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Abstract A real-time and energy-efficient multi-scale
object detector hardware implementation is presented in
this paper. Detection is done using Histogram of Oriented
Gradients (HOG) features and Support Vector Machine
(SVM) classification. Multi-scale detection is essential for
robust and practical applications to detect objects of dif-
ferent sizes. Parallel detectors with balanced workload are
used to increase the throughput, enabling voltage scaling
and energy consumption reduction. Image pre-processing is
also introduced to further reduce power and area costs of the
image scales generation. This design can operate on high
definition 1080HD video at 60 fps in real-time with a clock
rate of 270 MHz, and consumes 45.3 mW (0.36 nJ/pixel)
based on post-layout simulations. The ASIC has an area of
490 kgates and 0.538 Mbit on-chip memory in a 45 nm SOI
CMOS process.

Keywords Object detection · Histogram of oriented
gradients · Multi-scale · Low power architectures ·
Embedded vision

1 Introduction

Object detection is needed for many embedded vision appli-
cations including surveillance, advanced driver assistance
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systems (ADAS) [1], portable electronics and robotics. For
these applications and others, it is desirable for object detec-
tion to be real-time at high frame rates, robust and energy-
efficient. Real-time processing is necessary for applications
such as ADAS, and autonomous control in unmanned aerial
vehicles (UAV), where the vehicle needs to react quickly to
fast changing environments. High frame rate enables faster
detection to allow more time for course correction. For
detection robustness, it is essential that detectors support
multiple image scales to detect objects with variable sizes.
As shown in Fig. 1, the size difference can be due to dif-
ferent distances from the camera (i.e. an object’s height is
inversely proportional to its distance from the camera [2]),
or due to the actual size of the object (e.g. pedestrians
with different heights). In addition, high resolution images,
such as high definition (HD), enable early detection by
having enough pixels to identify far objects, which is par-
ticularly important for fast moving objects. Finally, for
energy consumption, in both UAV and portable electron-
ics, the available energy is limited by the battery whose
weight and size must be kept to a minimum [3]. Addi-
tionally, heat dissipation is a crucial factor for ADAS
application [4].

A conventional method of object detection involves
translating the image from pixel space into a higher dimen-
sional feature space. Classification is then used at different
regions in the image to decide whether a specific object
exists or not. Histogram of Oriented Gradients (HOG),
which looks at the distribution of edges, is a widely accepted
feature for object detection [6]. HOG features provide a rea-
sonable trade-off between detection accuracy and complex-
ity compared to alternative richer features [7]. A combina-
tion of other types of features can be added to HOG for more
accurate detection with the cost of more computation power.
However, no single feature has been shown to outperform
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Figure 1 Examples of pedestrians with different sizes based on their distances from the camera and/or their different heights. Images are taken
from INRIA person dataset [5].

HOG, which makes HOG-based detection the baseline for
object detection systems [2].

In this paper, we describe a hardware-friendly real-time
energy-efficient HOG algorithm for object detection, with
multi-scale support. The resulting implementation delivers
high-throughput processing to achieve real-time, robust and
accurate object detection at high frame rates with low hard-
ware and energy costs. The main contributions of this work
are:

1. Efficient scale selection and generation for multi-scale
detection.

2. Parallel detectors with voltage scaling.
3. Image pre-processing to reduce multi-scale memory

and processing overhead.

The rest of the paper is organized as follows. Section 2
provides a survey of existing HOG-based object detector
implementations. Section 3 describes the HOG detection
algorithm and the importance of multi-scale detection for
robustness. Section 4 describes the hardware architecture
of the HOG-based object detector. Section 5 introduces the
parallel detectors architecture and voltage scaling. Then,
image pre-processing is introduced in Section 6. We present
the performance metrics including detection accuracy

and hardware complexity in Section 7 and conclude in
Section 8.

2 Previous Work

The majority of the published implementations of HOG-
based object detection are on CPU and GPU platforms. In
addition to consuming power in hundreds of Watts (e.g.,
Nvidia 8800 GTX GPU consumes 185W [8]), which is not
suitable for embedded applications, they often cannot reach
high definition (HD) resolutions. Authors in [9] demonstrate
a real-time object detection system with multi-scale sup-
port on a CPU processing 320×240 pixels at 25 frames per
second (fps). The implementation in [10] achieves higher
throughput on a GPU at 100 fps using the approach pre-
sented in [7] to speed up feature extraction, but with a
resolution of 640×480 pixels.

