Janne Helkala
janne.helkala@gmail.com

Jarmo Takala
jarmo.takala@tut.fi

1 Tampere University of Technology, Tampere, Finland

mizer alone saved an average of 2.4 % and a maximum of
10.5 % instruction memory, without performance loss. Pri-
oritizing function units in only those basic blocks where
it helped gave the best case instruction memory savings
of 10.7 % and average savings of 3.0 % in exchange for
an average 0.3 % slowdown. Applying both of the opti-
mizations together gave the best case code size decrease of
12.2 % and an average of 5.4 %, while performance
decreased on average by 0.1 %.

Keywords Code density · Variable length instructions ·
vliw · tta · Instruction scheduling · Code optimization ·
Instruction templates

1 Introduction

One of the main pitfalls of Very Long Instruction Word
(VLIW) and Transport Triggered Architectures (TTAs) [1] is
the poor code density which is caused by the long instruc-
tion word and No Operation (NOP)s that have to be inserted
into the program code. A VLIW or TTA processor has sev-
eral execution units in order to achieve high performance
on computationally intensive inner loops, often with aid
of unrolling and software pipelining. Each of the execu-
tion units has an execution slot in the wide instruction
word. Often there is a large amount of control-oriented code
outside the inner loops which cannot exploit the parallel
execution units, and is, therefore, represented with instruc-
tions where most of the execution slots are NOPs. In a
straightforward encoding, this helper code consumes a large
amount of instruction memory.

In order to save instruction memory and fetch power,
control code should be encoded in a more compact form
than full-size VLIW instructions. One common approach

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s11265-015-1081-6-x&domain=pdf
mailto:heikki.kultala@tut.fi
mailto:timo.2.viitanen@tut.fi
mailto:pekka.jaaskelainen@tut.fi
mailto:janne.helkala@gmail.com
mailto:jarmo.takala@tut.fi


436 J Sign Process Syst (2016) 84:435–446

Figure 1 A short program
before (left) and after (right)
assigning two new instruction
formats, which define two
execution slots to be used out of
the five in the processor. Most of
the NOP operations are removed
by using the shorter instruction
formats in the 2nd, 3rd and 4th
instruction. IMM means a long
immediate value which is
transferred to the data path of
the processor by encoding it into
two execution slots of an
instruction word in a instruction
template where these two
executions slots cannot be used
for ordinary operations.

is to structure instructions in a series of operations, with,
e.g., start and stop bits to delimit operations that can be
executed in parallel. Dynamic hardware then detects bun-
dles and routes operations to appropriate execution units.
Conte et al. discuss I-fetch and cache design tradeoffs in
this type of encoding [2]. However, the hardware to support
any combination of NOPs in each instruction is complex.
Other processors simplify the decode apparatus by specify-
ing a limited number of instruction templates: each template
specifies some execution slots as implicit NOPs that do
not consume space, but other NOPs have to be explicitly
encoded. In a reasonable implementation, there are only few
different instruction templates. [3, 4]

An example of template selection and NOP removal for
a 5-issue processor is shown in Fig. 1. In this example, a
large amount of NOPs is seen in four instruction words.
Two new instruction formats are assigned to the templates
’10’ and ’11’, which only use the execution slots A, B

and D, E. The rest of the execution slots in these two for-
mats are considered as NOP slots. If NOPs are seen in the
NOP slots, they are removed from the instruction. Three
instructions can be encoded in these templates to remove
a majority of the NOP operations in the example program.
Considerable instruction memory savings can be achieved
by simply scheduling the instructions for the maximum per-
formance without optimizing the code for the implicit NOP
slots and simply using the shorter instructions when the
NOP patterns match. This is, however, suboptimal, as the
usage of the short instructions can be increased by compiler
optimizations.

In this paper, two solutions to this are presented and
compared: (a) prioritizing function units that have implicit
NOP slots associated with them in fewer instruction tem-
plates and (b) executing a post-scheduler NOP-optimizer
which utilizes slack of the schedule. In post-scheduler

approach, operations, which have slack, are moved spa-
tially into different instruction words so that the available
instruction templates are better utilized to their maximum
capacity. Prioritizing function units may decrease the per-
formance of the code as this may conflict with other, more
performance-critical methods of function unit priorization.
The post-scheduler optimizer should have minimal effect on
performance.

We have already reported some preliminary results in
[5] and, in this paper, we propose two additional improve-
ments: performing prioritization only for basic blocks out-
side inner loops so as to decrease the performance penalty,
and speculatively scheduling basic blocks with both heuris-
tics and selecting the one with the better code density. These
improvements make FU priorization a viable optimization
in practise, unlike the original algorithm which uses same
heuristics for all basic blocks in the program. Also some of
the technical content is presented in more detail. In addi-
tion, an advanecd version of the instruction scheduler is used
which explains the differences in some results compared to
[5].

This paper is organized as follows. Section 2 dis-
cusses previous research related to the proposed methods.
Subsection 3.2 explains the function unit selection heuris-
tics. Subsection 3.3 introduces the proposed post-scheduler
optimizer algorithm. Section 4 contains evaluation of the
two proposed methods. Section 5 discusses potential future
research related to the topic. Section 6 concludes the paper.

2 Related Work

Lee et al. [6] introduce a post-scheduler optimization algo-
rithm to minimize the instruction fetch and control logic
transitions between successive instructions. In this method,



J Sign Process Syst (2016) 84:435–446 437

horizontal and vertical rescheduling of operations is per-
formed, moving operations both between instructions and
between execution slots in the same instructions. Their
method, however, does not consider the NOP usage and
does not try to optimize the code size, but their work has
been an inspiration to the post-optimizer pass presented in
this paper.

