
J Sign Process Syst (2016) 82:151–161
DOI 10.1007/s11265-015-1007-3

Single-channel Dereverberation for Distant-Talking Speech
Recognition by Combining Denoising Autoencoder
and Temporal Structure Normalization

Yuma Ueda1 ·Longbiao Wang2 ·Atsuhiko Kai1 ·Xiong Xiao3 ·Eng Siong Chng4 ·
Haizhou Li5

Received: 15 November 2014 / Revised: 9 April 2015 / Accepted: 21 April 2015 / Published online: 15 May 2015
© Springer Science+Business Media New York 2015

Abstract In this paper, we propose a robust distant-talking
speech recognition by combining cepstral domain denoising
autoencoder (DAE) and temporal structure normalization
(TSN) filter. As DAE has a deep structure and nonlinear pro-
cessing steps, it is flexible enough to model highly nonlinear
mapping between input and output space. In this paper,
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we train a DAE to map reverberant and noisy speech fea-
tures to the underlying clean speech features in the cepstral
domain. For the proposed method, after applying a DAE
in the cepstral domain of speech to suppress reverberation,
we apply a post-processing technology based on tempo-
ral structure normalization (TSN) filter to reduce the noise
and reverberation effects by normalizing the modulation
spectra to reference spectra of clean speech. The proposed
method was evaluated using speech in simulated and real
reverberant environments. By combining a cepstral-domain
DAE and TSN, the average Word Error Rate (WER) was
reduced from 25.2 % of the baseline system to 21.2 % in
simulated environments and from 47.5 % to 41.3 % in real
environments, respectively.

Keywords Speech recognition · Dereverberation ·
Denoising autoencoder · Environment adaptation ·
Distant-talking speech

1 Introduction

In a distant-talking environment, channel distortion dras-
tically degrades speech recognition performance because
of mismatches between the training and test environ-
ments. According to [1], the approaches in dealing with
reverberation problem can be classified as front-end-
based and back-end-based approaches. The front-end-based
approaches [1–10] attempt to reduce the effect of rever-
beration from the observed speech signal. The back-end-
based methods attempt to modify the acoustic model
and/or decoder so that they are suitable for reverber-
ant environment [11, 12]. In this paper, we focus on
the front-end-based approached for distant-talking speech
recognition.
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Many single-channel and multi-channel dereverberation
methods have been proposed for robust distant-talking
speech/speaker recognition [2–4, 13–17]. Comparing to
microphone array, single microphone is much easier and
cheaper to be implemented for real applications. Several
single-channel dereverberation approaches have been pro-
posed [2–4, 13, 14]. Cepstral mean normalization (CMN)
[18–20] may be considered the most general approach. It
has been extensively examined and shown as a simple and
effective way of reducing reverberation by normalizing cep-
stral features. However, the dereverberation of CMN is not
completely effective in environments with late reverbera-
tion. Several studies have focused on mitigating the above
problem [3, 4, 14]. A reverberation compensation method
for speaker recognition using spectral subtraction [21], in
which late reverberation is treated as additive noise, was
proposed in [3]. A method based on multi-step linear pre-
diction (MSLP) was proposed by [4, 14] for both single
and multiple microphones. The method first estimates late
reverberations using long-term multistep linear prediction,
and then suppresses these with subsequent spectral subtrac-
tion. Wolfel proposed a joint compensation of noise and
reverberation by integrating an estimate of the reverberation
energy derived by an auxiliary model based on multistep
linear prediction, into a framework, which, so far tracks and
removes nonstationary additive distortion by particle filters
in a low-dimension logarithmic power frequency domain
[22].