For higher throughput, FPGA-based implementations
have recently been reported. Different parts of the detector
are implemented in [11] on different platforms: HOG fea-
ture extraction is divided between an FPGA and a CPU,
and SVM classification is done on a GPU. It can process
800×600 pixels at 10 fps for single scale detection. The

Figure 2 Object detection algorithm using HOG features.
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entire HOG-based detector is implemented in [12] on an
FPGA, and can process 1080HD video (1920×1080 pix-
els) at 30fps. However, the implementation only supports
a single image scale. An ASIC version of this design is
presented in [13], with dual cores to enable voltage scal-
ing for power consumption of 40.3mW for 1080HD video
at 30fps, but still only supports a single image scale. A
multi-scale object detector is demonstrated on an FPGA
in [14] that can process 1080HD at 64 fps. The 18 scales are
time-multiplexed across 3 successive frames. As a result,
effectively only 6 scales are processed per frame. It should
be noted that these hardware implementations have rela-
tively large on-chip memory sizes (e.g., [13] uses 1.22 Mbit
on ASIC, [14] uses 7 Mbit on FPGA), which contributes to
increased hardware cost.

Thus, from the previous discussion, none of the exist-
ing implementations satisfies all the desired requirements
for accurate and robust object detection in embedded sys-
tems, which include real-time, high resolution (1080HD),
high frame rate (>30 fps), multiple image scale, low power
and low hardware costs.

3 Overview of the HOG Algorithm

Figure 2 shows a block diagram of the steps involved in
object detection using HOG features as presented in [6]. The
image is divided into non-overlapping 8×8 pixels patches
called cells, where gradients are calculated at each pixel. A
histogram of the gradient orientations with 9 bins is gen-
erated for each cell. The histogram is then normalized by
its neighboring cells to increase robustness to texture and
illumination variation. For each cell, the normalization is
performed across blocks of 2×2 cells resulting in a final
36-D HOG feature vector.

The HOG feature vector is extracted for cells in a pre-
defined detection window. In this work, the detection win-
dow is chosen to be 128×64 pixels which is suitable for

Figure 3 Image pyramid with multiple scales. Processing all scales
with the same SVM template can detect objects of different sizes.

Figure 4 Precision-Recall curves for INRIA person dataset [5] using
different scaling factors: single scale (AP=0.166), scale factor of 2
(AP=0.275), scale factor of 1.2 (AP=0.391), and scale factor of 1.05
(AP=0.401, used in the original HOG algorithm [6]).

pedestrian detection [6]. This window sweeps the entire
image with non-overlapping cells. A conventional way to
perform detection is by training a support vector machine

Figure 5 Scanning order in reading the pixels from a frame (1080HD
for this example). a Row raster scan. b Column raster scan.
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Figure 6 Block diagram of HOG feature extraction with average input and output bandwidths.

(SVM) [15] classifier for the predefined detection window
size. The classifier has the same dimension as the detection
window. The classification output is referred to as a score,
and is compared to a threshold to make a detection decision.
This operation is repeated as the detection window sweeps
the image.

As mentioned in Section 1, scaling is an important fac-
tor in object detection algorithms since there is no prior
knowledge about object size/distance from camera. Gener-
ally, and since most of the features are not scale invariant,
there are two methods to perform multi-scale detection. The
first naive approach is to have multiple SVM classifiers,
each trained for the same object at a different size. In this
case, the weights of the different SVM classifiers must be
determined and a unique detector is used for each size. This
approach is rarely used because it increases the complex-
ity of the training process where multiple classifiers have to
be trained. In addition to that, and from the hardware point
of view, these classifiers coefficients have to be stored on-
chip and it is shown later in this work that the SVM weights
memory consumes a significant amount of power.