Hahn et al. [7] propose a variable-length encoding for
VLIW. This method has “protected” versions of many long-
latency operations and control operations. These versions
of the operations add pipeline stalls after the operations, so
that there is no need to add subsequent instruction words
containing only NOPs. Their instruction scheduler fills the
delay slots and instruction words after a long-latency oper-
ation with usable instructions, and uses the ordinary version
of the operation if possible, to maximize performance. In
case the scheduler cannot place any useful operations in
delay slots or instructions after some long-latency opera-
tion, it replaces the operation with the “protected” version of
the operation. When optimizing for minimal code size, the
compiler always uses the protected versions of instructions,
resulting in lower performance but eliminating all NOPs due
to delay slots and long-latency operations.

In [8], a method of collapsing the prolog and the epilog
of software pipelined loop is introduced. This optimization
can be combined with the proposed methods as they attack
different parts of the code size problem.

The approach of Jee et al. [9] eliminates many NOP oper-
ations by encoding only data dependencies and enabling
different execution slots to execute operations from differ-
ent instruction words. This, however, requires considerable
changes to the processor architecture and adds complexity
to the processor’s control logic, and requires some support
for dynamic scheduling in the processor.

Some studies approach the code density problem at a
lower level by compressing code with, e.g., Huffman cod-
ing. Ros et al. [10] propose compiler optimization passes
that improve the compression ratio by reassigning registers.
Larin and Conte [11] have the compiler generate an optimal
Huffman coding and decompression hardware to go with
each program. These approaches might be applied on top of
a template-based instruction format.

Haga et al. [12] introduce a method to minimize code
size with global scheduling. Their approach, however, does
not consider optimizing the code size for variable-length
instructions.

Haga et al. [13] discuss compiler optimizations for
explicitly parallel instruction computing (EPIC) architec-
tures. EPIC is a variation of VLIW where instructions
divided into regions that can be executed in parallel by
means of conceptual stop bits. They are fetched in fixed-size
bundles, each of which contains a template field indicat-
ing the placement of stop bits within each bundle. Parallel

execution groups can span multiple bundles. Haga et al.
introduce an algorithm to create schedules which are opti-
mal in both performance and code size for infinitely wide
EPIC processors which are never resource constrained. The
optimal algorithm becomes slow when large basic blocks
are scheduled. The authors propose non-optimal heuris-
tics to overcome this problem. The instruction templates
in EPIC architectures are, however, quite different than
the variable-width templates discussed in this work and
their method can be only used for EPIC-type instruction
templates.

Most of the related work [7, 9–11, 13] concentrates on
instruction encodings which are more complex than sim-
ple variable-length instruction templates, and the techniques
cannot be applied on simple variable-length templates.
Some of the related work [8, 12] proposes code size opti-
mizations generic enough to be used together with the
techniques proposed in this paper.

3 Proposed Optimizations

3.1 Baseline

In this work, the cycle-based list scheduler [14] is used
as baseline and the proposed optimizations are compared
against this method. The scheduler used in this paper sched-
ules instructions one basic block at time, but also includes
a postpass delay slot filler which performs some inter-basic
block code motion. The baseline method schedules oper-
ations to the best possible cycle but if multiple execution
units can execute the operation in the same cycle, the func-
tion unit with least operations that can execute the operation
is selected. If there are multiple units with the same number
of operations, the connectivity of the function unit is consid-
ered and the unit with the least connectivity is selected. The
rationale for this is that if, e.g., addition can be executed on
both function units A and B, but only unit A supports multi-
plication, add operations should be preferentially scheduled
to unit B, so that unit A is be free to execute the multipli-
cations. The optimizations could also be used with different
instruction schedulers.

3.2 Function Unit Selection

A prioritize NOP-slots option was added to the function unit
selection. This option works by calculating on how many
instruction templates a function unit can be encoded as an
implicit NOP, and deprioritizing those function units with
the highest implicit NOP count. If two or more function
units have the same NOP slot value, then the instruction
scheduler reverts to the old performance-optimized mecha-
nism when selecting between those function units.



438 J Sign Process Syst (2016) 84:435–446

We experiment with three modes of operation for the
function unit selection optimization. The first mode sched-
ules all code with the size-optimized function unit heuristic.
The second mode uses the size-optimized function unit
heuristic only for code outsize inner loops. The third mode
is to compile every non-inner-loop basic block with both
heuristics and select the code that has the smaller size, as
sometimes the original heuristic may generate denser code.
Inner loops are scheduled with the baseline heuristics to
minimize performance degradion just like in the second
mode. Even the third mode can result a small performance
degradation as code outside inner loops can simultaneously
grow larger in terms of instruction count while actually
decreasing in code size.

The idea in the second mode is to minimize the execution
time penalty of the optimization by not performing it in the
parts of the code that are executed the most. There is suf-
ficient code outside inner loops to still allow considerable
size savings.

3.3 Post-scheduler Optimizer Algorithm

The main motivation of the post-scheduler optimizer is
to make better use of NOP slots without decreasing per-
formance; decisions taken during the actual instruction
scheduling phase would affect the schedule and might
decrease the performance of the program.

Figure 2 shows an example on how rescheduling can
improve the usage of the shorter instruction templates. In

Figure 3 The NOPOptimizer outer loop routine.

this example, there are no data dependencies limiting the
rescheduling while, in a real situation, the data dependencies
would usually not allow all the operations to be rescheduled,
and the benefit from the optimization would be smaller than
in the example.

The algorithm is run for every basic block after that basic
block has been scheduled, but before the inter-basic block
delay slot filler.

Figure 3 shows how the algorithm first pushes all moves
or operations into a queue. After this the main algorithm is
iterated as long as the queue contains elements. Only one
instance of each operation can be in the queue.