Neural network (NN) based approaches have been pro-
posed for feature transformation [23, 24]. Bottleneck fea-
tures extracted by a multi-layer perceptron (MLP) can be
used a non-linear feature transformation [23]. However,
deep networks of MLP with many hidden layers have a
high computational cost, and can’t learn much further away
from the top layer. Deep belief networks (DBNs) which
employ an unsupervised pretraining method using restricted
Boltzmann machine (RBM) have been proposed to train
better initial values of deep networks [29]. DNNs with
pretraining have been shown better performance than the
conventional MLP without pretraining on automatic speech
recognition [29]. Recently, denoising autoencoder (DAE),
one of Deep Neural Network (DNN), has been shown to
be effective in many noise reduction applications because
higher level representations and increased flexibility of the
feature mapping function can be learned [25, 26]. Ishii et
al. applied a DAE for spectral-domain dereverberation [27]
and found the word accuracy of LVCSR was improved from
61.4 % to 65.2 % for the JNAS database [28]. However,
the suppressed spectral-domain feature needs to be con-
verted to a cepstral-domain feature, and this improvement is
not sufficient. Previously, we found that Deep Neural Net-
work (DNN) [29] based cepstral-domain feature mapping
is efficient for distant-talking speaker processing [30]. In

this paper, we apply a denoising autoencoder for cepstral-
domain dereverberation because there are many LVCSR
systems that adopt a cepstral-domain feature as the direct
input.

The DAE uses its flexible mapping capability to learn a
mapping from a window of distorted input features to the
clean output features. Due to the limitation on the model
complexity, the input window of DAE cannot go too big.
In this study, we use a window of 9 frames, which covers
roughly 0.1s of speech. However, the effects of reverber-
ation on speech features may be as long as 1 second.
Therefore, the DAE is clearly not adequate to deal with the
reverberation distortion by itself. In this paper, we apply
temporal structure normalization (TSN) [31, 32] to com-
plement DAE for the task of dereverberation. TSN was
previously proposed to reduce the effects of transmission
channel and additive background noise on speech features
for robust speech recognition. It is motivated by the observa-
tion that noise and channel modifies the temporal structure
of speech features, hence there is a need to restore the
clean temporal structure. The furthermore improvement is
expected for distant-talking speech recognition by combin-
ing cepstral-domain DAE and the TSN filter based feature
normalization. The proposed method is evaluated in both
simulated and real reverberant environments.

The remainder of this paper is organized as follows:
Section 2 describes denoising autoencoder for cepstrl-
domain dereverberation. Temporal structure normalization
is described in Section 3. The experimental results and
discussions are presented in Section 4. Finally, Section 5
summarizes the paper.

2 Denoising Autoencoder for Cepstral-Domain
Dereverberation

An autoencoder is a type of artificial neural network (NN)
whose output is reconstruction of input, and is often used
for dimensionality reduction. DAEs share the same struc-
ture as autoencoders, but input data is a noisy version of the
output data. Denoising autoencoder use feature mapping to
convert noisy input data into clean output, and have been
used for noise removal in the field of image processing [25].
Ishii et al. applied a DAE for spectral-domain dereverbera-
tion [27]. However, the suppressed spectral-domain feature
needs to be converted to a cepstral-domain feature, and
this improvement is not sufficient. Noting that many speech
recognition systems adopt a cepstral-domain feature as the
direct input, we think that the transformation of cepstral-
domain feature may achieve better performance than that of
spectral-domain feature. Cepstral-domain denoising autoen-
coder based dereverberation transforms the cepstrum of
reverberant speech to that of clean speech. By using Mel
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filterbank, the cepstral features take into consideration the
fact that human auditory system has higher resolution in
low frequency than in high frequency. Hence, error of
dereverberant signal and clean teacher signal on cepstral
feature automatically emphasizes more on low frequen-
cies than high frequencies. On the other hand, if error on
spectrum is used, all frequencies are treated equally impor-
tant. Moreover, the dimensions of the spectral-domain based
features are greater than those of cepstral-domain based
features. This introduces greater difficulty in learning for
DAE with a deep architecture. Thus, it is expected that
the DAE-based cepstral-domain dereverberation should be
more efficient than DAE-based spectral-domain derever-
beration for speech recognition. In this paper, we apply
a denoising autoencoder for cepstral-domain dereverbera-
tion because there are many LVCSR systems that adopt a
cepstral-domain feature as the direct input.