The second approach, which is conventionally used in
object detectors [2] and is carried out in this work, is to have
only one SVM classifier for one detection window size, and
to generate an image pyramid composed of multiple scaled
versions of the same frame, which is then processed by the
same detector as shown in Fig. 3. In this approach, small
objects can be detected in the high resolution scales while
large objects can be detected in the low resolution scales, all
with the same classifier. The ratio between the dimensions
of successive scales in the image pyramid is called the scale
factor.

The precision-recall curve shown in Fig. 4 is one method
to measure the detection accuracy. Increasing the number
of processed scales, by reducing the scale factor, increases

the Average Precision (AP)1 from 0.166 with single scale
to 0.401 with scale factor of 1.05 (44 scales per 1080HD
frame). However, this comes at the cost of increased com-
putation in terms of generating the image pyramid and
processing the newly generated pixels for each scale.

4 Hardware Architecture

In this work, a cell-based approach is used where one cell is
processed at each stage of the architecture. There are various
orders in which the cells of a 2-D image can be processed
by the object detection hardware. The following two orders
were examined as shown in Fig. 5: raster scan in row order
and raster scan in column order. While the processing order
does not affect the detection accuracy, it does impact the size
of the on-chip memory in the hardware. Note that the com-
putation pipeline of the object detection core, consisting of
the detector and the scale generator, is the same for both ver-
tical and horizontal scans; only the memory controller and
memory sizes change. In the following sections, an archi-
tecture based on column raster scan will be discussed. In
Section 7.3, a detailed hardware comparison between the
two approaches is presented.

4.1 Detector

The detector can be divided into HOG feature extraction
and SVM classification. The feature extraction shown in
Fig. 6 includes cell histogram generation, the histogram
buffer, and histogram normalization. The SVM classifi-
cation shown in Fig. 9 includes multiply-and-accumulate

1Average precision measures the area under precision recall curve.
Higher average precision means better detection accuracy.
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Figure 7 Histogram bins can be calculated without the actual value of
the gradient angle. In the shown example, the pixel is assigned to bin
2 if the shown inequality has been satisfied. Note that (θi ) is constant
for all i’s.

(MAC) units, the accumulation buffer, and the SVMweights
buffer.

4.1.1 HOG Feature Extraction

Figure 6 shows the block diagram of the HOG feature
extraction unit. It is composed of two key blocks: cell his-
togram generation and histogram normalization. In the cell
histogram generation, a gradient filter [-1 0 1] is used to
generate a pair of horizontal and vertical gradients at each
pixel in the 8×8 input cell2. The orientation and the magni-
tude of the gradient are then calculated from this pair, and
a histogram of 9 bins is generated for the cell. To reduce
the implementation cost, the following approximations were
performed:

– Orientation: We carried out the orientation binning
scheme similar to [11, 16]. As the orientation is only
used to choose the histogram bin, the actual angle of
the gradient does not need to be calculated. The limit
angles for each bin are known constants (θi), as shown
in Fig. 7. Each gradient bin can be calculated using con-
stant multiplications rather than complex computation
to calculate the actual gradient angle.

– Magnitude: Computing the L2-norm gradient magni-
tude similar to what is used in [6] requires a square root
operation which is complex to implement in hardware.
An L1-norm magnitude, which doesn’t require a square
root, is used in this work instead. L1-norm and L2-norm
are not linearly dependent but they are strongly corre-
lated. The overall detection accuracy does not degrade
with the L1-norm magnitude, which suggests that HOG

2Different gradient filters are tested in [6] like 1-D, cubic, 3×3 Sobel
as well as 2×2 diagonal filters. Simple 1-D [-1 0 1] filter works the
best.

Figure 8 Example of a shared cell across overlapped windows. 8×4
cells per window are shown for simplicity.

feature is less sensitive to the gradient magnitude and
more sensitive to the gradient orientation.

As shown in Fig. 2, each cell requires its neighboring
8 cells to create four overlapped blocks for normalization.
Accordingly, the 9-bin cell histogram must be stored in a
line buffer so that it can be used to compute the normal-
ized histogram with respect to the different blocks. The
buffer stores 3 columns of cell histograms. Each histogram
bin requires 14-bit, resulting in a total of 126-bit per a cell
histogram.

