
J Sign Process Syst (2016) 85:307–323
DOI 10.1007/s11265-015-1057-6

Measuring and Modeling the Power Consumption
of Energy-Efficient FPGA Coprocessors for GEMM
and FFT

Heiner Giefers1 ·Raphael Polig1 ·Christoph Hagleitner1

Received: 9 November 2014 / Revised: 18 June 2015 / Accepted: 30 September 2015 / Published online: 15 October 2015
© Springer Science+Business Media New York 2015

Abstract In this paper we analyze the power consumption
and energy efficiency of general matrix-matrix multiplica-
tion (GEMM) and Fast Fourier Transform (FFT) imple-
mented as streaming applications for an FPGA-based copro-
cessor card. The power consumption is measured with inter-
nal voltage sensors and the power draw is broken down onto
the systems components in order to classify the energy con-
sumed by the processor cores, the memory, the I/O links and
the FPGA card. We present an abstract model that allows for
estimating the power consumption of FPGA accelerators on
the system level and validate the model using the measured
kernels. The performance and energy consumption is com-
pared against optimized multi-threaded software running on
the POWER7 host CPUs. Our experimental results show
that the accelerator can improve the energy efficiency by an
order of magnitude when the computations can be under-
taken in a fixed point format. Using floating point data, the
gain in energy-efficiency was measured as up to 30 % for
the double precision GEMM accelerator and up to 5× for a
1k complex FFT.

� Heiner Giefers
hgi@zurich.ibm.com

Raphael Polig
pol@zurich.ibm.com

Christoph Hagleitner
hle@zurich.ibm.com

1 IBM Research – Zurich, Ruschlikon, Switzerland

Keywords FPGA GEMM accelerator architecture · FPGA
FFT accelerator architecture · FPGA stream processing ·
Energy efficiency analysis · CPU/FPGA power
measurements · Hybrid CPU/FPGA system · Power
profiling · Power estimation

1 Introduction

Recent trends in data analytics and ever growing data
repositories rise the need for efficient high performance
computing (HPC) solutions. Although chip vendors are
keeping up to adhere to their multi-core roadmaps, large
scale HPC systems are facing major challenges![11]. Big
data is expanding faster than Moore’s Law [25] and thus
even massively parallel algorithms that can efficiently
spread out over large-scale supercomputers will encounter
limitations. Future HPC systems must reduce their energy
requirements while keeping on to deliver more process-
ing performance. One well-established approach to improve
the efficiency of computer systems is to apply special
purpose coprocessors, commonly referred to as hardware
accelerators. All of the top ten systems on the Novem-
ber 2014 edition of the Green500 list exhaustively use
accelerator cards to to increase their floating point perfor-
mance. As a rule of thumb, the energy efficiency of an
accelerator is proportional to its degree of specialization
and thus, application specific integrated circuits (ASICs)
are normally more efficient than software programmable
accelerators [15]. In an ASIC the functional units are
tailored to a specific problem and the overhead of fetch-
ing and orchestrating instructions is eliminated However,

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s11265-015-1057-6-x&domain=pdf
mailto:hgi@zurich.ibm.com
mailto:pol@zurich.ibm.com
mailto:hle@zurich.ibm.com

308 J Sign Process Syst (2016) 85:307–323

problem-specific accelerators are of limited value for HPC
systems that are being designed for widespread use. Field
programmable gate arrays (FPGAs) have been effectively
deployed in HPC systems and they promise to deliver a
good trade-off between performance and programmability.
Several studies reveal that FPGA-based accelerators can
improve the energy efficiency compared to CPU and even
GPU solutions [12, 20, 27, 29]. However, used in a hybrid
environment, the energy consumed for computations on the
FPGA device is only a part of the energy budget spend
for solving the compute problem. Host memory accesses,
data movement and accelerator-support tasks running on
the CPU can contribute a substantial amount of energy. A
detailed analysis of the system is required to understand the
sources of power consumption and to improve the energy
efficiency.

In this paper we study the performance, power and
energy of two widely applied linear algebra operations
on FPGA and CPU. The general matrix-matrix multipli-
cation (GEMM) is a fundamental routine applied as a
core-function in many numerical methods. Many important
HPC applications can be reduced to dense matrix operations
so that GEMM codes are typically highly tuned for spe-
cific CPUs and, moreover, CPUs are designed to efficiently
support this type of operation [3, 6, 22].

The Fast Fourier Transform (FFT) is one of the
most important computational kernels used in applications
domains such as physics, engineering, applied mathematics,
and signal processing [4]. The FFT greatly reduces the com-
plexity of computing the Discrete Fourier Transform (DFT).
However, the lower operation count comes at the price of
more non-local, strided data accesses. Modern computer
systems typically suffer from this kind of access patterns so
that FFT computations are limited by data movement rather
than by the arithmetic operations.

In case of the GEMM kernel both, the CPU and the
FPGA can easily explore the inherent data-level parallelism
and the comparison demonstrates the costs for the actual
multiply-accumulate operations on the two devices. The
peak performance for floating point operations is almost an
order of magnitude higher on the CPU and thus, the FPGA
is hardly able to accelerate matrix operations for which opti-
mized software implementations exist. Taking into account
that the idle power consumption can easily exceed 70 % of
the power consumed during high utilization, the best per-
forming solution tends to be also the most energy-efficient
one. From this observation one could conclude that the race-
to-completion policy is always the best choice in terms of
not only performance but also energy. However, this con-
clusion does not hold if we assume that a server node is
operating on various workloads simultaneously. Our results
show that floating point arithmetic can be more energy-
efficient on the FPGA than on a mature server system if

only the power increase compared to an idle baseline power
is considered.

The use of an FPGA based coprocessor is particularly
advantageous for workloads that do not map well to the
CPU. Multi-threading approaches diminishing returns when
the overhead costs outweigh the computational benefits of
parallel FFT execution. By applying dedicated processing
pipelines that efficiently implement the strided access pat-
terns inside the FPGA fabric we can explore a high degree
of parallelism at full I/O bandwidth. The main contributions
of this paper are summarized as follows:

– We propose and explore streaming based architectures
for GEMM and FFT on FPGA and present implemen-
tations for a custom FPGA accelerator card. The archi-
tectures are highly configurable and can be adapted to
various data formats and problems sizes.

– A power model is introduced that allows for estimating
the FPGA power consumption at a high-level. We verify
the model based on actual measurements and demon-
strate the feasibility of providing proper predictions in
very early stages of the design process.

– We study the power consumption of the hardware archi-
tecture and provide a detailed power breakdown of the
system’s components that are actively used for compu-
tation.

– We compare the energy efficiency of the FPGA based
implementations against software versions from mature
linear algebra and FFT libraries tuned for the host sys-
tem. Our results show that double precision GEMM
(DGEMM) computations on the FPGA can improve the
energy efficiency by 29 % in specific cases. The energy
efficiency of 1D FFTs is improved by up to 17.8×when
a custom data format is used and 1.2× to 5× when a
standard floating point format is applied.

2 Compute Platform

All experiments were performed on a PowerLinux 7R2
server running Fedora 17. The dual 8-core POWER7 pro-
cessors operate at 3.55 GHz and are capable of executing
64 threads in parallel. The CPU has 32kB L1 and 256 kB
L2 cache per core, all cores within a chip share a 32MB L3
cache.

A self-developed FPGA coprocessor card is attached to
the system via the GX++ I/O bus that can sustain a unidi-
rectional data transfer rate of 3.2 GB/s. As shown in Fig. 1,
the card is equipped with two FPGAs, both of which are
Altera Stratix-IV devices. Using two separate chips helps to
ensure a clean separation between system and user content
of the accelerator design. The user part of the design runs
on a EP4SGX530 device and can access the host’s virtual

J Sign Process Syst (2016) 85:307–323 309

Figure 1 Custom build FPGA coprocessor card for POWER7
systems.

memory space via DMA channels and memory mapped I/O
(MMIO) registers . The second FPGA (EP4SE360) imple-
ments an MMU that translates virtual addresses through the
assistance of privileged software on the host allowing the
accelerators to access the main memory and to operate in a
common virtual address space with the applications running
on the processor.