Given a pair of speech samples: clean speech and cor-
responding reverberant speech, DAE learns the non-linear
conversion function that converts reverberant speech fea-
tures into clean speech. In general, reverberation is depen-
dent on both current and several previous observation
frames. In addition to the vector of the current frame, vectors
of past frames are concatenated to form input.

For cepstral featureXi of observed reverberant speech of
i−th frame, cepstral features ofN−1 frames before the cur-
rent frame are concatenated with the current frame to form
a cepstral vector of N frames. Output Oi of the non-linear
transformer based on the DAE is given by:

Oi = fL(...fl(...f2(f1(Xi, Xi−1, ..., Xi−N))) (1)

where fl is the non-linear transformation function in layer l,
N is the number of frames to be used as the input features.

Topology of the cepstral-domain DAE for dereverbera-
tion is shown in Fig. 1. In this paper, the number of hidden

Figure 1 Topology of stacked denoising autoencoder for cepstral-
domain dereverberation.

Figure 2 Graphical representation of the RBM.

layers is set to three. Details of parameter turning for DAE
is discussed in Section 4.2.1. In Fig. 1, Wi(i = 1, 2) shows
the weighting of the different layers, and WT

i shows the
transposition of Wi .1 That is to say, W1 and W2 are the
encoder matrix and WT

1 and WT
2 are the decoder matrix,

respectively.

2.1 Training of DAE

2.1.1 Restricted Boltzmann Machine

To train a deep neural network, Deep Belief Networks
(DBNs) [29] are used for pre-training because they can
obtain accurate initial values of the deep-layer neural net-
works.

RBM is a bipartite graph shown in Fig. 2. It has visi-
ble and hidden layer in which visible units that represent
observations are connected to hidden units that learn to
represent features using weighted connection. A RBM is
restricted that there are novisible-visible or hidden-hidden
connections. Different types of RBM is used in the case of
binary or real-valued input. Bernoulli-Bernoulli RBMs used
to convert binary stochastic variables to binary stochastic
variables. Gaussian-Bernoulli RBMs is used to convert real-
valued stochastic variables to binary stochastic variables.

In a Bernoulli-Bernoulli RBMs, the weights on the con-
nections and the biases of the individual units define a
probabillity distribution over the joint states of the visible
and hidden units via an energy function. The energy of a
joint configuration is:

E(v, h|θ) = −
V∑

i=1

H∑

j=1

wijvihj −
V∑

i=1

aivi −
H∑

j=1

bjhj (2)

where θ = (w, a, b) andwij represents the symmetric inter-
action term between visible unit i and hidden unit j while
ai and bj are their bias term. V and H are the numbers of
visible and hidden units.

The probability that a RBM assigns to a visible vector v

is:

p(v|θ) =
∑

hexp(−E(v, h))∑
v
∑

hexp(−E(v, h))
(3)

1Wi and WiT1
correspond to fL in Eq. 1
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Since there are no hidden-hidden connections, the con-
ditional distribution p(h|v, θ) is factorial and is given by:

p(hj = 1|v, θ) = σ

⎛

⎝bj +
V∑

i=1

wij vi

⎞

⎠ (4)

where σ(x) = (1 + exp(−x))−1. Similarly, since there are
no visible-visible connections, the conditional distribution
p(v|h, θ) is factorial and is given by:

p(vj = 1|h, θ) = σ

⎛

⎝ai +
H∑

j=1

wijhj

⎞

⎠ (5)

In a Gaussian-Bernoulli RBMs, the energy of a joint
configuration is:

E(v, h|θ) =
V∑

i=1

(vi − ai)
2

2
−

V∑

i=1

H∑

j=1

wijvihj −
H∑

j=1

bjhj

(6)

The conditional distribution p(h|v, θ) is factorial and is
given by:

p(vi = 1|h, θ) = N

⎛

⎝vi; ai +
H∑

j=1

wijhj , 1

⎞

⎠ (7)

where N(μ,V) is a Gaussian with mean μ and variance V .
Maximum likelihood estimation of RBM is to maxi-

mize the log likelihood log(p(v|θ)) for the parameters θ .
Therefore, the weight update equation is given by:

�wij = 〈vihj 〉data − 〈vihj 〉model (8)

where 〈·〉data is the expectation that vi and hj are on
together in the training set and 〈·〉model is the same expec-
tation calculated from the model. Because compute 〈vihj 〉
is expensive, using contrastive divergence (CD) approxi-
mation for the compute gradient. It is possible to compute
〈vihj 〉 by once the Gibbs sampling.

To obtain a pre-trained RBM, we trained all hidden layers
by using the Bernoulli-Bernoulli RBM. DBNs are hierar-
chically configured by connecting these pre-trained RBMs.
In DAE, output is reconstruction of input, so network’s first
half layer are for encoding, and second half layer are for
decoding. W1, and W2 are learned automatically and WT

1
and WT

2 are generated from W1 and W2 in Fig. 1.

2.1.2 Backpropagation Algorithm

After pre-training, a backpropagation algorithm was applied
to adjust the parameters. Backpropagation modifies the
weights of the network to reduce the error of the teacher
signal and the output value when a pair of signals (input sig-
nal and the ideal teacher signal, the cepstral feature of clean
speech) are given.

3 Temporal Structure Normalization

Noise and reverberation distorts speech features in multi-
ple aspects, e.g. the timbre of speech and also the temporal
structure of speech up to 1 second. The DAE uses its flexi-
ble mapping capability to learn a mapping from a window of
distorted input features to the clean output features. Due to
the limitation on the model complexity, the input window of
DAE cannot go too big. In this study, we use a window of 9
frames, which covers roughly 0.1s of speech. However, the
effects of reverberation on speech features may be as long as
1s. For example, the evaluation data in this study has a T60
time up to 0.7s. Therefore, the DAE is clearly not adequate
to deal with the reverberation distortion by itself.

In this section, we describe a method called temporal
structure normalization (TSN) to complete DAE for the task
of dereverberation. TSN was previously proposed to reduce
the effects of transmission channel and additive background
noise on speech features for robust speech recognition. It is
motivated by the observation that noise and channel mod-
ifies the temporal structure of speech features, hence there
is a need to restore the clean temporal structure. In TSN,
temporal structure of speech features are represented by the
modulation spectra of speech signal, i.e. the power spectral
density function (PSD) of feature trajectories. The restora-
tion of temporal structure of clean features is implemented
by performing a linear filtering on the feature trajectories,
where the linear filter weights are designed independently
for each feature trajectory and speech utterance to normal-
ize the PSD of the feature trajectory to a reference PSD.
The reference PSD of a feature trajectory is estimated as
the mean of PSD of clean utterances and represent the clean
temporal structure of clean speech.

In our preliminary study, we found that the PSD function
of the clean and reverberant speech features are very differ-
ent. This is actually expected as reverberation is known to
have a blurring effect on the speech spectrum, hence intro-
duce a smoothing effects on the spectrum and hence the
features. Therefore, it is natural to apply TSN to deal with
the remaining distortions that exist in speech features after
DAE.

4 Experiments

4.1 Experimental Setup

4.1.1 Training Dataset

The training dataset provided by gREVERB challengeh
(Reverberant Voice Enhancement and Recognition Bench-
mark) [33] was used. This dataset consists of the clean
WSJCAM0 [34] training set and a multi-condition (MC)
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training set. Reverberant speech is generated from the clean
WSJCAM0 training data by convolving the clean utterances
with measured room impulse responses and adding recorded
background noise. The reverberation times of the measured
impulse responses range from approximately 0.1 to 0.8 sec.
This training dataset was used for both training of acous-
tic models. Clean speeches are also used by training the
reference PSD function of the TSN.

