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Abstract A keyword-sensitive language modeling frame-
work for spoken keyword search (KWS) is proposed to com-
bine the advantages of conventional keyword-filler based and
large vocabulary continuous speech recognition (LVCSR)
based KWS systems. The proposed framework allows key-
word search systems to be flexible on keyword target settings
as in the LVCSR-based keyword search. In low-resource sce-
narios it facilitates KWS with an ability to achieve high key-
word detection accuracy as in the keyword-filler based sys-
tems and to attain a low false alarm rate inherent in the LVCSR-
based systems. The proposed keyword-aware grammar is
realized by incorporating keyword information to re-train
and modify the language models used in LVCSR-based KWS.
Experimental results, on the evalpart1 data of the IARPA
Babel OpenKWS13 Vietnamese tasks, indicate that the pro-
posed approach achieves a relative improvement, over the
conventional LVCSR-based KWS systems, of the actual term
weighted value for about 57 % (from 0.2093 to 0.3287) and
20 % (from 0.4578 to 0.5486) on the limited-language-pack
and full-language-pack tasks, respectively.

Keywords Keyword spotting . Keyword search . Filler .

Spoken term detection . Grammar network . LVCSR

1 Introduction

Spoken keyword search (KWS) [1, 2] is a task of detecting a
set of preselected keywords in continuous speech. The tech-
nology has been used in various applications, such as spoken
term detection [3–6], spoken document indexing and retrieval
[7], speech surveillance [8], spoken message understanding
[9, 10], etc. In general, KWS systems can be categorized into
two groups: classic keyword-filler based [1, 2] and large vo-
cabulary continuous speech recognition (LVCSR) based
KWS [3–6].

In classic keyword-filler based KWS, speech inputs are
treated as sequences of keywords and non-keywords (often
referred to as fillers) [1, 2]. It performs keyword search by
decoding input speech into keywords and fillers with time
boundary information. To do so, for each keyword in the sys-
tem a corresponding keyword model is established for model-
ing its acoustic properties, while all non-keywords share a
filler acoustic model. The decoding grammar1 is a simple
keyword-filler loop grammar (as shown in Fig. 1a). Because
of its simplicity, a keyword-filler based system requires only a
small amount of training data to obtain a reasonable perfor-
mance. But the system can only be used for detecting a small
set of predefined keywords.

In the 90s, with the rapid increase in computing power and
data resources [11, 12], implementing an LVCSR system with

1 In this study, a grammar is defined as a search graph or network whose
paths from the initial to final nodes represent valid word sequences in a
system with corresponding scores, and the graph/network is easily real-
ized by weighted finite-state automata (WFSA) [40, 41].
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a good performance was no longer impractical. LVCSR sys-
tems became mainstream in KWS research [4, 5, 13, 14] on
languages with rich training resources, e.g., English, Arabic,
and Mandarin Chinese. LVCSR-based systems solve the key-
word search problem from another aspect. Instead of decoding
the input speech into a sequence of keywords and fillers, they
convert input speech into general text documents using
speech-to-text (STT) techniques with language model (LM)
[15] based grammar [3–5]. These text documents can be in
different formats, such as N-best sentences or lattices generat-
ed by the LVCSR systems at word [3–5] or sub-word (e.g.,
syllable [16] or phone [3, 6]) levels. Since they can be used for
searching any keyword, LVCSR-based KWS is more flexible
than conventional keyword-filler based KWS on keyword tar-
gets because the relationship between keywords and non-
keywords are better characterized in an n-gram based LM,
which play a key role in determine the system performance.
However, a high-performance LM typically requires a signif-
icant amount of text training data [11, 17] which makes it a
major performance bottleneck for LVCSR-based KWS in
resource-limited applications. This is especially an issue when
LMs can only be built using transcribed speech data as in the
recent Babel program [18] sponsored by IARPA (Intelligence
Advanced Research Projects Activity) of the United States.