In the main loop, the first element in the queue is
popped and processed. If the instruction where the operation
belongs is already full, nothing is done for that operation;
these instructions are already optimally coded and contain
no wasted bits. Rescheduling operations in these moves may
sometimes ease up the dependencies of other operations and
allow more optimal placement of those other operations, but

Figure 2 A short program without (middle) and with (right) the post-
scheduler rescheduling. Left side shows the instruction templates used.
Upper row shows the operations in full-width instructions and bottom
row shows the instructions after the NOP-slot compression is applied.
Without the optimization (middle column) the usage of both B and D
slots simultaneously prevents usage of any short template in instruc-
tion 2, usage of both A and E slots simultaneously prevents usage of

any short template in instruction 3, and usage of slot C prevents usage
of any short template in instruction 4. On the optimized version D2
is moved to instruction 3, A3 and B2 are moved to instruction 4 and
C4 is moved to instruction 6. This allows instruction template 10 to be
used for instructions 2 and 4 and instruction template 11 to be used for
instruction 3.



J Sign Process Syst (2016) 84:435–446 439

these situations are rare and rescheduling operations in full
instructions prevents the algorithm to finishi naturally. Jump
and call operations are not moved since this would affect the
length of the basic block and, therefore, the performance of
the code. This is illustrated in Fig. 4, lines 1-5.

In Fig. 4, lines 6-18 show how the slack of the sched-
ule is considered; the data dependencies of the operation
are checked and the latest and earliest possible time for the
operation are calculated based on the data dependencies. If
an operation has no data producers limiting how early it can
be scheduled, it is not moved earlier, and if it has no data
consumers limiting how late it can be scheduled, it is not
moved later. This is to guarantee that the basic block cannot
get longer and that later inter-basic-block code motion opti-
mizations do not lose optimization opportunities due to the
NOP optimization.

The operation is then unscheduled and rescheduling is
attempted to both earlier and later cycles, until either it is
scheduled to an instruction which will not grow longer due
the rescheduling, or the data dependence limits are reached.
Moving operations to both directions allow the same algo-
rithm to be used for both top-down and bottom-up scheduled
code, and also allows inefficient reschedules to be reverted
later without special backtracking logic. When an opera-
tion is scheduled into a new instruction, its predecessors are

Figure 4 The tryPushNode helper routine for the NOPOptimizer.

Figure 5 The tryToMoveToCycle helper routine for the
NOPOptimizer.

requeued if the operation was moved forward, and its suc-
cessors are requeued if the operation was moved backward.
This is shown in Fig. 4, lines 19-39, Figs. 5 and 5.

When new operations are popped from the queue, there
is a counter limiting how many times one operation can be
rescheduled; this is to prevent the algorithm from going into
an infinite loop scheduling some two consecutive operations
back and forth. This is shown in Fig. 3, lines 6-10.

4 Evaluation

4.1 Benchmarks

We evaluate the performance of our methods with a sub-
set of the CHStone [15] benchmark. This benchmark is
selected since it contains a range of real-world routines,
not microbenchmarks, with varying amounts of control
code and instruction-level parallelism. Tests adpcm, gsm,
mips, jpeg, aes, blowfish and sha are used. The software
floating-point tests dfadd, dfmul, dfdiv and dfsin are omit-
ted since they are microbenchmarks with a very small code
footprint so they are not good benchmarks for code size
measurement.

4.2 Processor Architectures

In order to measure the efficiency of the optimizations in
practice, two Transport Triggered Architecture (TTA) type
VLIW processors were developed using the TTA Codesign
Environment (TCE) [16], and the compiler for the TCE
toolset was modified to include the proposed optimizations.

TTA-type VLIW gives the compiler extra freedom to
transfer some operands to earlier instructions than the exe-
cution starts and to read results later than they are produced.
The implemented version of the post-scheduler optimizer
algorithm takes advantage of this by rescheduling individual
moves instead of whole operations.

The processor interconnect was developed with a method
resembling the method in [17] to have reasonable intercon-
nect and register file structure to the processor.



440 J Sign Process Syst (2016) 84:435–446

add, and, eq, gt, gtu, ior, 
shl, shl1add, shl2add, shr,
shru, sub, sxhw, sxqw, xor BOOL

RF:

2 x 1
RF
RF:

64 x 32
IMM
IMM:

2 x 32
GCU
GCU:

jump, call

0

1

2

3

4

5

FU: ALU_MULT1
add, and, eq, gt, gtu, ior,
mul, shl, shl1add, shl2add,
shr, shru, sub, sxhw, 
sxqw, xor

AS: Data Ops: add, and, eq, gt, 
gtu,ldh, ldhu, ldq, ldqu, ldw, ior, 
shl, shl1add, shl2add, shr, shru, 
sth, stq, stw, sub, sxhw, sxqw, xor

FU: ALU_LSUFU: ALU

Figure 6 Organization of the threeway Processor used in the evaluations. Function units and register files on top, interconnect buses ans sockets
on bottom. Little boxes on the function units and register files are ports, X indicates the trigger port on the function units.

The first processor architecture, threeway, is a 3-issue
processor with a 96-bit instruction word. The overall pro-
cessor architecture was designed to give relatively good per-
formance on the CHStone test while keeping the instruction
width at 96 bits, to have good balance between performance
and instruction size even without variable-length instruction
encoding. The processor has six buses, each of which has
its own slot in the instruction encoding. The first two buses
are connected into a combined Load-Store-Unit (LSU) and
Arithmetic-Logical Unit (ALU). Third and fourth buses are
connected to a combined ALU and multiplier while the fifth
and sixth bus are connected to an ALU and the control unit.
This processor has three register read ports and one regis-
ter file write port. Figure 6 shows the organization of the
processor.