It should be noted that the recording rooms used for the
multi-condition training data and test data were different.

4.1.2 Evaluation Test Set

It is important to note that the proposed dataset consists of
real recordings (RealData) and simulated data (SimData),
part of which has similar characteristics to RealData in
terms of reverberation time and microphone-speaker dis-
tance. This setup allows us to perform evaluations in terms
of both practicality and robustness in various reverberant
conditions. Specifically, the development (Dev.) test set and
the final evaluation (Eval.) test set each consists of the fol-
lowing SimData and RealData: SimData is generated from
WSJCAM0 corpus [34], and RealData from MC-WSJ-AV
corpus [35]. This development dataset was used to deter-
mine the optimal parameter for dereverberation and speech
recognition. The details of data set of training and test are
shown in Tables 1 and 2.

4.1.3 Experimental conditions for LVCSR and
Dereverberation

In this study, Mel Frequency Cepstral Coefficients
(MFCCs) were used as features for LVCSR. The dimen-
sion of the MFCCs was 39 including 12 MFCCs plus
power and their Delta and Delta-Delta coefficients. MFCC
features were normalized using the mean of the entire multi-
condition training set. The DAE training was carried out
using stochastic mini-batch gradient descent with a mini-
batch size of 256 samples. Fifty epochs with a learning rate
of 0.002 were used for all layers during pre-training, and
100 epochs with a learning rate of 0.1 were used for all
layers during fine-tuning.

Multi-step linear prediction (MSLP) algorithm generate
inverse filter through the prediction coefficients to estimate

inverse system [14]. We estimate the late reverberation com-
ponents using the inverse filter and apply dereverberation
by power spectral subtraction. For MSLP-based dereverber-
ation, the step size and the order of linear prediction were
set to 500 and 750, respectively. For the TSN filter, the Yule-
Walker method is used to estimate the PSD functions of
feature trajectories. The order of the ARmodel for PSD esti-
mation is set to 6 to obtain proper level of details. A filter
length of 33 taps is used for the evaluation if not otherwise
stated.

In this study, we used a speech recognition system pro-
vided by the gREVERB challengeh task [33], which is
based on the hidden Markov model tool kit (HTK) [36].
As an acoustic model, it employs tied-state HMMs with
eight Gaussian components per state, trained according to
the maximum-likelihood criterion. We use a multi-condition
training set for training of acoustic model. This training
set is generated from the clean WSJCAM0 training data
by convolving the clean utterances with measured room
impulse responses and adding recorded background noise.
The reverberation times of the measured impulse responses
range roughly from 0.1 to 0.8 sec. Note that the recording
rooms used for the SimData, RealData and multi-condition
training data are all different. CMLLR [37] is the method for
converting the mean and variance of the Gaussian distribu-
tion for each state of the hidden Markov models (HMMs) by
using the regression matrix to reduce the mismatch between
the adaptation data and model. This method is intended
to obtain a transformation matrix for modifying the model
parameters that maximize the likelihood of the adaptation
data. In this paper, we applied CMLLR for unsupervised
model adaptation, i.e., environment adaptation.

4.2 Experimental Results

4.2.1 Parameters Tuning for DAE

For DAE-based dereverberation, feature vectors of the cur-
rent frame and previous eight frames of reverberant speech
were used as input. Thirty-nine MFCCs of the current frame
of clean speech were used as teacher signals for output, i.e.,
the dimension of input was 39 × 9 = 351. Optimum value
of number of hidden layer and units in each hidden layer
were determined from the experimental. Table 3 shows the

Table 1 Quantity of data for
Dev. and Eval. set of SimData
and RealData and for training
dataset.2

SimData RealData Training data

Dev. Eval. Dev. Eval.