Recently, KWS under limited-resource conditions [19–23]
has become a research focus because training data collection
is often one of the most time-consuming and expensive efforts
in the overall system building process. While there are more
than thousands of languages in the world [24] recorded in
many different conditions, it is usually not practical for
KWS system designers to collect and transcribe a great
amount of training speech data for every language of interest
in a particular environment. In most cases, for a new language
in a specified acoustic condition, there would only be a very
limited amount of training data available for system training.

Various techniques were therefore brought out to enhance
the KWS performance under limited-resource conditions.
Indirect approaches, such as using more robust or informative
acoustic features (e.g., bottleneck features [25], tonal features

[26]), keyword verification [27, 28], and system combination
[29], which enhance the KWS performance without tackling
the limited-resource modeling problems have been shown to
achieve reasonable performance improvement. Techniques di-
rectly addressing the modeling problems under resource-
limited conditions are also proposed bymany research groups.
For example, data-augmentation methods such as semi-
supervised training [30], acoustic data-perturbation [31],
cross-lingual transfer learning [32] are shown effective to im-
prove acoustic models for limited-resource languages.
However, despite the great amount of works for the enhance-
ment of limited-resource KWS, there are relatively few re-
searches focusing on language modeling in this newly
emerged research field. To complete this missing piece, in this
study, the language modeling problem for resource-limited
KWS is specifically analyzed and studied.

The research paradigm shift toward the limited-resource
conditions inspires us to revisit classic keyword-filler based
KWS since such systems often perform well in low-resource
conditions. If the keyword-filler grammar and n-grams in
LVCSR can be unified, the integrated system is expected to
achieve higher performance than either type of the two KWS
systems. In this study, we propose a keyword-aware grammar
[33, 34] to combine these two frameworks. Experimental re-
sults indicate that the proposed grammar is flexible as in
LVCSR-based KWS and able to achieve a significant im-
provement over the two conventional systems on the KWS
system performance regardless of the amount of system train-
ing resources.

The rest of the paper is organized as follows. In Section 2,
conventional keyword-filler and LVCSR-based KWS are pre-
sented. A potential keyword prior underestimation issue
caused by limited LM training data for LVCSR-based KWS
is also highlighted. The keyword-aware language modeling
approach, alleviating the prior underestimation problem, is
then proposed in Section 3. Three realizations for the pro-
posed grammar are then presented in Section 4. Next the ex-
perimental setup is detailed in Section 5, and the experimental
results are analyzed in Section 6. Finally we conclude our
findings with future work in Section 7.

2 Spoken Keyword Search Problem

Spoken keyword search is an application of the automatic
speech recognition (ASR) technology that focuses on the rec-
ognition of keywords. Given a speech utterance O and a text-
based query q, a KWS system detects the query q in the utter-
ance by finding the best term sequence,W*, corresponding to
the utterance O as follows:

W * ¼ argmax
W

P W jOð Þ: ð1Þ

KW1

KWN

Filler 

LVCSR 

LM 

KW1

KWN

LVCSR

LM

(a) 

(b) 

(c) 

Figure 1 a Grammar of classic keyword-filler based KWS, b LM-based
grammar used by LVCSR-based KWS, and c the proposed keyword-
aware grammar, which combines the grammars used in the two KWS
frameworks.
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If the query, q, does exist in the utterance, then we expect
W*=h⋅q⋅f, where h and f are term sequences (which we do not
really care) preceding and following the query in the utter-
ance, and B⋅^ is a concatenation operator. Otherwise a detec-
tion miss error occurs. Note that usually miss errors are con-
sidered more serious than false alarms in KWS since the later
can still be removed with a further utterance-verification stage
[35–38].