Figure 2 shows the system organization with hardware
resources (FPGA accelerator card and main memory) and
the software stack. Whenever a data stream requires to
access a cache line mapped to a new memory page, the sys-
tem FPGA writes the effective address of the request into
an MMIO register. As being part of the host application, the
translation server continuously reads this register using the
device driver of the card and converts the virtual address to
a physical address. The MMU on the system FPGA reads
the physical address back and uses the page frame for DMA
to the host memory.

3 Hardware Implementation of Benchmarking
Kernels

This section provides an overview of our selected kernels
and their implementation on the FPGA coprocessor.

Figure 2 System organization with software managed Direct Virtual
Memory Access (DVMA) stack.

3.1 General Matrix-Matrix Multiplication

The Basic Linear Algebra Subprograms (BLAS) is a preva-
lent collection of elementary linear algebra operations [17].
BLAS routines are the core of many other linear algebra
libraries and are greatly used in, e.g., LAPACK, Matlab, and
R. The most efficient BLAS implementations are normally
provided by chip vendors who tune the operations for their
architectures. In contrast, auto-tuning generic BLAS codes
for specific targets do not afford expert knowledge about the
processor’s architecture and has been shown to be competi-
tive with the hand-tuning approach. For our experiments we
use the ATLAS implementation of the BLAS library [28],
tuned for the target POWER7 server node as well as the IBM
Engineering and Scientific Subroutine Library (ESSL)[18].

BLAS routines are generally divided into three levels.
BLAS Level-1 provides vector operations, e.g., addition,
scaling, norm or dot product. Matrix-vector and matrix-
matrix operations are provided by Level-2 and Level-3,
respectively. From a functional perspective, routines from a
lower level serve as building blocks for the next higher level
of the BLAS layers. However, BLAS functions are nor-
mally implemented individually because simply using the
lover-level routines in more complex operations generally
has negative effects on performance.

Our FPGA implementation involves routines from all
levels of BLAS1. The dot product (or inner product) of
two vectors u and v is the sum-of-products of correspond-
ing vector components

∑
uivi and is the basic opera-

tion in a general matrix-vector multiplication (GEMV). A
full general matrix-matrix multiplication (GEMM) can be
computed by separately invoking GEMV for every vector
component of the right-hand side (RHS) matrix.

Operations on vectors and matrices typically have a
high degree of inherent data-level parallelism. The key to
performance for almost every linear algebra function imple-
mentation is to exploit the memory subsystem in order to
keep the functional units busy. Our proposed architecture
uses the on-chip memory for caching the vector components
of the RHS and streams the left-hand side (LHS) matrix
from the host. Figure 3a shows an example of a two compute
unit (CU) implementation. Each CU is capable of storing
an entire vector component and computes a corresponding
final result vector. The FPGA’s block rammemory is limited
(fewMegabyte) and would, normally, pose a tight constraint
on the possible number of parallel CUs. However, applying
a simple blocking scheme allows us increase the number of
parallel units by balancing the computational and memory
resources used by one CU. The design depicted in Fig. 3b

1BLAS Level-2 and Level-3 functions support in-place addition of
the result matrix/vector and scaling via scalar parameters. The FPGA
architecture as presented in this paper is optimized for the basic matrix
multiplication but can be extended to support these features.

310 J Sign Process Syst (2016) 85:307–323

Figure 3 Blocking schemes for
matrix-matrix multiplication.
Scheme 3(a) requires access
entire right-hand side columns.

can implement twice the number of CUs by reducing the
local storage capabilities per unit. Following the steps in
Algorithm 1, the matrix-matrix multiplication is done in an
iterative process.

GEMM software performance The POWER7 core can
compute 4 double-precision multiply-add operations in par-
allel, accounting for 8 FLOPS per cycle per core. The

resulting aggregate peak performance of the system is 454.4
GFLOPS.

We measured the actual performance for DGEMM on
the host using the self-tuned ATLAS library and the man-
ually tuned ESSL library. For larger data sets (in the order
of GBs) the ESSL delivered the best performance peak-
ing at 157 GFLOPS. The ATLAS version was in average
6 % slower than ESSL. However, if the RHS matrix was
much smaller, ATLAS performed slightly better as ESSL.
We intent to use the GEMM kernel in a liner system solver
and are specifically interested in matrix-matrix multiplica-
tion problems where the LHS matrix is a dense quadratic
matrix and the RHS is a relatively small set of vectors. For
this configuration, the ATLAS DGEMM function performs
best and is used for our experiments. Doing repeated calls
to DGEMV is not an option, because it would eliminate the
benefit from cache tiling and data reuse. A test for 24 RHS
vectors showed that DGEMM performed an order of mag-
nitude better compared to executing 24 DGEMV calls in
sequence.

GEMM Hardware Architecture The proposed hardware
architecture is composed of parallel CUs, each of which
solving a matrix-vector sub-problem of the overall kernel.

J Sign Process Syst (2016) 85:307–323 311

Figure 4 GEMM accelerator
architecture. A single input
stream is used to load the
circular buffer units and to
broadcast the matrix stream
among the CUs. Each CU
produces an individual output
stream to the host.

As depicted in Fig. 4, a CU is attached to a circular buffer
that serves as a vector cache for a current block of the RHS
matrix. Before each run of the GEMM kernel, the buffers
get initialized by the host application. When the vector data
is present, the LHS matrix is broadcasted to all CUs in a
streaming fashion. The CUs calculate the dot-products for
each matrix row and forward the results to a pack unit.
The pack unit combines 128/s consecutive data words into
one DMA word and enqueues the data into a DMA put-
channel.

The CU core implements a vectorized MAC operation
and is sketched in Fig. 5a. Module interfaces are based on a
valid/ready handshaking mechanism. The input data width
of the CU is fixed to the width of a DMAword of 128-bit. In
the first part of the processing pipeline, the DMA words are
split into 128/s sub-words that match the bit-size s of the
native data type. Corresponding vector entries are multiplied
in the map layer and combined to a single sum in the reduce
layer. The reduce layer is implemented using 128/s − 1
adders arranged in a binary tree of depth log2(128/s). We
use a balanced tree of adders which is efficient in hardware
but, as the sequence of add operations is reordered, can lead
to floating-point inconsistency due to rounding errors. For
64-bit data types, the reduce layer consist of a single adder
unit.

In the case of floating-point data the most critical part
of the processing pipeline is the final accumulator stage.
A single-cycle floating-point adder runs at a very low fre-
quency and would compromise performance. In contrast, a
pipelined adder can be clocked much faster but, used as an
accumulator, has to block the inputs for multiple cycles in
order to wait for the current summation result. As we are
only interested in the final dot product of the input vectors
and do not need to compute a correct stream of prefix sums

at the out port of the accumulator we can apply FPGA opti-
mized accumulation schemes. Every result coming from the
reduction layer is directly forwarded to one input of a k-
stage pipelined adder. The output of the adder is feed-back
to the second input port. During the dot-product operation

Figure 5 Architecture of the GEMM CUs (a) and the two alternative
accumulator architectures (b)–(c).

312 J Sign Process Syst (2016) 85:307–323

Table 1 FPGA device utilization for various GEMM architectures using double precision float data types.