# of sentences 1484 (∼ 3 hr.) 2176 (∼ 4.8 hrs.) 179 (∼ 0.3 hr.) 372 (∼ 0.6 hr.) 7861 (∼ 17.5 hrs.)

# of speakers 10 28 5 10 92

2The clean and multi-condition training datasets are the same size
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Table 2 Details of data set of SimData and RealData.

Speech Corpus Reverberant time Signal-to-noise ratio Distance between the microphones

Room1 Room2 Room3 Near Far

SimData WSJCAM0 0.25s 0.5s 0.7s 20dB 50cm 200cm

RealData MC-WSJ-AV 0.7s – – – 100cm 250cm

Table 3 Word error rate by DAE-based dereverberation with different number of hidden layers (%).

Number of hidden layer SimData RealData

Room1 Room2 Room3 Ave. Room1 Ave.

Near Far Near Far Near Far Near Far

3 16.22 17.85 18.93 28.89 20.28 30.12 22.05 42.30 42.72 42.51

5 15.98 18.24 19.05 28.37 21.09 31.70 22.41 42.67 45.66 44.17

7 16.72 19.64 20.14 32.63 21.93 35.88 24.49 47.16 48.46 47.81

9 19.22 22.00 23.61 36.55 24.51 37.64 27.26 49.03 50.17 49.60

Table 4 Word error rate by DAE-based dereverberation with different number of units in each hidden layer (%).

Units in each hidden layer SimData RealData

Room1 Room2 Room3 Ave. Room1 Ave.

near far Near Far Near Far Near Far

1024-1024-1024 16.22 17.85 18.93 28.89 20.28 30.12 22.05 42.30 42.72 42.51

512-512-512 16.00 18.19 18.56 27.68 20.20 30.37 21.83 42.67 44.22 43.45

1024-512-1024 16.69 19.22 20.56 33.05 22.45 34.77 24.46 47.35 47.51 47.43

512-256-512 16.59 19.42 19.72 31.53 20.90 32.89 23.51 46.29 45.04 45.67

Table 5 Word error rate by spectral-domain DAE and cepstral-domain DAE (%).

DAE-based dereverberation SimData RealData

Room1 Room2 Room3 Ave. Room1 Ave.

Near Far Near Far Near Far Near Far

Spectral-domain 14.23 17.70 21.59 38.30 22.97 41.44 26.04 48.72 46.82 47.77

Cepstral-domain 16.22 17.85 18.93 28.89 20.28 30.12 22.05 42.30 42.72 42.51
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speech recognition results with different number of hidden
layer (1024 hidden units in each hidden layer). According
to these results, the number of hidden layer of DAE is set to
3 in the following part of this paper. It is confirmed that the
performance of speech recognition is decreased when the
number of hidden layer is increased. This can be explained
by the complex structure of DNNs: too many layers cause an
increase in parameters of DNNs, with the output being over-
learned using small training data. In this paper, the size of
training data is less than 20 hours, so an appropriate number
of layers is sufficient in this task. Table 4 shows the results
with different units in each hidden layer. We decided that
the number of units in each hidden layer is 1024 according
to these results.

4.2.2 Comparison of Spectral-Domain DAE
and Cepstral-Domain DAE

Ishii et al. applied a DAE for spectral-domain derever-
beration [27] for the JNAS database [28]. However, the
suppressed spectral-domain feature needs to be converted
to a cepstral-domain feature, and this improvement is not
sufficient. In our study, we applied DAE for cepstral-
domain dereverberation for the REVERB-challenge task
[33]. In this section, we compare spectral-domain and
cepstral-domain DAE-based dereverberation for this task.
The results are compared in Table 5. These results indicate
that cepstral-domain DAE is better than spectral-domain
DAE for reverberant speech recognition on “REVERB
Challenge” task.