With Bayes’ rule, Eq. (1) can be rewritten as

W * ¼ argmax
W

P OjWð ÞP Wð Þ; ð2Þ

where P(O|W) is the likelihood of the utterance, O, given the
hypothesized term sequence, W; P(W) is the prior prob-
ability for the hypothesized term sequence. In general,
the likelihood, P(O|W), can be computed with acoustic
models, and P(W) is modeled by system language
models. Equation (2) can then be solved by Viterbi
beam search to alleviate the computational burden
caused by the large search space. Note in many appli-
cations, instead of using only the 1-best result, W*, lat-
tices or N-best sentences with confidence scores can
also be generated for keyword detection [3–5, 39].
Thus for an utterance containing a query, q, it is a
key to make sure the hypothesized term sequences,
W=h⋅q⋅f, containing the query have probabilities high
enough to stay in the search beam and be preserved in
the final lattices or N-best sentences. More precisely, the
probabilities of P(q|h) estimated by language models
should be sufficiently high to linguistically allow the
query-containing search path to be retained in the beam
width when processing the speech segment of the query
in the utterance. Otherwise, the query would be missed.

The two conventional KWS groups utilize a similar
acoustic modeling approach, but they are very different
in the definition of terms and the estimation of the prior
probability, P(W). The differences in their language
modeling approaches lead to their contrastive perfor-
mance characteristics as explained in the following
sections.

2.1 Keyword-Filler Based KWS

In a standard keyword-filler based KWS system, the terms are
defined as a set of keywords and filler (representing all non-
keywords). The probability of each term in the utterance is usu-
ally assumed to be context independent in the standard
keyword-filler loop grammar (shown in Fig. 1a), namely
P(q|h)=P(q). And it is often assumed that P(q) is a uniform
distribution over all terms and thus equal to 1/N, where N is
the number of terms in the system. For most keyword-filler
based KWS systems, N is a number smaller than 100 [1,

37–39]. Since the prior probabilities for most keywords are less
than 10−4 in practical settings,2 by assuming P(q)=1/N≥1/100≫
10−4, the estimation of P(q|h)=P(q) in standard keyword-filler
based KWS is linguistically sufficient to preserve the keyword
in the search path in most cases. As a result the systems usually
achieve a high detection rate despite the over-estimated priors
sometimes create a great amount of false alarms as well.

2.2 LVCSR-Based KWS

In LVCSR-based KWS, n-gram is used for evaluating P(q|h).
Given an L-word query, q=(w1,w2, …,wL), the conditional
probability of q given h is evaluated as

P q
���h� �

¼ P w1w2⋯wL

���h� �
≅∏
i¼1

L
Pn−gram wi

���hi
� �

; ð3Þ

where Pn-gram(.) is the probability estimated by the system n-
gram LM, and hi is the history of wi in the query q dictated by
the order of the n-gram LM. This prior estimation helps
LVCSR-based KWS achieve better detection accuracy than
keyword-filler based KWS when sufficient LM training data
is available [39].

2.3 Prior Underestimation in LVCSR-Based KWS

Equation (3) shows how the conditional keyword priors,
P(q|h), are evaluated in the LVCSR-based KWS framework
using n-gram LMs. However, in resource-limited tasks the
amount of LM training text is often insufficient to cover
keyword-related domains and causes extremely low estimates
for the n-gram probabilities of the keywords. In other words, a
potential problem for LVCSR-based KWS is that the keyword
prior probabilities, P(q|h), might be underestimated by Eq. (3)
due to domain mismatch resulting in a high miss rate for the
keywords. The problem is more pronounced for multi-word
keywords with a large L because of the compound probability
multiplications.

3 Keyword-Aware Language Modeling

When the system n-gram LMs are trained with limited or
topic-mismatched data, LVCSR-based KWS suffers from the
abovementioned prior underestimation problem leading to a
highmiss rate in KWS. To alleviate the situation, we propose a
keyword-aware language modeling approachwhich integrates
the prior estimation in keyword-filler based KWS into the
LVCSR-based KWS framework for an accurate evaluation
of the keyword priors.