#CUs Util. ALUTs FFs Mem.[kb] DSPs Fmax

2 (tree) 17 % 37,432 69,090 1,731 40 259.61

4 (tree) 34 % 72,903 133,623 2,920 80 256.81

6 (tree) 50 % 109,379 197,735 4,110 120 251.64

8 (tree) 67 % 144,122 262,976 5,300 160 233.05

10 (tree) 81 % 179,615 327,659 6,490 200 222.05

12 (tree) 97 % 215,356 369,404 7,680 240 196.19

2 (fsm) 6 % 11,343 25,762 1,731 40 262.67

4 (fsm) 11 % 20,714 46,826 2,920 80 257.86

6 (fsm) 16 % 30,079 67,745 4,110 120 257.2

8 (fsm) 21 % 39,759 89,958 5,299 160 257.0

10 (fsm) 26 % 49,164 111,562 6,489 200 257.0

12 (fsm) 31 % 58,477 132,951 7,678 240 257.4

14 (fsm) 36 % 67,922 154,212 8,868 280 251.89

16 (fsm) 42 % 79,095 178,303 10,057 320 249.75

18 (fsm) 47 % 89,150 200,921 11,246 360 253.04

20 (fsm) 52 % 98,815 222,520 12,436 400 257.2

22 (fsm) 57 % 108,378 244,313 13,625 440 246.37

24 (fsm) 63 % 119,583 270,364 14,814 480 249.63

the register stages of the adder pipeline get populated with
partial sums which are the constituents of the actual pre-
fix sum. When a complete vector stream (indicated by an
end-flag, not depicted in Fig. 4) has been consumed by the
accumulator, the partial sums get shifted into a (k−1)-stage
shift register.

In this paper we study two alternative implementations
to reduce the partial sums to the final result. The first solu-
tion uses an adder tree to sum up the partial results from
the buffer. As depicted in Fig. 5b, the accumulated values
are shifted into a tree of adder units. If the adder’s delay
is not a power of two, we need additional delay buffers to
compensate for the incomplete binary tree. The complete
accumulator has a delay of (�log2k�) + 1) · k clock cycles.

Figure 5c shows the second solution that is based on
a resource efficient reduction mechanism but involves a
higher latency. In contrast to the tree based design the reduc-
tion accumulator uses only one k-stage pipelined adder unit.
When the last partial sum is present at the result port of the
adder unit, we shift the first entry of the partial sum buffer
into the adder. The procedure is repeated k − 1 times to
compute the final sum in k(k − 1) clock cycles.

For integer data, a single-cycle adder core is used as accu-
mulator block and thus, no specific accumulation scheme is
required. All arithmetic cores for the design were taken from
the Altera Megafunctions [1]. The architecture is highly
parameterizable and allows for scaling the number of CUs,
the buffer size, and the data type of the kernel.

GEMM Resource Utilization: We have synthesized var-
ious GEMM designs and varied the accumulator type and
the number of CUs. For all design points the cache size
per CU was fixed to 64kB. The resource utilization results
are summarized in Table 1. The required pipeline depth
for a 250MHz double precision floating point adder from
the Megafunction core library is 14, the multipliers have
an 11-stage pipeline. Compared to the CUs that use the
reduction based accumulation scheme (fsm), the tree-based
designs (tree) use 13 additional adder cores per CU. As the
adder units are mapped to the logic resources of the FPGA,
the GEMM CUs that are using the tree design consume
much more logic resources than the fsm variants. Due to the
demands of the inter-FPGA coupling we set the frequency
constraint of the user logic to 250MHz. The designs meet
the timing requirements until a certain utilization level. As
the tree based accumulators lead to much higher resource
occupation, we could only generate valid designs of up to 6
parallel CUs.

3.2 Fast Fourier Transformation

The discrete Fourier transform (DFT) is one of the most
widely used algorithms in signal processing and plays an
important role in many scientific and technical applica-
tions. The fastest known methods for computing a DFT are
referred to as fast Fourier transformations (FFTs). The most
well-known FFT is the Cooley-Tukey algorithm [8] that

J Sign Process Syst (2016) 85:307–323 313

uses a recursive divide & conquer approach to reduce the
computational complexity of a DFT operation of N sam-
ples from O(N2) to O(N logN). An overview of serial and
parallel FFT algorithms is given in, e.g. [7].

DFTs are frequently applied in embedded systems as
well as in applications from the HPC domain and thus, many
highly optimized FFT implementations exist. Special pur-
pose embedded systems use hardware implementations of
the FFT to optimize for performance and energy efficiency.
As hardware FFTs are often fixed to a specific data type or
transformation size, they are normally not used in general
purpose systems. Instead, optimized software implementa-
tions are applied. While the FFT method greatly reduces the
operations required to compute a DFT, the all-to-all com-
munication patters as required for the divide & conquer
algorithm generally hampers performance. FPGA acceler-
ators have the potential to bridge this performance gap,
because they approach the efficiency of fixed hardware
FFTs but are still fully programmable.

FFT Software Performance In order to assess the per-
formance of software based FFTs on the POWER7 server,
we compiled the most recent version of FFTW3 [13] (fftw-
3.3.4) from source to built a serial version and a threaded
SMP version of the library. The multi-threaded library the
uses the POSIX pthreads implementation.

In our benchmarks, we vary the FFT size from 64 to 2
million complex float samples and use up to 64 threads. For
each problem size, we prepare batched data of 800 MB and
compute the FFT out-of-place over the whole data array to
avoid caching effects.

Figure 6 presents benchmark results for two different
parallelization methods of the FFT. The GFLOPS perfor-
mance measure is based on an estimated operation count of
5N log(N) [7].

In Figure 6a, we show the performance of the multi-
threaded FFTW3 library for different FFT-dimensions and
varying number of threads. In this case, we work on a sin-
gle FFT problem at a time, but the FFT computation itself
is parallelized. The multi-threaded FFTW generally delivers
the best performance for larger FFTs and a higher number
of threads.

Figure 6b depicts the performance when using the serial
version of the FFTW library but starting multiple threads
for different input data sets. In contrast to the case in
(a), multi-threading on task level can improve the run-
time for small FFTs and reaches the highest performance
for small to medium size FFTs and a medium number of
threads.

FFT Hardware Architecture We use the Spiral frame-
work to generate problem specific FFT cores for FPGA
implementation [24]. The Spiral tool requires a problem

Figure 6 Single precision complex FFTW benchmarks on a dual
POWER7 node with 1 to 64 threads using multi-threaded FFTW3 (a)
and multiple FFTW3 threads (b).

specification, like the size and the data type of the FFT,
as well as some architecture parameters as input. With the
parameters, a user describes the algorithm’s radix (basic

Figure 7 FFT fully streamed processing pipeline with radix 4 based
computation unit.

314 J Sign Process Syst (2016) 85:307–323

Table 2 FPGA device
utilization for the two FFT
designs using 16-bit signed
integer and single precision
floating point data types.

Design Util. ALUTs FFs Mem.[kb] DSPs Fmax

32k 16-bit 5 % 7,896 20,780 16,920 160 250.69

1k float 12 % 25,068 46,506 3,774 128 251.45

block size), the number of input samples to the core and
whether the pipeline is organized as an iterative or fully
streamed architecture.

As depicted in Fig. 7 our implementations make use
of fully streamed architectures which allows us to input
a fixed amount of samples into the design in every clock
cycle. For an N-point FFT, the architecture is constructed
of O(logN) cascaded stages, each of which consisting of a
computation unit and a permutation unit. The computation
unit implements the butterfly scheme for the selected radix
organization. The twiddle factors are stored in ROM units
implemented in the embedded SRAM blocks on the FPGA.
Local ROM look-ups avoid the need of streaming twiddle
factors from the input throughout the pipeline.

The permutation of samples at the output of a process-
ing stage is conducted with the help of RAM modules.
Depending on the stride at a specific FFT stage, different
size RAMmodules get instantiated and controlled by appro-
priate address generators. For larger strides, deeper RAMs
must be used to ensure that the data can be streamed in-order
to the subsequent stage.