A possible reason for the better results of cepstral domain
DAE is that the measure square error (MSE) of cesptral fea-
tures are used as the cost function, which is more relevant
to the speech recognition task than the MSE of the spec-
trum. By using Mel filterbank, the cepstral features take into
consideration that fact human auditory system has higher
resolution in low frequency than in high frequency. Hence,
MSE on cesptral feature automatically emphasizes more on
low frequencies than high frequencies. On the other hand, if
MSE on spectrum is used, all frequencies are treated equally
important.

4.2.3 Results by Combining DAE and TSN

Tables 6 and 7 show the speech recognition results with Dev.
and Eval. dataset. We compared three kinds of dereverbera-
tion methods (MSLP, DAE and TSN) and the combination
of these. CMN was applied to all methods. When DAE-
based cepstral-domain dereverberation was compared with
CMN-based dereverberation, single channel MSLP-based
dereverberation and TSN filter-based dereverberation, a
remarkable improvement was achieved. DAE worked well
especially with strong reverberation, i.e., far-field micro-
phone in gRoom 2hand gRoom 3h of SimData. The per-
formance with CMLLR-based environment adaptation was
better than that without CMLLR. However, the results of
DAE are worse than that of baseline in gRoom1. This
trend is also seen in Table 5. It is considered that the late
reverberation in gRoom 1h is relative small and early rever-
beration can be suppressed by CMN effectively. Hence,

Table 6 Word error rate of each method for Dev. dataset (%).

Dereverberation methods CMLLR SimData RealData

Room1 Room2 Room3 Ave. Room1 Ave.

Near Far Near Far Near Far Near Far

Without dereverberation None 20.65 20.60 25.59 48.58 28.56 48.89 32.15 79.66 79.02 79.34

Yes 15.73 18.98 21.32 40.18 24.36 44.21 27.46 56.77 57.42 57.10

CMN None 16.13 18.85 22.73 43.06 26.73 46.43 28.99 52.21 52.36 52.29

Yes 13.86 17.01 21.30 36.23 22.77 39.79 25.16 47.79 47.16 47.48

MSLP None 15.44 18.34 23.10 41.43 26.95 45.38 28.44 53.96 53.25 53.61

Yes 13.94 16.72 20.56 35.40 22.87 39.02 24.75 48.16 45.39 46.78

DAE None 17.31 19.10 18.86 30.17 21.74 33.14 23.39 45.54 46.82 46.18

Yes 16.22 17.85 18.93 28.89 20.28 30.12 22.05 42.30 42.72 42.51

TSN None 16.57 20.18 23.69 40.25 28.39 44.96 29.01 50.22 51.47 50.85

Yes 15.36 18.29 21.84 35.99 23.44 40.31 25.87 47.04 46.82 46.93

DAE+TSN None 17.60 18.46 18.88 29.21 21.61 31.50 22.88 45.23 44.16 44.70

Yes 15.46 17.43 19.05 27.38 19.26 28.54 21.19 41.92 40.60 41.26
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Table 7 Word error rate of each method for Eval. dataset (%).

Dereverberation methods CMLLR SimData RealData

Room1 Room2 Room3 Ave. Room1 Ave.

Near Far Near Far Near Far Near Far

Without dereverberation None 22.30 23.21 25.33 42.97 29.16 47.23 31.70 80.45 74.48 77.47