2 For example, Fig. 4 shows the averaged keyword prior probabilities in
the IARPA Babel Vietnamese data [32] are in the range of 5×10−5 to 5×
10−6.
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As in LVCSR-based KWS, the proposed keyword-aware
KWS framework also utilizes an underlying LVCSR system
but with keyword priors computed by:

PKW−aware q
���h� �

¼ max Pn−gram q
���h� �

; κ
n o

; ð4Þ

where κ is a parameter for query q to control the minimum
keyword prior value allowed in the system. Note that if we set
κ to 0, Eq. (4) would become Eq. (3), which is LVCSR-based
KWS. When setting κ to 1/N for an N-keyword task, Eq. (4)
becomes the prior used in the keyword-filler based KWS since
in most cases 1/N is larger than Pn-gram(q). The two conven-
tional KWS frameworks therefore can be seen as special cases
of the proposed framework. By tuning the parameter κ for
each query in the system, we are able to adjust the sensitivity
of a system to the keywords of interest even when the n-gram
LM of the system is not well trained.

The proposed keyword-aware framework also preserves
the keyword flexibility because of the underlying LVCSR
system. New keywords can be searched in the transcribed
documents of the proposed system without reprocessing the
speech signal. Note that in the keyword-aware LM only the
prior probabilities of the preselected keywords are modified,
while the rest of the n-gram probabilities in the original LM
remain the same. The transcribed document of the proposed
system is therefore exactly the same as the original LVCSR-
based KWS system for regular terms in the system vocabu-
lary. As a result, performances of the new keywords, whose
prior probabilities are not modified, would be similar to the
original LVCSR-based KWS.

The proposed LM grammar can be realized in a weighted
finite-state transducer (WFST) based LVCSR system [40] by
directly inserting additional keyword paths to the n-gram based
grammar WFSA [41] of the system to form a keyword-aware
(KW-aware) grammar WFSA as illustrated in Fig. 1c.
However since the word sequence of a keyword can be present
in both paths for the language model and keywords, extra cau-
tion is required to ensure the WFSA is deterministic and can be
minimized. For rapid-prototyping, instead of performing KWS
with complex grammar-level WFSAs, in the next section we
propose three methods that approximate the effect of the pro-
posed LM approach by adjusting the probabilities of keywords
in the n-gram language models used by the LVCSR-based
KWS systems. The proposed LMs can be easily implemented
in any state-of-the-art LVCSR-based KWS systems.

4 Realization of the KW-Aware Grammar

4.1 Keyword-Boosted Language Model

The most straight-forward way to boost the probability of the
word sequences of keywords in a language model is adding

the keywords to the training text of the languagemodel. Given
the training data for the languagemodel and a list withN target
keywords, we append each keyword to the training text k
times. The resulting training text for the language model will
be the original training transcriptions with additional N⋅k lines
of keywords. The parameter k which indicates the number of
times a keyword repeat in the training text is a parameter to be
tuned. We call this a keyword-boosted LM (KW-boosted
LM); [19] has explored similar methods and showed it help
improve system performance on Cantonese KWS tasks.

Language models trained by this keyword-appended text
will have a higher probability for the word sequences of key-
words and thus are more sensitive to the predefined keywords
even when the original training text contains very little infor-
mation about them.

4.2 Keyword Language Model Interpolation

The KW-boosted LM approach adjusts the probabilities of
keyword paths to the other paths in the original language
model by setting the repetition number k of the keywords in
the training text. However, since k can be any positive integer,
such an infinite range of possibilities makes it difficult to
optimize system performance. To alleviate this problem, in-
stead of appending keywords to the original LM training text,
we train a keyword language model using keyword text alone
and then perform a linear interpolation with the original lan-
guage model using Eq. (5). We call this keyword language
model (KWLM) interpolation.

PINTCLM w
���h� �

¼ α⋅PKWLM w
���h� �

þ 1−αð ÞPLM w
���h� �

ð5Þ

In Eq. (5), the PINT_LM(w|h) is the interpolated probability
between the keyword LM and the original LM for the n-gram
(h, w), where h is the history and w is the current word. Note
that in the proposed KWLM interpolation, the parameter α,
which tunes the weight of keyword LM to the original LM in
the final LM, is in a manageable range of [0,1] instead of the
open range [0,∞). In addition, it makes linguistic sense to keep
the two text lists separate as they are from intrinsically differ-
ent sources. Integrating the two text lists via an interpolation
weight makes the solution more elegant than the previous
approach.