The processor has four different instruction templates;
one with 32-bit length, one with 48-bit length and two full-
length ones: one with long immediate value and one without
long immediate value. The 32-bit instruction template was
selected by first finding all bus combinations that can be
encoded in 32 bits and then selecting the one that is used
the most often when the adpcm code from the CHStone
benchmark was compiled without any compiler optimiza-
tions for NOP slot usage. The 48-bit instruction template
was selected in a similar manner, finding all the combina-
tions that can be encoded in 48 bits and selecting the one
that is mostly used when the adpcm was compiled without
any compiler optimizations for NOP slot usage.

Another processor architecture, fourway, is a 4-issue pro-
cessor with a 128-bit instruction word. The processor has
8 buses, each of which have their own slot in the instruc-
tion encoding. The organization of the fourway processor
is such that most code with low level of instruction-level-
parallelism (ILP) can execute using only the two first buses
and the first function unit, as these are connected to both
combined ALU and LSU and also separate control unit.

The 3rd and 4th bus are connected to a combined ALU
and multiplier, and the 5th and 6th bus are connected to
another combined ALU and multiplier. The 7th and 8th bus
are connected to an ALU. This organization of the function
units is reletively close to the default configuration of HP’s
VLIW EXample (VEX) processor architecture [18], with the
difference that in VEX the control unit is combined with
the last ALU, though the fourway processor has consider-
ably fewer number of register file ports(3 read, 2 write) due
TTA-specific optimizations such as software bypassing and
operand sharing decreasing the need for ports.

Instruction templates in the fourway processor architec-
ture are such that in all instruction templates, the first and
second bus can always contain moves. In the 40-bit tem-
plate, all the other slots are implicit NOPs, and in 72-bit
template, there is also a 32-bit immediate value in addition
to the two first buses. The short templates in this proces-
sor are wider than the templates in the threeway processor
because of the requirement to be able to have the moves in
the first two buses in all of the instruction templates.

4.3 Evaluation Results

Tables 1 and 2 show the performance and instruction counts
and code sizes of the CHStone benchmark with different
optimization methods on the two processors. The baseline
“No optimization” in these results means that the shorter
instruction templates are used when the compiler happens to
generate instructions which can be encoded with them, but
no optimizations are performed to encourage their usage.

On higher-ILP workloads such as adpcm, blowfish and
aes prioritizing the function units on all basic blocks had a
considerable negative effect on the performance, and also
the number of instructions. In these cases, the increase
in instruction count usually resulted in larger instruction
memory than was saved by the better usage of the smaller



J Sign Process Syst (2016) 84:435–446 441

Table 1 Instruction template usage on CHStone benchmark with and without the proposed optimizations on 3-issue, 4-template processor.

Test Strategy Instr. Full 48 32 Code Cycle Size Slowdown

count -width bits bits size count saved

adpcm No optimization 1600 1145 151 304 126896 64138

Post-optimize 1570 1044 182 344 119968 64010 5.5 % −0.2 %

Prioritize FUs mode1 1707 1159 164 384 131424 65960 −3.6 % 2.8 %

Prioritize FUs mode2 1699 1161 161 377 131248 65865 −3.4 % 2.7 %

prioritize FUs mode3 1602 1130 153 319 126032 64354 0.7 % 0.3 %

Both mode1 1705 1075 190 440 126400 65821 0.4 % 2.6 %

Both mode2 1696 1079 190 427 126368 65764 0.4 % 2.5 %

Both mode3 1572 1029 184 359 119104 64226 6.1 % 0.1 %

jpeg No optimization 8172 3351 2394 2427 514272 9192740

Post-optimize 8166 3249 2461 2456 508624 9197800 1.1 % 0.1 %

Prioritize FUs mode1 8584 3257 2478 2849 522784 9513412 −1.7 % 3.5 %

Prioritize FUs mode2 8451 3358 2351 2742 522960 9260249 −1.7 % 0.7 %

prioritize FUs mode3 8188 3302 2397 2489 511696 9213743 0.5 % 0.2 %

Both mode1 8576 3167 2524 2885 517504 9518490 −0.6 % 3.5 %

Both mode2 8442 3263 2407 2772 517488 9265327 -0.6 % 0.7 %

Both mode3 8184 3198 2465 2521 506000 9218824 1.6 % 0.3 %

aes No optimization 2131 1377 456 298 163616 24666

Post-optimize 2111 1301 500 310 158816 24478 2.9 % −0.8 %

Prioritize FUs mode1 2272 1362 482 428 167584 27966 −2.4 % 13.4 %

Prioritize FUs mode2 2210 1395 456 359 167296 25944 −2.4 % 5.2 %

prioritize FUs mode3 2131 1373 457 301 163376 24666 0.1 % 0.0 %

Both mode1 2252 1274 540 438 162240 27778 0.8 % 12.6 %

Both mode2 2190 1301 517 372 161616 25756 1.2 % 4.4 %

Both mode3 2111 1297 501 313 158576 24478 3.1 % -0.8 %

sha No optimization 644 432 119 93 50160 418703

Post-optimize 643 419 128 96 49440 418446 1.4 % -0.1 %

Prioritize FUs mode 1 685 452 123 110 52816 458506 −5.3 % 9.5 %

Prioritize FUs mode 2 656 442 120 94 51200 420761 −2.0 % 0.5 %

prioritize FUs mode 3 646 429 120 97 50048 418705 0.2 % 0.0 %

Both mode 1 684 432 133 119 51664 458249 −3.0 % 9.4 %

Both mode 2 655 423 133 99 50160 420504 0.0 % 0.4 %

Both mode 3 645 416 129 100 49328 418448 1.7 % 0.1 %

blowfish No optimization 1185 772 211 202 90704 591302

Post-optimize 1185 749 231 205 89552 591297 1.2 % 0.0 %

Prioritize FUs mode 1 1265 827 203 235 96656 634285 −6.6 % 7.3 %

Prioritize FUs mode 2 1246 820 197 229 95504 618318 −5.3 % 4.6 %

prioritize FUs mode 3 1187 769 213 205 90608 591496 0.1 % 0.0 %
Both mode 1 1265 805 217 243 95472 634285 −5.3 % 7.3 %
Both mode 2 1246 801 209 236 94480 618313 −4.2 % 4.6 %
Both mode 3 1187 749 230 208 89600 591491 1.2 % 0.0 %