The number of input samples to the FFT pipeline is cho-
sen such that the bandwidth of the DMA interface could be
fully utilized. At peak, the service FPGA can deliver 16 byte
per 250 MHz clock and thus, at most 2 samples per clock
cycle can enter the user FPGAwhen using a single precision
complex data type.

The FFT pipeline is embedded into a general streaming
design that connects to the DMA interface to the service
FPGA. From the host, the user passes pointers to the source
and target arrays of the FFT data as well as a scalar indi-
cating the number of transformations in sequence. The
parameters are sent to the FFT kernel via MMIO writes.
When all parameters are set, the kernel requests the input
samples through the DMA interface.

In this paper we study two contrasting FFT pipelines, a
radix 2 based floating point design and a radix 4 based 16-
bit fixed point design. The floating point kernel computes
the FFT over 1024 complex samples and produces a result
every 512 clock cycles with a latency of 1617 clock cycles.
The fixed-point kernel is designed for 32k-point FFT. Due
to the smaller width data format, we can forward 4 com-
plex samples to the pipeline per clock cycle and a result is
generated every 8192 cycles. Although the latency of the
operators is much lower than for the deeply pipelined float-
ing point cores, the latency of this design is fairly high and
amounts to 22554 clock cycles. The latency of the data path

is dominated by the permutation units which have a doubled
delay in every following FFT stage.

FFT Resource Utilization The FPGA resource utilization
for two different FFT kernels is shown in Table 2. The first
design computes a 1D FFT over 32k complex 16-bit fixed-
point samples, the second implementation applies floating
point data on a complex 1k FFT. Both designs consume a
fairly small logic footprint on the Stratix-IV device. The
memory utilization of about 15.5Mb (which corresponds to
80 % of the embedded block memory resources) is much
higher for 32k-sample design. This is expected because the
permutation RAMs exponentially grow with the number of
FFT stages.

4 Power Measurement Framework

In this section we describe how we measure power con-
sumption on POWER platforms and present the applied
energy profiling methodology.

4.1 Amester Tool

Amester is a research tool to remotely collect power, tem-
perature, fan speed, and performance data from IBM servers
and to control power management policies in those servers.
The sensor data and power management capabilities are pro-
vided by EnergyScale, a system-level, out-of-band power
management solution for IBM POWER systems [23]. The
core of the EnergyScale implementation runs on a dedi-
cated microcontroller and continuously measures voltage
and current to calculate the power draw. Additionally, it uses
temperature sensors to measure heat as well as performance
counters to determine the characteristics of workloads. As
depicted in Fig. 8, Amester establishes a network connec-
tion to the flexible support processor (FSP) of the server
node in order to read out the sensor data from the Ener-
gyScale system.

To allow for high frequency sampling of sensor informa-
tion, the FSP can be configured to save the data into a local
trace buffer which is read out after workload execution or
a fixed measurement time. Via the amester tool, we config-
ure the FSP to dump a selected set of sensor registers into
the trace buffer. In our case, the subset comprises the avail-
able power sensor registers and a time stamp. The sensors a

J Sign Process Syst (2016) 85:307–323 315

Figure 8 General structure of
Amester and the EnergyScale
architecture.

can be recorded with multiple sampling rates. We use a 1ms
absolute value and a 32ms average in our experiments.

4.2 Profiling Methodology

When running a benchmark, we trace the power for the
entire node (Psys), the I/O subsystem (Pio), the two proces-
sor packages (Pp = Pp0 + Pp1) and the DIMMs (Pmem).
The system power includes overhead for cooling and stor-
age. For any benchmark, we trace the power consumption
during idle (P I) and active operation (P A). The idle power
includes the static power for the FPGA configuration. For
that reason we also determine a baseline power consump-
tion P B

io using an empty FPGA configuration and compute
the static power of the FPGA design as P S = P I

io − P B
io .

With no FPGA coprocessor card attached the I/O domain
consumes on average 37.0W. When we plug the card and
load and empty configuration onto the user FPGA, the I/0
power consumption increases to about 49.28W resulting in
a 12.28W idle power consumption by the FPGA card. This
number includes the static power of the PCB and all devices
as well as the additional power drawn on the bus to keep up
the link.

4.3 Platform Characterization

We trace the benchmark kernels with Amester and align
the sensor data and function invocations with the help of
real-time tags. The DVFS mode of the POWER7 was acti-
vated for all of the presented test cases. Figure 9 shows an
example power trace for the two processors, the memory
and the I/O subsystem power. Each sample point depicts
a 32ms average. In idle operation, the first CPU (CPU0)
consumes roughly 36W, the second CPU (CPU1) draws
around 31W. After an idle phase of 2 seconds, in which
the user FPGA is configured with a baseline idle design,
the actual benchmark is executed. First, the user FPGA is
reconfigured with a GEMM solver design via the I/O bus.
During reconfiguration the I/O subsystem power slightly
drops, because the FPGA is switched into the configuration
mode. The highest increase in terms of power consumption
is measured on the memory sub-domain which represents
the power consumed by the DIMMs. In the init phase of
the benchmark, the host prepares a test data set of random
numbers. In this phase, the FPGA is configured with the
user logic but in an idle mode. We can observe that the
idle power dissipation significantly depends on the FPGA

Figure 9 Power trace for CPU,
memory, and I/O power
consumption during idle,
reconfiguration, and
computation steps.

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5

P
ow

er
 [W

]

Time [s]

sleep 2s reconfigure FPGA init run on FPGA

I/O Subsystem Power
Processor Power

Host Memory Power

316 J Sign Process Syst (2016) 85:307–323

Figure 10 I/O subsystem
power consumption for various
streaming patterns.

 46

 48

 50

 52

 54

 56

 58

 60

 40 50 60 70 80

P
ow

er
 I/

O
 S

ub
sy

st
em

 [W
]

Time [s]

Init 3x1x1GB 3x210x1MB 3x220x1KB 3x1GB

random data random data random data zeros

memcopy
memcopy (smoothed)

configuration. The GEMM design utilizes a large portion of
the FPGA resources and leads to an increased power draw
of up to 5.8W from the I/O power domain. When the appli-
cation invokes the coprocessor call, the FPGA consumes
an additional amount of dynamic power due to the switch-
ing activity on the device. During runtime the CPU power
only slightly increases because the host application consists
of a light-weight task that is mainly responsible for virtual
addresses translation.

To characterize the overhead of kernel invocations from
the host side, we run a memcopy kernel with different input
parameters. The memcopy design simply redirects data that
is streamed from the host to the FPGA back to the host
memory. Figure 10 presents a power trace for a series of
benchmark cases, each of which is repeated 2 more times
to examine for consistency. In the beginning, we prepare a
random data set of 1GB. For the first experiment, we call
the kernel for the whole 1GB chunk of data. In the sec-
ond example, we divide the data into 1024 1MB blocks and
run the kernel 1024 times each. For the third benchmark we
further reduce the input data size of a kernel invocation to
1 KB. Figure 10 shows a substantial overhead for smaller
input data and many kernel executions. The fourth experi-
ment illustrates how the system behaves, when only zeros
are copied over the bus. In this case, dynamic energy con-
sumption only occurs in the control path of the system and

almost no switching activity on the data path parts of the bus
and the FPGA design is caused.

With the platform characterization experiments we sub-
stantiate three observations. i.) The static power consump-
tion significantly depends on the FPGA configuration. If
the FPGA accelerator is not used by the system, the con-
figuration should be switched to an ilde design consuming
only minimal static power. ii) Running a kernel for small
input data sets results in a substantial overhead due to the
control operations of the host. For the GEMM design, this
observation implies that the vector cache for the solver units
should not be chosen too small. iii) The input data has strong
influence on the switching activity and thus, the dynamic
energy consumption of the bus and the FPGA design. One
has to ensure to use realistic input data sets when comparing
different design alternatives.