The normalization is then done by dividing the 9-bin
histogram by the energy (L2-norm) of each of the four
overlapped blocks. Unlike the gradient magnitude, using
L1-norm here to compute the block energy results in about
5 % degradation in performance [6]. The L2-norm is com-
puted from sum of square of the histogram bins across the
four corresponding cells for each block. The square root is
then taken using a simple non-restoring square root mod-
ule; which is time shared across the four blocks. Finally,
9 sequential fixed point dividers are used (one per bin) to

Figure 9 Block diagram of the on-the-fly SVM classification unit.
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Figure 10 Scale generation architecture with average input and output bandwidths.

generate the normalized HOG feature. These fixed-point
dividers are customized to exploit the fact that the normal-
ized values are always fractions (i.e., there is no integer part
in the division output). Based on simulations, the bit-width
for each normalized bin is chosen to be 9-bit to maintain
the detection accuracy. After normalization, the output is a
36-D vector representing the HOG feature.

4.1.2 SVM Classification

In this work, a linear SVM classifier is trained off-line
and its weights are loaded to an on-chip buffer, so that the
detector can be configured for different objects. The bit-
width of the SVM weights is reduced to minimize both
size and bandwidth of the on-chip buffer. The 4,608 SVM
weights (representing 128×64 pixels per detection window)
are quantized to a 4-bit signed fixed-point, with a total
memory size of 0.018 Mbit.

An on-the-fly approach similar to [13] is carried out for
classification. The HOG feature of each cell is immedi-
ately used for classification once it is extracted so that it is
never buffered or recomputed. This reduces on-chip mem-
ory requirements and external memory bandwidth as each
pixel is only read once from the off-chip frame buffer. All
calculations that require the HOG feature must be com-
pleted before it is thrown away. Figure 8 shows a simple
example, with a small detection window size of 8×4 cells,
of how several detection windows share a cell. Each cell
effectively appears, and must be accumulated, at all posi-
tions in overlapped detection windows. For a 128×64 pixels
detection window, each cell is shared with (16×8 = 128)
windows, but at different positions within each window.

The on-the-fly classification block is shown in Fig. 9.
The processing is done using a collection of MACs. Each

MAC contains two multipliers and one adder to compute
a partial dot product of 2 values of the detection window
features and the SVM weights, and another adder to accu-
mulate the partial dot products. Thus, it takes 18 cycles
to accumulate all 36 dimensions for a given cell position.
Two columns of cells, out of the eight columns in the
detection window, are processed in parallel, requiring 16×2
MACs. Accordingly, 18×4 cycles are required to complete
the 4,608 multiplications for the whole detection window.
Using this approach, the 17-bit accumulation values are
stored instead of the HOG features (36×9-bit), resulting in
a 19× reduction in the required buffer size.

4.2 Scale Generator

A scale generator is used to generate the image pyramid,
as shown in Fig. 3. The key blocks required to generate the
pyramid include low pass filters, down samplers, pixel line
buffers and interpolators as shown in Fig. 10.

Table 1 Scale factor effect on detection accuracy, with number of
cells per 1080HD frame in the image pyramid. AP numbers are
calculated on the INRIA person dataset [5].

Scale Factor AP Scales Cells Increase

Single-scale 0.166 1 32,400 1.0×
2 0.275 4 43,030 1.3×
1.4 0.337 7 65,530 2.0×
1.3 0.372 9 78,660 2.4×
1.2 0.391 12 104, 740 3.2×
1.1 0.398 23 184,450 5.7×
1.05 0.401 44 344,220 10.6×
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Figure 11 Throughput with constant supply voltage of 0.72 V (left)
and energy with constant throughput of 1080HD at 60 fps (right) for
the three different detectors configurations.

4.2.1 Scale Factor Selection

There is a trade-off in selecting the scale factor between
the detection accuracy and the number of cells to process.
Table 1 shows an exponential increase in the number of cells
per frame as more scales are used (i.e., reducing the scale
factor). Using a scale factor of 1.05 in the baseline imple-
mentation [6] increases the workload by more than 10×
compared to a single scale. In this work, a scale factor of 1.2
is chosen as it introduces only 0.01 reduction in AP, with an
increase of only 3.2× in the workload. For a 1080HD frame
and a scale factor of 1.2, 12 scales per frame are required in
the image pyramid. This careful selection of the scale factor
results in a 3.3× reduction in the number of cells generated
per frame compared to the baseline implementation.