mips No optimization 554 217 233 104 35344 34858

Post-optimize 535 163 255 117 31632 34619 10.5 % −0.7 %
Prioritize FUs mode 1 582 232 235 115 37232 35584 −5.3 % 2.1 %
Prioritize FUs mode 2 582 232 235 115 37232 35584 −5.3 % 2.1 %

prioritize FUs mode 3 555 211 238 106 35072 34977 0.8 % 0.3 %
Both mode 1 563 166 271 126 32976 35345 6.7 % 1.4 %
Both mode 2 563 166 271 126 32976 34345 6.7 % 1.4 %
Both mode 3 536 157 260 119 31360 34738 11.3 % −0.3 %



442 J Sign Process Syst (2016) 84:435–446

Table 1 (continued)

Test Strategy Instr. Full 48 32 Code Cycle Size Slowdown

count -width bits bits size count saved

gsm No optimization 1823 1027 473 323 131632 12652

Post-optimize 1828 1001 492 335 130432 12762 0.9 % 0.9 %

Prioritize FUs mode 1 1943 1084 474 385 139136 12757 −5.7 % 0.8 %

Prioritize FUs mode 2 1910 1077 465 368 137488 12990 −4.4 % 2.7 %

prioritize FUs mode 3 1822 1018 478 326 131104 12712 0.4 % 0.5 %

Both mode 1 1958 1010 521 427 135632 12898 −3.0 % 1.9 %

Both mode 2 1925 1012 505 408 134448 13131 −2.1 % 3.8 %

Both mode 3 1828 991 499 338 129904 12850 1.3 % 1.5 %

Post-optimize runs the post-optimizer after instruction scheduling. Prioritize FUs mode1 prioritizes function units Based on the implicit NOP slots
for all basic blocks. Priorize FUs mode2 prioritizes function units based on the implicit NOP slots only outside inner loops. Priorize FUs mode3
Schedules basic blocks outside inner loops with both FU selection heuristics and selects the schedule with the better code size for every basic
block. Both mode1 prioritizes function units based on the NOP slots and runs the post-optimizer. Both mode2 prioritizes function units based on
the NOP slots only outside inner loops and runs the post-optimizer for all code. Both mode3 Schedules basic blocks outside inner loops with both
FU selection heuristics and selects the schedule with the better code size for every basic block, and runs the post-optimizer for all code. Code size
is in bits.

instructions, and the total program memory size increased
by 1.7 - 6.6 %. The worst slowdown occured with the
blowfish benchmark where the program slowdown was
28.3 %. On more control-oriented low-ILP workloads such
as gsm and mips prioritizing function units in all basic
blocks caused smaller slowdown on performance on both
processors, and with fourway processor decreased the pro-
gram memory size by 6.9 - 7.1 %. The sha benchmark
behaved in similar fashion than gsm and mips benchmarks,
even though it has more ILP, benefiting 2.7 % from the
function unit prioritizing. On the threeway processor the
results of function unit prioritizing in all basic blocks were
also negative also in the low-ILP cases. On average always
applying the FU priorization resulted in 1.2 % increase in
code size with an average slowdown of 7.2 %

Applying the function unit priorization only for code out-
side inner loops usually helped to decrease the slowdown
from the function unit selection in many tests, but also in
many cases resulted in smaller code size decrease. However,
in threeway processor, this did not help to make function
unit priorization beneficial, as the code size was still larger
than the code size without the optimization, applying the
optimization for code outside inner loops only helped to
make the code size penalty less severe. On fourway proces-
sor the best result is achieved in gsm test where this opti-
mization results in both smallest code size, 9.1 % smaller
than the unoptimized version, with only 0.5 % slowdown. In
case case always applying the FU priorization resulted only
7.1 % savings, with a big 7.7 % slowdown. Especially on
sha, applying priorization only outside inner loops helps; in
this case, the code has only a 1.5 % slowdown compared to

the 16.1 % slowdown when the optimization is applied for
all the basic blocks, and code size is actually smaller, 3.8 %
decrease versus 2.7 % decrease. On average this optimiza-
tion was also harmful, causing on average a 0.3 % code size
increase and an average slowdown of 4.1 % between all the
test cases.

Scheduling every non-inner-loop basic block with both
FU selection heuristics and reverting to the baseline function
unit selection heuristic for the basic blocks where FU priori-
tization produced larger code, code gave much better results.
This mode practically eliminated the cases where longer
code with more instructions caused code size increase. This
optimization was even beneficial on the threeway processor,
with on average code size saving of 0.4 % while causing in
average only a 0.2 % slowdown. On fourway processor the
results were much better, achieving the best case of 10.7 %
and an average of 5.6 % saved code size at the cost of an
average slowdown of 0.5 %.

The post-optimizer pass mode had a more stable effect
on both performance and code size on both processors. The
code size decrease was in the range between 0.0 % and
10.5 %. The performance in all cases was very close to the
original performance, in average being 0.3 % better than
the non-optimized version. The average code size decrease
was 3.4 % for the threeway processor and 1.5 % for the
fourway processor, the average of both being 2.4 %. The
reason for the weak improvement with the fourway proces-
sor is that operations in other than the first function unit
always required a full-length instruction to be used, while
with threeway there was also a shorter instruction template
that included the final three buses.