5 Power Estimation Framework

The detailed analysis of the kernel FPGA implementations
helps us to investigate the feasibility of early power predic-
tions for operator-dense FPGA designs. Our power model
is based on pre-computed power estimates for a multitude
of arithmetic and memory cores. Figure 11a shows how
we populate a module database with utilization results and

Figure 11 High-level power
modeling flow.

J Sign Process Syst (2016) 85:307–323 317

Table 3 Power estimation for the floating point 1k FFT (upper part)
and the 16-bit fixed point 32k FFT (lower part).

Modules #Modules Pstatic Pdynamic Ptotal

RAM 18 501 60 561

ROM 14 21 9 30

FPMULT 36 651 198 849

FPADD 58 1187 818 2005

Total 126 2361 1085 3446

RAM 36 555 157 712

ROM 34 28 25 53

MULT 80 371 11 382

ADD 160 1245 53 1298

Total 310 2199 230 2445

All numbers in mW.

power estimates. Among the analyzed cores are integer and
floating point modules for various numeric operations as
well as RAM, ROM and FIFO memory blocks. We gener-
ate a bulk of synthetic designs comprising of a single core
module by systematically varying the parameters of the IP
core and instrument the Altera Quartus II tools to synthesize
these designs. After place&route, we carry out a detailed
power estimation using the Altera PowerPlay tool [2] and
extracted the static, dynamic, and clock power consump-
tion of the operator module under the assumption of fully
randomized input data. We perform the analysis for every
specific FPGA device and populate a power database with
the collected results.

In order to provide a rough power prediction for a spe-
cific problem, we analyze the high-level architecture and
add up the estimates for the dominant modules in the design.
In the DGEMM architecture, the multipliers, adders, and
the FIFO memory of the vector cache are the major compo-
nents that will occupy the vast majority of the utilized FPGA

resources. Thus, we use the power estimates for correspond-
ing modules (in terms of frequency, bit width, FIFO depth,
pipeline stages, etc.) from our power database (Table 3).

Figure 12 shows predicted, measured, and estimated
power consumption for DGEMM CUs using 2 to 24 CUs.
For each design point, the left bar shows the static and active
power as predicted by our model. The active power further
splits into parts that are consumed by the clock network and
those which are due to the switching activity on the device.
By measurement, we identified a baseline power of approx-
imately 1.8W that is due to the DMA interface logic and
the GX++ bus communication. The middle bar depicts the
power consumption estimate for the implemented design as
generated by the PowerPlay tool. The estimates are in the
line with our power measurements as shown by the right
bars in the figure.

For the DGEMM example, our power model of pre-
characterized cores delivers predictions that come remark-
ably close to the measured numbers. The static power
calculated by our model without even knowing the RTL
specification of the architecture is almost equal to the num-
bers reported by the PowerPlay tool after place and route.
The most challenging part of the prediction is to determine
a realistic switching activity factor α to be used for calculat-
ing the active power. We set α to 0.125 which corresponds
to the exact toggle rate of a 16-bit counter. This constant has
been established as a reasonable approximation for the aver-
age toggle rate and is also used as a default in the prevalent
FPGA vendor tools for vectorless estimations.

For the FFT case study, we compare the fixed point and
the floating point design variants. The pipelined multiplica-
tion and addition operators dominate the power consump-
tion in the floating point kernel. Our tool estimates the
power draw of the floating point operators to 2.854W which
correspond to more than 80 % of the total power consump-
tion. When adding the 1.8W baseline power increase the 1k

Figure 12 Power consumption
of DGEMM designs using 2 to
24 compute units (CU). For each
design point, the left stacked bar
shows the power consumption
as estimated by our power
prediction model. The middle
bar depicts the power as
estimated by the Altera
PowerPlay tool after place and
route and the right bar presents
the power as measured with the
Amester framework on the
POWER7 node.

318 J Sign Process Syst (2016) 85:307–323

FFT is estimated to consume 5.4W which is approximately
5 % higher than the actual measured power. The fixed-point
design is, in contrast, heavily dominated be ROM and RAM
modules. Although the module count is not much higher
compared to the floating point case, the depth of the mem-
ories is much larger for the 32k FFT and, as depicted in
Section 3.2 the FPGA memory resource are consumed up
to 80 %. The 16-bit fixed point multipliers can be effi-
ciently implemented in the embedded DSP blocks and also
the adders map well to the FPGA fabric, which accounts
for a very low power consumption for the arithmetic units.
With our estimation tool, we compute a total power draw
of 4.445W (after adding the baseline power) which is 27
% lower than the measured power consumption. This indi-
cates, that the memory modules are not as well characterized
as the arithmetic operators and that there is some need for
further investigation.

6 Energy-Efficiency Analysis

This sections presents power and energy measurement
results for the two application kernels. We measure multi-
ple power domains and compare the recorded traces in order
to derive a detailed breakdown of the system’s power con-
sumption. For both kernels, we compare the performance
and energy efficiency tho optimized software implementa-
tions running on the same host.

6.1 GEMM

To assess the theoretic peak performance of DGEMM com-
putations we first evaluate the maximum number of floating
point units that could be implemented on the used FPGA.
A double precision floating point multiplier occupies five
9x9 bit and one 36x36 bit DSP blocks on the FPGA, respec-
tively. At full utilization the device can potentially fit 104
of these multipliers. The adder units are completely imple-
mented with logic resources and the device is capable of
easily fitting more than 100 of them. For our targeted clock
frequency of 250MHz, the theoretical peak performance of a
DGEMM kernel on the Stratix-IV GX530 device is 2.6·1010
MAC Operations per second or 52 GFLOPS (Giga Floating
Point Operations Per Second). However, to keep a reason-
able amount of memory for the vector cache units we had
to restrict the number of compute units to 24, which lim-
its the the peak performance of the design to 24 double
precision GFLOPS. The measured performance of the 24
compute unit design is approximately 15.3 GFLOPS or 64
% of the theoretical peak, which is due to the overhead of
kernel invocations and the necessary vector load operations
during which no computations can occur on the FPGA.

We analyze the energy efficiency of the GEMM archi-
tecture in terms of double precision FLOPS per Watt. The
FLOPS/W measure is not always a proper energy efficiency
metric because the number and kind of operations used to
solve a problem can differ greatly for software and hard-
ware programmable systems. However, as our GEMM unit
implements a straightforward matrix-matrix multiplication
the operation count is directly comparable to a software
implementation. The floating point operation count for a
GEMM kernel f : R

m×k × R
k×n → R

m×n amounts to
2nmk. We measure the runtime T of the kernel operations
and the average power P avg consumed during the solv-
ing process. The energy efficiency of kernel operation is
computed as 2nmk/(T · P avg).

It is an important decision which part of the power
consumption is factored in the calculation of P avg . One
alternative is use P

avg
sys which corresponds to the full sys-

tem average power during the active processing phase. A
second alternative is to determine the dynamic power con-
sumption P

avg
dyn = P S + ∑

i∈{io,p,m}
(
P A

i − P I
i

)
, depicting

the part of the processing power that is spend atop of the
idle power in a specific domain (plus the static power of the
FPGA configuration).

Figure 13 shows the dynamic power consumption mea-
surements for the floating point and fixed point GEMM
kernels using 2 to 24 compute units. The orange and green
part reflect the dynamic power overhead measured in the
CPU and memory power domains, respectively. As the
architecture is designed to fully utilize the streaming band-
width, the activity for accessing the memory and the address
translation tasks on the CPU are similar for all variants.
Due to the simpler and smaller footprint arithmetic units,
the static and active power for the integer GEMM cores is
significantly smaller compared to the floating point design.