Yes 17.57 18.96 22.53 34.96 25.61 41.97 26.93 57.07 56.82 56.95

CMN None 21.18 20.69 22.74 38.54 28.29 45.21 29.44 57.75 54.32 56.04

Yes 16.62 19.25 21.51 32.58 25.06 39.87 25.82 49.89 47.23 48.56

MSLP None 19.55 20.52 22.16 37.26 27.93 43.99 28.57 58.29 54.83 56.56

Yes 16.08 18.37 20.90 31.58 25.01 38.58 25.09 49.70 46.76 48.23

DAE None 21.30 21.92 20.61 28.01 23.80 32.43 24.68 49.50 49.43 49.47

Yes 17.93 19.38 20.02 27.46 22.23 30.47 22.92 44.14 46.19 45.17

TSN None 22.13 23.59 23.78 36.05 28.44 44.16 29.69 55.38 52.73 54.06

Yes 16.88 19.45 22.05 31.74 25.51 40.06 25.95 49.89 47.03 48.46

DAE+TSN None 21.08 21.72 19.95 27.59 24.07 31.68 24.35 47.97 48.14 48.06

Yes 17.84 19.11 19.47 27.16 21.75 29.93 22.54 44.04 44.02 44.03

the merit of suppression of late reverberation under light
reverberant condition is not very large. DAE+TSN cause
some distortion by doing dereverberation due to mismatch
between gRoom 1h condition and training condition. So
the performance of DAE+TSN is worse than CMN when
RT60 is very small. The results indicate that the proposed
methods work better in heavy reverberation than in light
reverberation.

For Dev. dataset, the average word error rates (WERs) in
SimData were improved from 25.16 % of CMN to 22.05 %
of cepstral-domain DAE with CMLLR-based environment
adaptation. In RealData, WERwere improved from 47.48 %
to 42.51 % with CMLLR-based environment adaptation.
In SimData, by combining cepstral-domain DAE and TSN
filter with environment adaptation, the WER was reduced
from 25.16 % in the baseline state to 21.19 %, i.e., the
relative error reduction rate was 15.8 %. In RealData, the
WER was reduced from 47.48 % to 41.26 %, i.e., the rel-
ative error reduction rate was 13.1 %. TSN filter didn’t
work well alone due to reverberation . However, when com-
bined with cepstral-domain DAE, improvement of TSN
filter was increased. It was considered that noise reduction
capability of TSN filter was improved by dereverberation of
cepstral-domain DAE.

For Eval. dataset, the similar trend in Dev. Dataset was
obtained. The WERs in SimData were improved from
25.82 % of CMN to 22.92 % of cepstral-domain DAE with
CMLLR-based environment adaptation. In RealData, WER
were improved from 48.56 % to 45.17 % with CMLLR-
based environment adaptation. The proposed combination
of DAE and TSN achieved best speech recognition perfor-
mance. That is, combination of DAE and TSN outperformed

the other dereverberation methods for both Dev. dataset and
Eval. dataset.

We found that the combinations with MSLP does not
produce good results. MSLP work well for dereverbera-
tion, but does not work well in combination with other
dereverberation methods.

5 Conclusions

In this paper, we proposed a robust distant-talking speech
recognition method by combining the cepstral-domain DAE
and the TSN filter. The proposed method was evaluated
in simulated and real distant-talking environments. DAE-
based cepstral-domain dereverberation achieved a remark-
able improvement compared with CMN-based dereverber-
ation, MSLP-based dereverberation and TSN filter-based
feature normalization in both environments. Furthermore,
speech recognition performance was improved by combin-
ing the cepstral-domain DAE and the TSN filter. In SimData
of Dev. dataset, by combining cepstral-domain DAE and
TSN filter with environment adaptation, the WER was
reduced from 25.16 % in the baseline state to 21.19 %, i.e.,
the relative error reduction rate was 15.8 %. In RealData
of Dev. dataset, the WER was reduced from 47.48 % to
41.26 %, i.e., the relative error reduction rate was 13.1 %.
For Eval. dataset, the similar trend was obtained. In Sim-
Data of Eval. dataset, the WER was reduced from 25.82 %
to 22.54 %, i.e., the relative error reduction rate was 12.7 %.
In RealData of Eval. dataset, the WER was reduced from
48.56 % to 44.03 %, i.e., the relative error reduction rate
was 9.33 %.
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