J Sign Process Syst (2016) 84:435–446 443

Table 2 Instruction template usage on CHStone benchmark with and without the proposed optimizations on a 4-issue, 4-template processor.

Test Strategy Instr. Full 72 40 Code Cycle Size Slowdown

count -width bits bits size count saved

adpcm No optimization 1290 935 261 94 142232 58170
Post-optimize 1285 854 288 143 135768 58018 4.5 % −0.3 %
Priorize FUs mode1 1448 858 352 238 144688 61544 −1.7 % 5.8 %
Priorize FUs mode2 1409 848 348 213 142120 61232 0.1 % 5.3 %
Priorize FUs mode3 1299 880 281 138 138392 58662 2.7 % 0.8 %
Both, mode1 1444 815 368 261 141256 61442 0.7 % 5.6 %
Both, mode2 1405 805 364 236 138688 61130 2.5 % 5.1 %
Both, mode3 1295 797 309 189 131824 58560 7.3 % 0.7 %

jpeg No optimization 7634 4196 1146 2292 711280 8362618

Post-optimize 7632 4103 1181 2348 704136 8362356 1.0 % 0.0 %

Priorize FUs mode1 8625 3456 1836 3333 707880 8759608 0.5 % 4.7 %

Priorize FUs mode2 8364 3520 1781 3063 701312 8379090 1.4 % 0.2 %

Priorize FUs mode3 8052 3506 1523 3023 679344 8415760 4.5 % 0.6 %

Both mode1 8619 3373 1866 3380 701296 8759368 1.4 % 4.7 %

Both mode2 8363 3451 1808 3104 696064 8378857 2.1 % 0.2 %

Both mode3 8050 3435 1555 3060 674040 8415239 5.2 % 0.6 %

aes No optimization 1684 1256 252 176 185952 22430

Post-optimize 1683 1225 264 194 183568 22298 1.3 % −0.6 %

Priorize FUs mode1 1955 1072 445 438 186776 22386 −0.4 % −0.2 %

Priorize FUs mode2 1869 1138 419 312 188312 23354 −1.3 % 4.2 %

Priorize FUs mode3 1721 1194 308 219 183768 22610 1.2 % 0.8 %

Both mode1 1952 1028 458 466 183200 22386 1.5 % −0.2 %

Both mode2 1867 1090 436 341 184552 23288 0.8 % 3.8 %

Both mode3 1718 1162 322 234 181280 22468 2.5 % 0.2 %

sha No optimization 545 401 72 72 59392 316146

Post-optimize 542 393 77 72 58728 315886 1.1 % −0.1 %

Priorize FUs mode1 596 347 106 143 57768 367023 2.7 % 16.1 %

Priorize FUs mode2 578 349 103 126 57128 321028 3.8 % 1.5 %

Priorize FUs mode3 563 347 93 123 56032 317173 5.7 % 0.3 %

Both mode1 596 337 114 145 57144 367023 3.8 % 16.1 %

Both mode2 578 346 105 127 56928 321028 4.1 % 1.5 %

Both mode3 562 343 95 124 55704 316916 6.2 % 0.2 %

blowfish No optimization 1050 737 168 145 112232 539242

Post-optimize 1052 714 180 158 110672 534952 1.4 % −0.8 %

Priorize FUs mode1 1235 607 324 304 113184 691743 −0.8 % 28.3 %

Priorize FUs mode2 1202 604 317 281 111376 690265 0.8 % 28.0 %

Priorize FUs mode3 1072 658 206 208 107376 547721 4.3 % 1.5 %

Both mode1 1232 572 340 320 110496 681733 1.5 % 26.4 %

Both mode2 1204 576 333 295 109504 686233 2.4 % 27.3 %

Both mode3 1074 642 215 217 106336 539039 5.3 % 0.0 %

mips No optimization 497 257 102 138 45760 34661

Post-optimize 497 257 102 138 45760 34661 0.0 %

Priorize FUs mode1 558 173 158 227 42600 34260 6.9 % −1.2 %

Priorize FUs mode2 558 173 158 227 42600 34260 6.9 % −1.2 %
Priorize FUs mode3 542 163 155 224 40984 34272 10.4 % −1.1 %
Both mode1 558 172 159 227 42544 34260 7.0 % −1.2 %

Both mode2 558 172 159 227 42544 34260 7.0 % −1.2 %

Both mode3 542 163 155 224 40984 34272 10.4 % −1.1 %



444 J Sign Process Syst (2016) 84:435–446

Table 2 (continued)

Test Strategy Instr. Full 72 40 code cycle size slowdown

count -width bits bits size count saved

gsm No optimization 1680 1117 281 282 174488 11159

Post-optimize 1680 1084 310 286 172512 11059 1.1 % −0.9 %

Priorize FUs mode1 1747 919 353 475 162048 12016 7.1 % 7.7 %

Priorize FUs mode2 1671 924 328 419 158648 11212 9.1 % 0.5 %

Priorize FUs mode3 1615 920 318 377 155736 11229 10.7 % 0.6 %

Both mode1 1745 868 373 504 158120 12018 9.4 % 7.7 %

Both mode2 1669 884 347 438 155656 11139 10.8 % 0.2 %

Both mode3 1615 884 340 391 153272 11159 12.2 % 0.0 %

No optimization prioritizes function units based on supported operations and selects the unit with the fewest operations. Post-optimize runs the
post-optimizer after instruction scheduling. Prioritize FUs mode1 prioritizes function units based on the implicit NOP slots for all basic blocks.
Priorize FUs mode2 prioritizes function units based on the implicit NOP slots only outside inner loops. Priorize FUs mode3 Schedules basic
blocks outside inner loops with both FU selection heuristics and selects the schedule with the better code size for every basic block. Both mode1
prioritizes function units based on the NOP slots and runs the post-optimizer. Both mode2 prioritizes function units based on the NOP slots only
outside inner loops and runs the post-optimizer for all code. Both mode3 Schedules basic blocks outside inner loops with both FU selection
heuristics and selects the schedule with the better code size for every basic block, and runs the post-optimizer for all code. Code size is in bits.