4.3 Context-Simulated Keyword Language Model
(CS-KWLM) Interpolation

In the keyword language model training text, each keyword is
treated as an individual sentence as shown in Fig. 2a. This
makes the keyword language model overemphasize the prob-
ability of the keyword appearing at the beginning and the end
of a sentence. To remove this bias, in the context-simulated
keyword language model training text we put context terms
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before and after each keyword to simulate the situation
where keywords are embedded in real sentences.
Figure 2b illustrates the training text for CS-KWLM.
The context terms can be selected as bigrams or tri-
grams with high probabilities3 in the original language
model. Once the context-simulated keyword language
model is trained, we can use Eq. (5) to obtain another
interpolated language model which approximates the
proposed keyword-aware grammar for KWS.

5 Experimental Setup

Experiments were conducted on the IARPA Babel
OpenKWS13 Vietnamese limited language pack (LLP)
and full language pack (FLP) tracks [42], while we
put more emphasis on the more-challenging LLP task
in this paper. The training set of the FLP task consists
of 80 h of transcribed audio; the LLP task shares the
same audio training data but only a 10-h transcription
subset are allowed to be used. The audio data is con-
versational speech between two parties over a telephone
channel, which can be landlines, cellphones, or phones
embedded in vehicles, with the sampling rate set at
8000 Hz. For system tuning, a 2-h subset of the
IARPA development set (denoted as dev2h in this pa-
per) was used to speed up the tuning process.

The 15-h evaluation part 1 data (released as evalpart1
by NIST) was used for testing. The keyword list contains
4065 phrases including out-of-vocabulary words not
appearing in the training set. The performance of keyword
search was measured by the Actual Term Weighted Value
(ATWV) [13]:

ATWV ¼ 1−
1

K

XK
kw¼1

NMiss kwð Þ
NTrue kwð Þ þ β

N FA kwð Þ
T−NTrue kwð Þ

� �
; ð6Þ

where K is the number of keywords, NMiss(kw) is the
number of true keyword tokens that are not detected,
NFA(kw) is the number of false alarms, NTrue(kw) is the
number of keywords in reference, T is the number of
seconds of the evaluation audio, and β is a constant set
as 999.9. Note that the IARPA Babel program set

ATWV=0.3 as the benchmark for the Vietnamese KWS
task.

All keyword search systems were LVCSR-based4 with hy-
brid DNN-HMM acoustic models built with the Kaldi toolkit
[43]. In fact, readers can easily reproduce all baseline results
presented in this paper by running the Babel recipe provided in
the Kaldi toolkit. The DNNs were trained with sMBR sequen-
tial training [44]. The acoustic features were bottleneck features
appended with fMLLR features, while the bottleneck features
were built on top of a concatenation of PLP, fundamental fre-
quency (F0), and fundamental frequency variation (FFV) fea-
tures. For the LLP task, since some items on the keyword list
were out-of-vocabulary (OOV) words, we used a grapheme-to-
phoneme (G2P) approach [45] to estimate the pronunciation for
those OOV words. They were then merged into the original
LLP lexicon provided by IARPA to form the system lexicon.

The LLP baseline language model is a trigram LM trained
with the transcriptions of the 10-h training text. Since the
amount of the training data was very limited, lots of keywords
and key phrases were unseen to the language model and there-
fore they resulted in very low estimated probabilities in the
decoding phase. Table 1 shows how serious the problem is. In
the first row of Table 1, there were 3275 out of the 4065
keywords unseen in the training text, namely n-grams used
by these terms ended up with low probabilities in the baseline
language model. Moreover, there were 619 keywords
consisting of out-of-vocabulary words, which means that the
baseline language model will give these terms nearly zero in
backing-off probability and make them easily pruned away
during decoding. Therefore, it is not surprising that a substan-
tial amount of keywords will be missed if the baseline lan-
guage model was used for decoding. This is why we need the
keyword-aware language models to alleviate the problem.