4.2.2 Scale Generation Architecture

Figure 10 shows a block diagram of the scale generator
module. Pixels are streamed-in once from the off-chip frame

Figure 12 Object detection system architecture.

Figure 13 Pedestrian image with the corresponding trained SVM
template in (a) original and (b) gradient magnitude representations.
Image is taken from INRIA person dataset [5].

buffer. Low pass filters are used to process the pixels to
prevent aliasing before downsampling by two and by four,
generating two octaves. The original and the two octaves
images are partially stored in on-chip line buffers. The
buffers store 25 columns of pixels of each image, which is
sufficient to generate the different scales. The buffers are
shared across scales within the same octave.

As shown in Fig. 10, the 12 required scales are gener-
ated as follows: the fifth and ninth scales, which ideally
would have a scaling factor of 2.07 and 4.3 respectively,
are approximated to be the octaves (i.e. scale factors of 2
and 4 respectively) to reduce number of calculations. Using
bilinear interpolation, three scales are generated from each
octave with scale factors of 1.2, 1.44 and 1.73. The bilinear
interpolation for the scaled image generation begins as soon
as the supporting pixels are available in the shared pixel
line buffers. An on-the-fly interpolation is used so that a
minimum number of pixels is buffered before interpolation.

Figure 14 Histogram of pixel intensities. Left column shows 8-bit
bit-width. Right column shows coarse quantization.
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Figure 15 Average precision (AP) values versus pixel resolution for
both original and gradient magnitude images.

The generated scales are passed directly to feature extrac-
tion module and no scaled images are stored on-chip after
interpolation.

5 Parallelism and Voltage Scaling

Multi-scale detection increases the power consumption rel-
ative to single-scale due to the scale generation overhead
and the processing of the additional scales. If a sin-
gle detector is used, clock frequency and voltage must
be increased to process these additional scales while
maintaining the same throughput. Thus in this work, mul-
tiple parallel detectors are used in order to reduce the

Table 2 Area and power breakdown for object detector architecture
for both original and gradient magnitude images. Numbers are based
on post-layout simulations with 45nm SOI CMOS process.

Original Gradient

Area (kgates) Pre-proc. n/a 7

Scale Gen. 240 167

Detector 1 90 86

Detector 2 102 100

Detector 3 133 130

Total 565 490

Power (mW) Pre-proc. n/a 0.5

Scale Gen. 17.10 9.30

Detector 1 13.10 10.10

Detector 2 11.60 9.50

Detector 3 10.15 8.05

SVM mem. 7.85 7.85

Total 59.80 45.30

clock frequency and voltage while maintaining the same
throughput.

Three different configurations are tested for the par-
allel detectors architecture: one, three and five detectors.
Figure 11 shows the trade-off between area, power and
throughput in each architecture using column raster scan
mode.3 On the left of Fig. 11, the supply voltage is held
constant at 0.72V, and a throughput of 30, 60, and 80 fps
is achieved by the one, three and five detectors respectively.
On the right of Fig. 11, the throughput is held constant
at 60 fps, and the supply voltage is varied for each con-
figuration to evaluate the energy consumption. To achieve
a constant 60 fps throughput, the supply voltage must be
increased to 1.1 V for the one-detector configuration, and
can be decreased to 0.6 V for the five-detector configura-
tion. As expected, large energy reduction is achieved by
using three parallel detectors compared to a single detector
due to voltage scaling. Although the five-detector architec-
ture gives a slightly lower energy point, the three-detector
architecture is selected because it offers a better energy ver-
sus area trade-off. The same behavior is expected regardless
of cell processing order.

A simple replication of the hardware to implement the
parallel detectors results in extra area and power consump-
tion, which can be avoided. The parallel detectors are using
the same SVM template to detect one object. As a result,
a separate buffer for SVM weights in each detector means
replicating information and wasting memory area and band-
width. In this architecture, the detectors are carefully syn-
chronized such that they share the same SVM weights at
any moment. This enables using only one buffer for SVM
weights for all detectors, which results in 3× reduction in
memory size and bandwidth, and 20 % reduction in the
overall system power.