The effect of applying both optimizations together usu-
ally had a similar result as the sum of the benefits of the
optimizations done separately, and the best result was usu-
ally obtained by applying together the post-optimizer pass
and FU priorization in a mode where it reverts to the old
heuristics in basic blocks where the FU priorization would
cause larger code size due larger number of instructions. The
best case improvement was 12.2 % in the gsm test in proces-
sor fourwaywhile performance stayed exactly the same. The
average code size decrease in this mode was 5.4 % while
performance decreased by 0.1 %

5 Future Work

In the second mode of the function unit selection heuristic
optimization the basic blocks where the optimization is used
and when not are statically selected by the compiler by just
analysing whether the code is in inner loop or not. Profiling
could be used to identify what are actually the most critical
inner loops and to leave only those unoptimized.

The post-scheduler optimizer should also be improved to
aggressively perform horizontal rescheduling of operations
into those execution slots which have fewer implicit NOP
slots associated with them, even when the main scheduling
is done with function unit selection which favors perfor-
mance instead of code size. This could increase the code
size savings from the post-scheduler optimizer without per-
formance degradion.

6 Conclusions

Two compiler optimizations to better utilize short instruc-
tion words in a variable-length instruction coding scheme
were presented and analyzed. The introduced post-
optimizer pass resulted on average 2.4 % and the best case
of 10.5 % code size reduction without performance loss.
As the post-scheduler optimizer had a good impact on both
code size and performance, it should be always used.

Always prioritizing function units based on the implicit
NOP slots gave best case code size savings of 7.1 % while
on average the code size increased by 1.2 % while the
performance decreased by an average of 7.2 %. Also the
processor architecture and the selection of instruction tem-
plates had a significant effect on whether the function unit
priorization decreased or increased the code size; with the
threeway processor the function unit selection increased
code size, but with fourway it decreased the code size. Since
it may reduce performance and sometimes even increase
code size, the function unit prioritization should be used
cautiously, only after testing that it provides benefit for
the case at hand and only in cases where the performance
penalty is not too severe.

Prioritizing function units based on the implicit NOP
slots only outside inner loops gave best case code size
savings of 9.1 % but the average code size increased by
0.3 % while performance decreased by average of 4.1 %.
In most cases both the performance drawbacks and the
code size savings were smaller than when the optimization



J Sign Process Syst (2016) 84:435–446 445

was always performed, but compared to always perform-
ing the optimization, the performance saved by not doing
the optimization was usually better than code size wasted.
But compared to the unoptimized version, performance still
dropped in most test cases, so even this mode should not be
enabled without testing that it is really beneficial.

Because results from the function unit priorization were
so often negative, third mode had to be implemented to it.
In this mode, for every non-innerloop basic block it is first
tested which heuristic gives better code size, and then this
heuristic is selected for the final scheduling. This mode gave
best case code size saving of 10.7 % and average of 3.0 %
code with average slowdown of 0.4 %.

By combining the two optimization methods, a best case
of 12.2 and average of 5.4 % code size savings could be
achieved, with only a 0.1 % performance loss.

The fact that results from the function unit prioritiza-
tion were sometimes negative also weight the importance
of good low level instruction scheduler. The quality of the
instruction scheduler can sometimes have greater impact on
code size than special optimizations to decrease it.

Acknowledgments This work was funded by Academy of Finland
(funding decision 253087), Finnish Funding Agency for Technol-
ogy and Innovation (project ”Parallel Acceleration”, funding decision
40115/13), and ARTEMIS Joint Undertaking under grant agreement
no 621439 (ALMARVI).

Heikki Kultala (M.Sc)
received his M.Sc degree
in Computer Science from
Tampere University of tech-
nology (TUT) in 2010, and
is now a graduate student at
the Department of Pervasive
Computing of TUT. He has
worked with exposed datapath
processor architectures and
programming since 2005.
His research interests include
compiler backend techniques,
low-level code optimizations
and processor architecture
customization.

References

1. Corporaal, H., & Arnold, M. (1998). Using Transport Trig-
gered Architectures for embedded processor design. Integrated
Computer-Aided Engineering, 5(1), 19–38.

2. Conte, T.M., Banerjia, S., Larin, S.Y., Menezes, K.N., &
Sathaye, S.W. (1996). Instruction fetch mechanisms for VLIW
architectures with compressed encodings. In Proceedings of the
29th Annual IEEE/ACM International Symposium on Microarchi-
tecture (pp. 201–211).

3. Aditya, S., Mahlke, S.A., & Rau, B.R. (2000). Code size mini-
mization and retargetable assembly for custom EPIC and VLIW
instruction formats. ACM Transactions on Design Automation of
Electronic Systems, 5(4), 752–773.

4. Helkala, J., Viitanen, T., Kultala, H., Jääskeläinen, P., Takala, J.,
Zetterman, T., & Berg, H. (2014). Variable length instruction com-
pression on transport triggered architectures. In Proceedings of
the International Conference on Embedded Computing Systems:
Architectures Modeling and Simulation (pp. 149–155). Samos,
Greece.

5. Kultala, H., Viitanen, T., Jääskelainen, P., Helkala, J., & Takala, J.
(2014). Compiler optimizations for code density of variable length
instructions. In Proceedings of the IEEE Workshop on Signal
Processing Systems (pp. 1–6).

6. Lee, C., Lee, J.K., & Hwang, T. (2000). Compiler optimiza-
tion on instruction scheduling for low power. In Proceed-
ings of the 13th International Symposium on System Synthesis
(pp. 55–60).