In the power consumption breakdown for a 24 compute
double precision GEMM design the static power of 12.28W

Figure 13 Measured power consumption for floating point and fixed
point GEMM kernels using 2 to 24 compute units.

J Sign Process Syst (2016) 85:307–323 319

for the coprocessor card is the biggest constituent of the
power draw. The static FPGA configuration power con-
sumption of 5.77W is a critical part, because it is consumed
continuously, also if the device is idle. As a consequence,
the user should reconfigure the device with the baseline con-
figuration after the application has finished to ensure that
the static power is low if the device is unused. A substantial
part of 7.20W atop of the average idle power is used in the
memory modules on the host. The power overhead spend for
the processing on the host CPU amounts to 1.62W. When
the kernel is executed on the FPGA, the power consumption
of the system is increased by 7.9W.

In Figs. 14 and 15 we compare P
avg
sys and P

avg
dyn for

ATLAS based CPU versions and our FPGA implementa-
tion of the GEMM kernel using a RHS matrix of size
8000 × 8000 and 32000 × 32000. For 2 to 24 RHS vectors
the ATLAS implementation achieves 1.2 to 35.3 GFLOPS
when multi threading is used and 1.3 to 6.5 GFLOPS when
the single threaded version of the library is applied. The per-
formance of our DGEMM architecture ranges from 1.3 to
15.3 GFLOPS depending on the number of compute units.

Figure 14 Energy-efficiency of DGEMM kernels.

Figure 15 Energy-efficiency of GEMM kernels for 8-bit data types.

For a RHS size of 24 vectors, the CPU is 2.3 times faster
than our 24-CU design and consumes 53 % less energy
on the system domain (cf. Fig. 14a). However, as we do a
full unload of the GEMM kernel, the host systems remains
idle and could potentially be used for other workloads. The
P

avg
dyn based metric excludes the portion of the power con-

sumption that is spend during idle operation. Figure 14b
reveals that the FPGA variant under this assumption is more
energy-efficient than both CPU alternatives.

The DGEMM designs that use the tree-based accumu-
lator architecture can be compared up to 6 compute units,
because we could only synthesize valid designs for up to this
size. If P

avg
sys is used as the reference power consumption,

the tree-based CUs are more efficient than the fsm-based
versions. The reason for this is that the lower latency tree
accumulators lead to a slightly shorter runtime and that
the higher processing power of the FPGA device is neg-
ligible when the power consumption of the whole server
node is factored in. If the metric uses P

avg
dyn , the fsm-based

DGEMM CUs can compensate the lower performance by
their significantly lower dynamic power.

320 J Sign Process Syst (2016) 85:307–323

When moving from double precision to a char type, the
amount of data that has to get loaded from memory and
piped through the FPGA shrinks by a factor of 8. Addi-
tionally, the static and dynamic power consumption of the
FPGA designs substantially drops due to the simple 8-bit
operators. Figures 15a and b shows how a shift to a lower
precision data type translates in terms of operations per
Watt. We compare the results for the 8-bit fixed-point CU
to SGEMM function calls from the ATLAS library. This
comparison is, from a functional perspective quite unfair,
because it compares arithmetic on a small size fixed-point
data type with floating point computations. However, the
SGEMM function delivers the highest performance (and
lowest energy consumption) for a matrix-matrix multipli-
cation on the CPU. To the best of our knowledge, there is
no suitable fixed-point library optimized for the POWER7
vector units and the development of such a library is out of
scope for this paper. Concerning the energy spend on the
entire system, our 8-bit GEMM kernel is roughly 29 % bet-
ter than SGEMM. If only P

avg
dyn is considered, the FPGA

solution is about 5 times better than the best pure CPU
version.

6.2 FFT

In this section we present the power measurements and per-
formance results for the FFT case study. We compare the
performance of FPGA software implementations using the
FFTW library. As for the GEMM benchmarks, we decided
to study one design point on the FPGA that uses a fixed
point data format. For many signal processing applications
the accuracy of fixed point arithmetic is sufficient and thus,
we illustrate to what extend a transition from a single pre-
cision floating point software-based FFT to a fixed-point
FPGA-based FFT can improve the energy efficiency. More-
over we directly compare 1k-point FFT implementations on
FPGA and CPU using the same data format and providing
identical precision. A power breakdown for the FFT accel-
erators is depicted in Fig. 16. The static power consumption
of the coprocessor card and the dynamic power of the host
memories are the largest contributors to the power draw.

The first column of Table 4 shows the idle power of the
system as traced with the amester framework when the node
was running the OS with no user tasks. The power gover-
nor on the CPU was set to DVFS with the priority to power
savings (indicated by � at the superscript) and thus, to a
mode in which the node consumes the lowest amount of
power. For the FFTW benchmarks we switched the power
governor to a DVFS mode that favors performance (super-
scripted marked with ⊕). This leads to a higher average
power draw but also significantly increases performance so
that the performance-per-Watt is normally higher than in
a lowest power mode. The numbers for Ss and Hs depict

Figure 16 Power breakdown for the FFT accelerators.

the results for a s-input complex FFT executed in software
or hardware, respectively. For the 32k FFT, we pick the
best-performing multi-threaded variants as well a sequen-
tial implementation. In the Sthr64 case, we use 64 threads,
with each thread working on a separate FFT, the numbers for
Spar16 show the performance for parallelized FFTW calls
using 16 threads.

The fastest software version for the 32k-FFT delivers
36.5 GFLOPS at 453W of system power. The serial ver-
sion consumes 400W but only achieves about 5.5 GFLOPS.
Using a fixed-point data format on the FPGA, we can
increase the performance to about 54 GFLOPs while con-
suming only 15W more power than in idle mode. Thus, the
energy efficiency in terms of performance per Watt can be
increased by 2.3× if the total power of the node is used
as reference power, or 17.8× if only the dynamic power
consumption is factored in.

For the 1k-FFT case study, we also vary the mode of
the system’s power governor. As we can not increase the
software performance for 1k-FFTs by using calls to the
multi-threaded FFTW library (cf. 3.2), we analyze sequen-
tial and thread-parallel versions using 4 and 16 threads
on the CPU. The power favoring DVFS mode (S−) keeps
the CPU in the lowest possible voltage/frequency mode
and only increases clock speed under heavy load. This
leads to a power drop of more than 100W but also signifi-
cantly reduces the systems average performance. Hence, the
change of the frequency scaling algorithm is normally not
the first choice if the efficiency metric involves the total sys-
tem power. If we apply the dynamic power as a baseline for
efficiency, the lower power mode on the CPU delivers more
than 8× better results.

The floating point kernel on the FPGA shows a per-
formance of 17.48 GFLOPS for the 1k-FFT. In therms
of dynamic energy efficiency the FPGA solution outper-
forms the most efficient software variants by 1.2× and

J Sign Process Syst (2016) 85:307–323 321

Table 4 Power consumption for FFTs.