Figure 12 shows the overall detection system. The pixels
from the 12 scales are distributed to three parallel detec-
tors. The distribution is done such that the three detectors
have balanced workloads. The original HD scale is passed
to Detector (1), the next 2 scales to Detector (2), and the
remaining 9 scales to Detector (3). All three detectors are
identical except that the size of the histogram and the accu-
mulator buffers are different based on the number and the
size of the scales processed by each detector. The exact
memory sizes in each detector are shown in Table 5. With
three parallel detectors and voltage scaling, a 3.4× energy
saving is achieved compared to a single detector as shown
in Fig. 11.

3The energy numbers for 0.6 V and 1.1 V supplies are estimated from
a ring oscillator voltage versus power and frequency curves. SRAM
minimum voltage is 0.72 V.
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Figure 16 Detection architecture pipeline with number of cycles required by each module.

6 Image Pre-Processing

Image pre-processing can reduce the overhead cost of gen-
erating the scales, with minor impact on the detection
accuracy.

6.1 Coarse Resolution of Pixel Intensity

The size of the pixel line buffers used in the scale genera-
tor block is about half of the overall system memory size.
One way to reduce the size of these buffers is to quan-
tize the pixel intensity below the conventional 8-bit. This
also reduces the logic of the multipliers in the interpolation
block. Figure 15 shows the AP versus the pixel intensity
bit-width (dashed line). Because the HOG feature is fairly
robust to quantization noise, the intensity can be quantized
down to 4-bit with an AP loss of only 0.015. Going from 8-
bit to 4-bit pixel intensity results in a 50 % reduction in the
pixel line buffers size. However, this can be further reduced
as discussed in the next section.

6.2 Detection on Gradient Image

The detection accuracy mainly depends on the features
being able to capture the main characteristics of the object.
Since the HOG feature is a function of edge orienta-
tions, it should have consistent detection performance on
other image representations that preserve edge orientations.
Figure 13 shows two representations of the same pedes-
trian: the left is the original intensity image, and the right

Table 3 Optimized fixed point bit-width.

Parameter Sign Integer Fraction

Gradient magnitude 0 8 0

Cell histogram bin 0 14 0

Block energy 0 26 0

HOG feature bin 0 0 9

SVM weights 1 0 3

SVM accumulator 1 3 13

is the gradient magnitude image. The gradients are calcu-
lated using a simple [-1 0 1] filter. Edges that compose the
pedestrian contour are visible in both images. To further
demonstrate that detection on gradient magnitude images is
reasonable, Fig. 13 shows also the trained SVM templates
on both original and gradient magnitude training images.
Both templates capture similar pedestrian characteristics
(e.g. head, shoulders, legs).

Figure 17 AP, power and memory sizes for different object detection
architectures. a Single-scale with one detector at 0.6 V. b Multi-scale
with one detector at 1.1 V. cMulti-scale with three parallel detectors at
0.72 V. d Multi-scale with three parallel detectors and pre-processing
at 0.72 V.
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Table 4 Comparison between the memory size in column raster scan
and row raster scan architectures. Memory size in (Mbit).

Column scan Row scan

Scale Generator 0.136 0.243

Histogram 0.289 0.520

Accumulator 0.095 0.340

SVM Memory 0.018 0.018

Total 0.538 1.121

The motivation behind processing gradient magnitude
images is to further reduce the pixel intensity bit-width, and
to reduce the switching activity in the hardware because the
gradient magnitude image is usually more sparse. Figure 14
shows the intensity histograms for the original and the gra-
dient magnitude representations of an example image. The
original image pixels intensities are well distributed across
the whole dynamic range of 8-bit. However in the gradient
magnitude image, most of the pixels intensities are con-
centrated around low values and do not cover the whole
dynamic range. Thus, the gradient magnitude image can use
fewer bits per pixel because of the dynamic range reduction.