7. Hahn, T.T., Stotzer, E., Sule, D., & Asal, M. (2008). Compilation
strategies for reducing code size on a VLIW processor with vari-
able length instructions. In Proceedings of the 3rd International
Conference on High Performance Embedded Architectures and
Compilers (pp. 147–160). Berlin Heidelberg: Springer-Verlag.

8. Stotzer, E.J., & Leiss, E.L. (2012). Co-design of compiler and
hardware techniques to reduce program code size on a vliw
processor. CLEI Electronic Journal, 15(2), 2–2.

9. Jee, S., & Palaniappan, K. (2002). Performance evaluation for a
compressed-VLIW processor. In Proceedings of the ACM Sympo-
sium on Applied Computing (pp. 913–917).

10. Ros, M., & Sutton, P. (2005). A post-compilation register reas-
signment technique for improving hamming distance code com-
pression. In Proceedings of the 2005 International Conference
on Compilers, Architectures and Synthesis for Embedded Systems
(pp. 97–104).

11. Larin, S.Y., & Conte, M.T. (1999). Compiler-driven cached code
compression schemes for embedded ilp processors. In Proceed-
ings of the 32nd Annual IEEE/ACM International Symposium on
Microarchitecture (pp. 82–92): IEEE.

12. Haga, S., Webber, A., Zhang, Y., Nguyen, N., & Barua, R. (2005).
Reducing code size in VLIW instruction scheduling. Journal of
Embedded Computing, 1(3), 415–433.

13. Haga, S., & Barua, R. (2001). EPIC instruction scheduling based
on optimal approaches. In Proceedings of the First Annual Work-
shop on Explicitly Parallel Instruction Computing Architectures
and Compiler Technology (pp. 22–31).

14. Muchnick, S.S. (1997). Advanced Compiler Design and Imple-
mentation: Morgan Kaufmann.

15. Hara, Y., Tomiyama, H., Honda, S., & Takada, H. (2009). Pro-
posal and quantitative analysis of the CHStone benchmark pro-
gram suite for practical C-based high-level synthesis. Journal of
Information Processing, 17, 242–254.

16. Jääskeläinen, P., Guzma, V., Cilio, A., & Takala, J. (2007). Code-
sign toolset for application-specific instruction-set processors. In
Proceedings of SPIEMultimedia on Mobile Devices (pp. 65070X–
1 – 65070X–11).

17. Viitanen, T., Kultala, H., Jääskeläinen, P., & Takala, J. (2014).
Heuristics for greedy transport triggered architecture interconnect
exploration. In Proceedings of the 2014 International Conference
on Compilers, Architecture and Synthesis for Embedded Systems
(pp. 2:1–2:7).

18. Fisher, J.A., Faraboschi, P., & Young, C. (2005). Embedded Com-
puting: A VLIW Approach to Architecture, Compilers and Tools:
Elsevier.



446 J Sign Process Syst (2016) 84:435–446

Timo Viitanen (M. Sc.)
received his M.Sc. degree
in embedded systems from
Tampere University of Tech-
nology (TUT) in 2013, and
is now a graduate student at
the Department of Pervasive
Computing of TUT, where
his main work has been
on automated design space
exploration and hardware
implementation of TTA pro-
cessors. His research interests
include processor architec-
ture, floating-point arithmetic
and computer graphics.

Pekka Jääskeläinen (Dr.
Tech.) has worked with
exposed datapath processor
architecture customization
and programming since 2002.
He has led the development
work of the TTA-based Co-
design environment (TCE), a
toolset for rapid customiza-
tion of VLIW-style parallel
processors based on the
Transport-Triggered Architec-
ture. He received his master’s
degree in 2005, and doctor’s
degree in 2012 from Tampere
University of Technology.

Both of the thesis involved topics in parallel processor design and
TTAs. His current research interests include programmable paral-
lel platforms and compiler techniques for enhancing performance
portability of parallel programs.

Janne Helkala (M.Sc.) grad-
uated with Master of Science
degree from Tampere Uni-
versity of Technology (TUT)
in 2014, where he researched
variable length instruction
compression and no-operation
optimization for Transport-
Triggered Architecture (TTA)
processors. He currently
works at Nokia Networks
as a system on chip design
engineer.

Jarmo Takala received his
M.Sc. (hons) degree in Electri-
cal Engineering and Dr.Tech.
degree in Information Tech-
nology from Tampere Univer-
sity of Technology, Tampere,
Finland (TUT) in 1987 and
1999, respectively. From 1992
to 1995, he was a Research
Scientist at VTT-Automation,
Tampere, Finland.

Between 1995 and 1996,
he was a Senior Research
Engineer at Nokia Research
Center, Tampere, Finland.
From 1996 to 1999, he was a

Researcher at TUT. Since 2000, he has been Professor in Computer
Engineering at TUT and currently Dean of the Faculty of Computing
and Electrical Engineering of TUT. Dr. Takala is Co-Editor-in-Chief
for Springer Journal on Signal Processing Systems. During 2007-2011
he was Associate Editor and Area Editor for IEEE Transactions on
Signal Processing and in 2012-2013 he was the Chair of IEEE Signal
Processing Society’s Design and Implementation of Signal Processing
Systems Technical Committee. His research interests include circuit
techniques, parallel architectures, and design methodologies for
digital signal processing systems.


	Improving Code Density with Variable Length Encoding Aware Instruction Scheduling
	Abstract
	Introduction
	Related Work
	Proposed Optimizations
	Baseline
	Function Unit Selection
	Post-scheduler Optimizer Algorithm

	Evaluation
	Benchmarks
	Processor Architectures
	Evaluation Results

	Future Work
	Conclusions
	Acknowledgments
	References