6 Experimental Results and Discussion

6.1 OpenKWS13 Limited Language Pack Task

We first tuned parameters of the three keyword-aware (KW-
aware) systems on the dev2h subset. The parameter k of the
KW-boosted LM method was empirically5 set to 5 without
fine-tuning to save development time since the range for the
selection is quite wide. Table 2 compares performance of dif-
ferent systems on the dev2h data. Note that the Babel
OpenKWS13 Vietnamese data is relatively difficult when

(a) (b)keyword_1 

keyword_2 

keyword_3 

… 

keyword_N 

ctx-terms   keyword_1   ctx-terms 

… 

ctx-terms   keyword_2   ctx-terms 

… 

ctx-terms   keyword_N   ctx-terms

Figure 2 Illustration of the training text for (a) KWLM, and (b) context-
simulated keyword language model (CS-KWLM).

3 In this research, we used all the bigrams in the original Kneser-Ney
smoothed LM as context terms.

4 We have obtained very poor performances (negative ATWVs) for
keyword-filler based KWS systems due to an extremely large amount
of false alarms caused by the noises in the test data. Therefore
keyword-filler based KWS systems were not considered here.
5 We observed that by adjusting k=5 the performance is significantly
better than setting k=1 as in [19]. However, the differences became trivial
when k is larger than 5.
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compared to most of the commonly used datasets. Despite
using the state-of-the-art LVCSR techniques, the Kaldi base-
line system still had a very high word error rate (WER) and
could only achieve 0.2265 of ATWV (first row in Table 2).
For the KW-boosted LM system, even without fine-tuning,
the method brought a 26 % relative gain on the ATWV al-
ready. The slight WER improvement over the baseline system
is due to the additional n-gram information provided by the
extra appended keyword text in the LM training data. For
KWLM and CS-KWLM systems, after tuning the best α in
Eq. (5) to be 0.6 for both systems the ATWVs improved to
0.3431 and 0.3546, respectively.

Table 3 shows the experiment results on the evalpart1
data. A very similar trend of system performance on the
dev2h data is observed. The ATWV of the Kaldi base-
line was only 0.2093, which is still far below the
IARPA Babel program’s minimal requirement. The
KW-boosted LM significantly reduced this performance
gap and reached the ATWV of 0.2715. By adopting
KWLM and CS-KWLM interpolation methods, our sys-
tems successfully achieved the goal of the program. For
the CS-KWLM system, which had the best ATWV per-
formance, the overall ATWV improvement over the
baseline system is 0.1194 absolute and more than
50 % relative. Note that optimizing system ATWV over
the evaluation keywords using the proposed methods
does not hurt WER performance of the underlying
LVCSR systems significantly. In other words, the lat-
tices generated by the proposed systems still have sim-
ilarities for non-keyword terms to the lattices generated
by the baseline system. Therefore, even when adding
new keywords which are not in the current list for

evaluation, in the worst case, the proposed system
would have a similar performance to the baseline sys-
tem for those new keywords.

6.1.1 Comparison of KWLM and CS-KWLM Interpolation

The major difference between KWLM and CS-KWLM
is the introduction of the context information derived
from the original LM. In Fig. 3, the ATWVs of the
two systems with different α on the dev2h data were
compared. For α smaller than 0.6, the CS-KWLM sys-
tem outperformed the KWLM system by more than 0.02
ATWV consistently. This demonstrated that the context
information provides the CS-KWLM interpolated LM a
better connectivity between the keyword LM and the
original LM. In other words, it makes the CS-KWLM
approach better represents the keyword-aware grammars.

Both systems reach the highest ATWV value when α=0.6.
The ATWV of the CS-KWLM system starts dropping fast
when α gets larger than 0.6 because of the increased false
alarms. However, as long as α is tuned with a representative
development data, the risk of such increase in false alarms is
small since the optimal α is quite consistent as observed in
Tables 2 and 3.

6.1.2 ATWVAnalysis for IV and OOV Keywords

In Table 4 we compared ATWVof in-vocabulary (IV) and out-
of-vocabulary (OOV) keywords for the baseline and the CS-
KWLM systems. Note that for the OOV queries, the

Table 2 WER (in %) and ATWV comparison of LLP systems with
different language models on the dev2h data.