Figure 15 shows that the original images give a 0.02 bet-
ter AP at high pixel intensity bit-width compared to the gra-
dient magnitude images (solid line). At 4-bit, both original
and gradient magnitude images have the same AP. Reducing
the bit-width to 3-bit in gradient magnitude images approxi-
mately maintains the same AP and has a 25 % smaller pixel
line buffer size.

The image pre-processing results in a 24 % reduction in
the overall system power. The area and power breakdown
for both 8-bit original image and 3-bit gradient magnitude
image detectors are shown in Table 2. The pre-processing
required for the gradient magnitude image detection archi-
tecture introduces very small area and power overhead.
However, it results in a 45 % power reduction in the scale
generator block. The pixel line buffers size is reduced from

Figure 19 Area and power breakdowns for the overall column scan
object detection system.

0.363 Mbit to 0.136 Mbit. Smaller multipliers are used in
the interpolation unit, resulting in 30 % area saving. The
detector power is also reduced by 20 % due to smaller
subtractors and accumulators in the histogram generation
unit, and due to the reduction in switching activity in the
data-path.

7 Results

As mentioned in Section 4, this architecture is cell-based
where one cell is processed at each stage in the pipeline.
Figure 16 shows a timing diagram of the detection pipeline
with different top level modules. These modules are running
in parallel as shown and each one is processing a different
cell at a time in unit time intervals of 78 cycles. Number of
cycles is balanced between modules to reduce idle times and
maximize throughput. Each module is pipelined internally
as well to maximize the operating clock frequency.

7.1 Detection Accuracy

The INRIA person dataset [5] was used to evaluate
the impact of the modified parameters on the detection

Figure 18 Layout of the object detector core (column scan architecture).
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Table 5 The size and the
bandwidth of different
memories in the design.

Block
Bandwidth (MB/s)

Memory
Size Dimension

Read Write (Mbit) address × word

Scale generator 980 255

Pixel buffer 1 0.078 1088×75

Pixel buffer 2 0.039 544×75

Pixel buffer 3 0.019 272×75

Histogram buffer 1,009 112

Detector 1 0.055 2048×28

Detector 2 0.080 3040×28

Detector 3 0.154 5760×28

Accumulator 1,743 1,743

Detector 1 0.018 544×17(×2)

Detector 2 0.027 832×17 (×2)

Detector 3 0.050 1536×17 (×2)

SVM weights 7,776 0 0.018 144×128

accuracy. These modifications include: using L1-norm for
the gradient magnitude, fixed-point numbers representation
(shown in Table 3), approximating the image pyramid with
a scale factor of 1.2, and image pre-processing. Our imple-
mentation, which supports multi-scale detection, without
pre-processing is close to the original HOG algorithm [6]
with 0.389 AP compared to 0.4. With pre-processing, our
implementation gives 0.369 AP.

7.2 Architectural and Algorithmic Optimization Results

Figure 17 shows the design space of the detection accuracy,
the memory size and the power numbers for different archi-
tectures at the same throughput (1080HD video at 60 fps).4

Our three main contributions can be shown as follows:

1. Introducing multi-scale detection boosts the detection
accuracy by 2.4×. The overhead of the image pyra-
mid generation and the processing of the new scales
results in 14× increase in power and 8.8× increase in
memory size compared to a single detector (A to B in
Fig. 17).

2. Parallelism reduces the power by 3.4× due to voltage
and frequency reduction without affecting the detection
accuracy. No change in the memory size is achieved (B
to C Fig. 17).

3. Image pre-processing reduces multi-scale memory and
processing overhead, resulting in a 24% overall power
reduction and a 25 % overall memory size reduction (C
to D in Fig. 17).

4Energy numbers for 0.6 V and 1.1 V supplies are estimated from
a ring oscillator voltage versus power and frequency curves. SRAM
minimum voltage is 0.72 V.

7.3 Image Scanning Order

As discussed in Section 4, two scan modes can be imple-
mented; column and row raster scans. Both modes use
similar architecture and layout floorplan. The only differ-
ence is the on-chip buffers size and their corresponding
address decoder logic. Row line buffers are used in row
raster scan architecture and column line buffers are used
in column raster scan architecture. Row raster scan results
in higher memory size because usually the frame width
is larger than its height. For example, the ratio between
1080HD frame width to its height is 16:9; thus a column
raster scan would reduce the memory size by approximately
16
9 ×. However, if we account for the fact that cameras typ-
ically output pixels in row raster scan order, processing the
cells in the same order will reduce latency and additional
memory controller complexity to reorder pixels from row to
column order. The decision of processing order will depend
on the overall system design parameters, such as camera
specification.