Domain S� Idle S
⊕ seq

32k S⊕ thr64
32k S

⊕ par16
32k H

� f xt

32k S
� seq

1k S� thr4
1k S� thr16

1k S
⊕ seq

1k S⊕ thr4
1k S⊕ thr16

1k H
� f lt

1k

Psys 275.11 399.82 453.60 431.52 291.34 286.55 301.66 314.22 403.42 428.78 450.14 295.07

Pio 49.43 49.49 49.54 49.57 55.66 49.55 49.58 49.57 49.55 49.65 49.50 53.86

Pp0 35.44 96.27 132.34 116.08 37.25 37.64 41.88 49.19 97.16 111.32 127.65 37.24

Pp1 30.82 88.35 95.54 94.57 31.34 31.10 31.90 32.33 88.67 89.30 89.16 31.41

Pmem 23.01 29.05 41.17 36.55 29.40 30.61 38.80 45.90 31.89 41.96 46.72 30.49

Perf 5.56 36.51 12.78 53.87 6.27 20.14 38.73 9.46 29.18 41.37 17.48

MF/W 13.90 80.48 29.61 184.91 21.89 66.76 123.26 23.45 68.06 91.91 59.25

Pdyn 124.45 179.90 158.07 14.95 10.21 23.46 38.30 128.57 153.53 174.34 14.30

GF/W 0.045 0.203 0.081 3.604 0.614 0.858 1.011 0.074 0.190 0.237 1.222

Pio, Pmem, and Ppi depict the average power draw consumed in the I/O subsystem, the memory subsystem and in the two processors, respectively.
Psys is the total average power consumption of the server node and Pdyn the amount of power spend atop of the idle power off the node. The
performance Perf is given in GFLOPS, the energy efficiency in MFLOPS/W (MF/W) and GFLOPS/W (GF/W). The superscript text at the
column headers depicts the set-up for the benchmark. ⊕ or� indicates whether the power governor was configured to favor power or performance,
respectively. seq, thr , and par indicate the if and how the FFTW calls were parallelized. f xt represents a fixed point format for the FPGA FFT,
and f lt a floating point format.

5.1×, depending on the applied mode of the DVFS power
governor.

7 Related Work

Kestur et al. [20] propose a BLAS Level-2 implementa-
tion on FPGA and compare the execution time, average
power, and energy consumption with vendor tuned math
libraries on CPU and GPUs. Their FPGA architecture stores
the matrix and the RHS vector in on-chip memories limit-
ing the solvable problem size to only 512kB for the matrix.
The reported energy efficiency improvements of up to 293×
compared to an Nvidia Tesla C1060 are impressive. How-
ever, the limitation of the matrix size leads to ignoring the
effects of data I/O and to compromising the GPU’s perfor-
mance. Fowers et al. [12] evaluate the energy consumption
of sliding window applications on CPU, GPU, and FPGA.
Their findings reveal the suitability of FPGA accelerators
for image computations and show that FPGAs can outper-
form multi-core CPUs and and GPUs in terms of energy
efficiency for this specific class of applications. In contrast
to our power-profiling method, the energy analysis is based
on the Thermal Design Power (TDP) specifications of the
studied devices and thus, a worst case approximation of the
actual energy consumption.

Numerous floating point dense matrix-matrix multipli-
cation architectures for FPGAs have been proposed in lit-
erature, e.g., [10, 21, 31, 32], and [29]. The floating point
accumulator architecture presented in this work is akin to
the reduction circuit presented in [30]. Another FPGA-
optimized approach for floating point accumulation is given
in [9]. The presented module is very resource efficient,

but has to be scaled to the numerical requirements of the
application.

A multi-core architecture optimized for GEMM and FFT
workloads is presented in [26]. Using their programmable
ASIC approach, the authors demonstrate an efficiency of
up to 30 GFLOPS for a 2D FFT. Several papers discuss
FFT implementations in FPGA technology. Hemmert and
Underwood evaluate and compare multiple FFT implemen-
tations on FPGA [16]. The method described in [19] allows
for trading between FPGA resource utilization and abso-
lute latency for radix 2 based FFTs. Chen et al. propose an
FFT architecture that explores pipeline parallelism and task
parallelism in order to optimize for energy efficiency [5].

To analyze the power consumption of FPGA-based sys-
tems, researchers apply external power meters (e.g., [20]),
power estimation tools (e.g., [5, 29]), or published data (e.g.,
[12, 26]). Our power-profiling methodology differs from the
presented approaches and allows for analyzing the hardware
in a much finer grained manner. In contrast to the majority
of related work, our energy efficiency analysis includes sys-
tem level components, such as the power overhead spend on
the CPU for accelerator-supporting tasks, the host memory
and the I/O links. This paper reviews and extends our pre-
vious work [14], including a detailed analysis of pipelined
FFT architectures and a more detailed presentation of our
power estimation framework.

8 Conclusion

The paper presents a performance, power, and energy anal-
ysis of GEMM and FFT kernels on FPGA. Our results show
that offloading arithmetic kernel functions to the FPGA

322 J Sign Process Syst (2016) 85:307–323

can increase the energy efficiency of the system. Using the
non-intrusive, high-resolution sampling of different power
domains on the server we can break down the power draw
to the systems main components. A substantial part of the
energy is consumed by the memories on the host, mainly
because of the streaming nature of the kernel design. We
leave it to future work to analyze if the memory costs can
be optimized by the use of local DRAM storage on the card.
The evident strength of the FPGA becomes apparent when
non-standard data types are used within the kernel.

If it is sufficient to execute the matrix multiplications or
FFTs in in an integer format, the use of the custom FPGA
design improves the performance and energy efficiency of
the system.We utilize low precision GEMM codes within an
iterative refinement framework that applies a simple integer
format in the inner loop whilst guaranteeing a high preci-
sion of the computed result using a floating point outer loop.
Fourier transformations are frequently applied to fixed point
data but as CPUs and libraries are tuned for floating point
arithmetic, the raw data is normally converted before pro-
cessing. We demonstrate an 18× gain in energy efficiency
on a real system when offloading the fixed point FFT to
an FPGA coprocessor. The launch of floating point hard
macros in FPGAs will help to achieve similar results for
floating point data. Even with current devices which imple-
ment floating point units with the general logic resources
we are able to show efficiency gains of up to 5× for a 1k
complex FFT.

The insights gained in this work contribute to differ-
ent further studies. The power-profiling of standardized
library functions on different devices can be integrated into
an energy-aware operating system that dynamically directs
function calls to processing devices in order to deliver the
best energy efficiency with respect to the parameter set of
the call and the current system state. Accurate estimation
tools are essential for automating the hardware/software co-
design process. Our power model shows a good prediction
quality for the floating point DGEMM and FFT kernels
and can be used by profiling tools to analyze the effects of
offloading kernel functions to an FPGA based accelerator.

References

1. Altera Corp. (2013). Floating-Point Megafunctions: User Guide.
2. Altera Corp. (2013). Quartus II Handbook Version 13.1. ch.

PowerPlay Power Analysis.
3. Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney,

A., Croz, J.D.u., Hammerling, S., Demmel, J., Bischof, C.,
& Sorensen, D. (1990). LAPACK: A Portable Linear Algebra
Library for High-performance Computers. In ACM/IEEE Conf. on
Supercomputing (SC’90).

4. Brigham, E.O. (1988). The Fast Fourier Transform and Its Appli-
cations: Prentice-Hall.

5. Chen, R., Park, N., & Prasanna, V.K. (2013). High throughput
energy efficient parallel FFT architecture on FPGAs. In High
Performance Extreme Computing Conference (HPEC) (pp. 1–6):
IEEE.

6. Choi, J., Dongarra, J., Pozo, R., & Walker, D. (1992). ScaLA-
PACK: A Scalable Linear Algebra for Distributed Memory Con-
current Computers, LAPACK Working Note 55.

7. Chu, E., & George, A. (2000). Inside the FFT Black Box. Serial
and Parallel Fast Fourier Transform Algorithms: CRC Press.

8. Cooley, J.W., & Tukey, J.W. (1965). An algorithm for the machine
calculation of complex Fourier series. Mathematics of Computa-
tion, 19, 297–301.

9. de Dinechin, F., Pasca, B., Cret, O., & Tudoran, R. (2008).
An FPGA-specific approach to floating-point accumulation and
sum-of-products. In Int. Conf on Field-Programmable Technology
(FPT’08): IEEE.

10. Dou, Y., Vassiliadis, S., Kuzmanov, G.K., & Gaydadjiev, G.N.
(2005). 64-bit Floating-point FPGA Matrix Multiplication. In Int.
Symp. on Field-programmable Gate Arrays (FPGA’05): ACM.