Table 4 shows a comparison between the two archi-
tectures with memory size numbers. Comparing row to
column raster scans, the scale generator and the histogram
buffers have an increase of 1.8× in their sizes, which is
approximately the ratio between the width and the height
of a 1080HD frame. The SVM buffer size doesn’t change
because it stores the same SVM template in both cases.
The accumulator buffers on the other hand have double the
increase with 3.6×. The difference is that the accumula-
tor buffers change from storing 8 columns of the partial
dot product values in the column raster scan architecture
to storing 16 rows in the row raster scan architecture.
The numbers 8 and 16 are the detection window width
and height respectively. The overall on-chip memory size
increase from column to row raster scan architectures is
about 2×.
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Table 6 Comparison between this work (three time-shared parallel
detectors, with image pre-processing) and the implementation in [13].

[13]
This work

Column Row

CMOS Technology 65 nm 45 nm SOI 45 nm SOI

Area (mm2) 3.3×1.2 2.8×0.96 3.2×1.08

Gate count (kgates) 502 490 498

Memory size (Mbit) 1.220 0.538 1.121

Image resolution 1920x1080 1920x1080 1920x1080

Frequency 42.9 MHz 270 MHz 270 MHz

Frame rate 30 fps 60 fps 60 fps

Scales 1 12 12

Supply 0.7 V 0.72 V 0.72 V

Power (mW) 40.3 45.3 58.5

Energy (nJ/pixel) 0.648 0.364 0.470

AP 0.166 0.369 0.369

7.4 Post-Layout Results

The core layout of the column scan mode architecture
is shown in Fig. 18. Area and power breakdown for the
main computation blocks of the overall system is shown
in Fig. 19. The classification and the SVM buffer con-
sume about 50 % of the system power. The remaining
50 % of the power is divided between the feature extrac-
tion and the scale generation. Although the SVM buffer has
a relatively smaller size compared to the memories in the
scale generation and the feature extraction blocks, it con-
sumes large power due to its high bandwidth. Table 5 shows
a breakdown of various memory blocks size and band-
width. Note that the SVM weights buffer has a zero write
bandwidth, assuming that the template weights are loaded
only at the beginning of the detection process and never
changed.

Table 6 shows a comparison between this work with both
scan modes and the ASIC implementation in [13].5 Both
designs can process 1080HD videos. To be able to pro-
cess 30 fps, the design in [13] has dual cores processing
only one scale, resulting in poor detection accuracy. In this
work, a 6.4× increase in throughput is required relative
to [13]: 3.2× to support multi-scale and 2× to support 60
fps rather than 30 fps in [13]. Although this work supports
multi-scale detection, the size of the on-chip memory is
only 0.538Mbit in the column raster scan architecture. Dou-
bling the memory size in the row raster scan architecture
still gives a comparable memory size. Comparing column
and row raster scan architectures, 30 % increase in power is

5AP number is not reported in [13]. This number is from single scale
HOG detection simulation.

reported for row raster scan, mainly because of the increase
in on-chip memory size.

8 Conclusion

Multi-scale support is essential for robust and accurate
detection. However, without any architectural optimiza-
tion, the scale generation and processing would result in a
14× power consumption increase, which is a concern for
energy-constrained applications. An efficient architecture is
presented in this work to generate the image pyramid. Paral-
lelism and voltage scaling result in a 3.4× power reduction.
Image pre-processing reduces the scales generation over-
head, and results in 24 % reduction in the overall system
power. Two types of image scan modes are presented, col-
umn and row raster scans. Using 45 nm SOI CMOS ASIC
technology at a supply voltage of 0.72 V, this design can
process 1080HD video at 60 fps, with a total power con-
sumption of 45.3 mW and 58.5 mW for column and row
raster scan architectures respectively.
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