11. Esmaeilzadeh, H., Blem, E., Amant, R.St., Sankaralingam, K., &
Burger, D. (2011). Dark Silicon and the End of Multicore Scaling.
In Int. Symp. on Computer Architecture (ISCA).

12. Fowers, J., Brown, G., Cooke, P., & Stitt, G. (2012). A Perfor-
mance and Energy Comparison of FPGAs, GPUs, and Multi-
cores for Sliding-window Applications. In Int. Symp. on Field-
programmable Gate Arrays (FPGA’12): ACM.

13. Frigo, M., & Johnso, S.G. (2005). The design and implementation
of FFTW3. Proceedings of the IEEE, 93(2).

14. Giefers, H., Polig, R., & Hagleitner, C. (2014). Analyzing the
energy-efficiency of dense linear algebra kernels by power-
profiling a hybrid CPU/FPGA system. In Application-specific
Systems, Architectures and Processors (ASAP) (pp. 92–99): IEEE.

15. Hameed, R., Qadeer, W., Wachs, M., Azizi, O., Solomatnikov, A.,
Lee, B.C., Richardson, S., Kozyrakis, C., & Horowitz, M. (2010).
Understanding sources of inefficiency in general-purpose chips.
In Int. Symp. on Computer Architecture (ISCA).

16. Hemmert, K.S., & Underwood, K.D. (2005). An analysis of
the double-precision floating-point FFT on FPGAs. In Field-
Programmable Custom Computing Machines (FCCM) (pp. 171–
180): IEEE.

17. http://www.netlib.org/blas.
18. IBM Corp. (2012). ESSL Guide and Reference.
19. Inggs, G., Thomas, D., & Winberg, S. (2012). Exploring the

latency-resource trade-off for the Discrete Fourier Transform on
the FPGA. In Field Programmable Logic and Applications (FPL)
(pp. 695–698): IEEE.

20. Kestur, S., Davis, J., &Williams, O. (2010). BLAS Comparison on
FPGA, CPU and GPU. In Annual Symposium on VLSI (ISVLSI):
IEEE.

21. Kumar, V., Joshi, S., Patkar, S., & Narayanan, H. (2009). FPGA
based high performance double-precision matrix multiplication. In
Int. Conf. on VLSI Design: IEEE.

22. Lawson, C.L., Hanson, R.J., Kincaid, D.R., & Krogh, F.T. (1979).
Basic linear algebra subprograms for fortran usage, 5(3).

23. McCreary, H.-Y., Broyles, M.A., Floyd, M.S., Geissler, A.J.,
Hartman, S.P., Rawson, F.L., Rosedahl, T.J., Rubio, J.C., & Ware,
M.S. (2007). Energyscale for IBM POWER6 microprocessor-
based systems. IBM Journal of Research and Development, 51(6),
775–786.

24. Milder, P., Franchetti, F., Hoe, J.C., & Püschel, M. (2012). Com-
puter generation of hardware for linear digital signal processing
transforms. ACM Transactions on Design Automation of Elec-
tronic Systems, 17(2), 15:1–15:33.

25. Moore, G.E. (1965). Cramming more components onto integrated
circuits. Electronics, 38(8).

http://www.netlib.org/blas

J Sign Process Syst (2016) 85:307–323 323

Heiner Giefers received his
diploma and PhD degrees
from the University of Pader-
born in 2006 and 2012, respec-
tively. After receiving his PhD
he held a position as tech-
nical consultant for FPGA-
accelerated high-performance
computing at the Paderborn
Center for Parallel Computing
(PC2). In 2013 he joined the
IBM Zurich Research Labora-
tory where he is working on
energy-efficient architectures,
reconfigurable computing and
hardware-software codesign.

Raphael Polig received his
Dipl.-Ing. degree in electrical
engineering and information
technology from the Tech-
nische Universität München,
Munich, Germany, in 2008.
The same year he joined the
IBM Research & Develop-
ment Center in Böblingen,
Germany, as a circuit design
engineer working on high per-
formance SRAM based caches
for IBMs POWER and z pro-
cessors. He led efforts for tran-
sistor level design automation
in cooperation with the Uni-
versity of Bonn, Germany. In

2012 Raphael joined the Accelerator Technologies group at IBM
Research - Zurich, Switzerland, as a Ph.D. student focusing on recon-
figurable architectures for text-based analytics.

Christoph Hagleitner
received his Masters and
Ph.D. degree in Electri-
cal Engineering from the
Swiss Federal Institute of
Technology (ETH), Zurich
in 1997 and 2002, respec-
tively. In 2003 he joined
the IBM Zurich Research
Lab where he leads the
Accelerator Technologies
group. The main focus of his
research are high-performance
and energy-efficient hard-
ware accelerators for
business and high-perfor-

mance computing applications. His research agenda spans topics
from novel computing paradigms (e.g., NEM switches for logic
applications) to application-level acceleration (e.g., text analyt-
ics acceleration for the processing of unstructured documents).
He has authored and co-authored 80+ papers in refereed jour-
nals and conference proceedings and written/edited several book
chapters.

26. Pedram, A., McCalpin, J., & Gerstlauer, A. (2014). A highly effi-
cient multicore floating-point FFT architecture based on hybrid
linear algebra/FFT cores. Journal of Signal Processing System,
77(1-2), 169–190.

27. Putnam, A., Caulfield, A., Chung, E., Chiou, D., Constantinides,
K., Demme, J., Esmaeilzadeh, H., Fowers, J., Gopal, G.P., Gray, J.,
Haselman, M., Hauck, S., Heil, S., Hormati, A., Kim, J.-Y., Lanka,
S., Larus, J., Peterson, E., Pope, S., Smith, A., Thong, J., Xiao,
P.Y., & Burger, D. (2014). A Reconfigurable Fabric for Acceler-
ating Large-Scale Datacenter Services. In Int. Symp. on Computer
Architecture (ISCA).

28. Whaley, R.C., & Petitet, A. (2005). Minimizing development and
maintenance costs in supporting persistently optimized BLAS.
Software: Practice and Experience, 35(2), 101–121.

29. Zhang, W., Betz, V., & Rose, J. (2012). Portable and scalable
FPGA-based acceleration of a direct linear system solver. ACM
Transactions on Reconfigurable Technology Systems, 5(1), 6:1–
6:26.

30. Zhuo, L., Morris, G., & Prasanna, V. (2007). High-performance
reduction circuits using deeply pipelined operators on FPGAs.
IEEE Transactions on Parallel Distributed Systems, 18(10), 1377–
1392.

31. Zhuo, L., & Prasanna, V.K. (2005). High Performance Linear
Algebra Operations on Reconfigurable Systems. In ACM/IEEE
Conf. on Supercomputing (SC’05): IEEE.

32. Zhuo, L., & Prasanna, V.K. (2007). Scalable and modular algo-
rithms for floating-point matrix multiplication on reconfigurable
computing systems. IEEE Transactions Parallel Distributed Sys-
tems, 18(4), 433–448.

	Measuring and Modeling the Power Consumption of Energy-Efficient FPGA Coprocessors for GEMM and FFT
	Abstract
	Introduction
	Compute Platform
	Hardware Implementation of Benchmarking Kernels
	General Matrix-Matrix Multiplication
	GEMM software performance
	GEMM Hardware Architecture
	GEMM Resource Utilization:

	Fast Fourier Transformation
	FFT Software Performance
	FFT Hardware Architecture
	FFT Resource Utilization

	Power Measurement Framework
	Amester Tool
	Profiling Methodology
	Platform Characterization

	Power Estimation Framework
	Energy-Efficiency Analysis
	GEMM
	FFT

	Related Work
	Conclusion
	References