LLP Systems (evaluated on dev2h) WER ATWV

Baseline LM 62.5 0.2265

KW-aware LM KW-boosted LM (k=5) 62.3 0.2853

KWLM Interpolation (α=0.6) 64.2 0.3431

CS-KWLM Interpolation (α=0.6) 63.5 0.3546

Table 3 WER (in %) and ATWV performance of LLP systems with
different language models on the evalpart1 data.

LLP Systems (evaluated on evalpart1) WER ATWV

Baseline LM 65.0 0.2093

KW-aware LM KW-boosted LM (k=5) 65.1 0.2715

KWLM Interpolation (α=0.6) 66.7 0.3186

CS-KWLM Interpolation (α=0.6) 66.0 0.3287

0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
TW

V

KWLM Weight ( α)

KWLM int
CS-KWLM int

Figure 3 ATWV on dev2h with different keyword LM weights α for
both KWLM and CS-KWLM interpolation methods.

Table 1 Numbers of terms unseen in the training data and terms
containing OOV words among the given list of 4065 keywords and key
phrases in the LLP task.

#Keywords Percentage in
the keyword list

Terms unseen in training data 3275 80.6 %

Terms containing OOV words 619 15.2 %
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baseline had a very low ATWV because those queries
are represented with nearly zero probabilities in the lan-
guage model, causing a high miss error rate. By using
the CS-KWLM method to alleviate this problem, ATWV
for the OOV queries achieved 0.2343, which is a 154 %
relative improvement. For the IV queries, the CS-KWLM
method also brought a relative ATWV improvement of 49 %.
Therefore, the proposed approach is effective for keywords in
both categories, especially for OOV keywords.

6.1.3 ATWV for Seen and Unseen Keywords

When dealing with topics not well-observed, data mis-
match is assumed to be a major cause of prior probability
underestimation in n-gram training. We next compared
performances of seen and unseen keywords in the LM
training set in the LLP task. The unseen keywords can
be viewed as keywords whose topics were not covered
by the training data. In other words, even IV keywords
might still be unseen to the system LM. Because there
were only 10-h transcriptions available for LM training
in the LLP task, 3275 out of the 4065 keywords (see
Table 1) were unseen to the baseline n-gram LM. In other
words, more than three quarters of the evaluation key-
words suffered the mismatch issue in the n-gram LM.

In Table 5, for both keyword groups the proposed KW-
aware system showed increased ATWVs in both cases. The
improvement is especially significant for unseen keywords –
about a 0.15 absolute (from 0.2 to 0.35, 75 % relative) ATWV
increase over the baseline. Furthermore, the small improve-
ment for the seen keywords showed that their priors might still
be underestimated even for keywords already appearing in the
LM training set and needed to be adjusted with the proposed
method.

6.1.4 Priors Estimation for Keywords in Different Lengths

In Section 2.3, it is claimed that the underestimation problem
is more pronounced for multi-word keywords with large L
because of the compound probability multiplication in n-gram
LMs.We show some evidence for the statement here. Figure 4
displays the average log priors for keywords with different
lengths, L, and compares the priors estimated by the two sys-
tems on the evalpart1 data. For each keyword appearing in the
evalpart1 data, its ground-truth prior was estimated by divid-
ing the keyword occurrence count with the total word count in
the dataset. In Fig. 4, the Bground-truth^ log keyword priors in
the evalpart1 data remained in the range of −10 to −12 for all
the keyword lengths evaluated.

The estimated keyword priors for the two systems were eval-
uated by searching the best keyword path in the system
decoding grammar WFSA for each keyword. The weight of
the best path was used as the estimated prior for the keyword
in the systems. In Fig. 4, for the n-gram baseline system, though
the estimated keyword priors was quite close to the real values
for single-word keywords, the priors were seriously
underestimated for longer keywords. The curve of the n-gram
system monotonically decreased as the keyword length in-
creased. It is clear that the n-gram baseline estimated priors are
seriously underestimated for keyword with length L≥3. For

Table 4 ATWV performance of all, in-vocabulary (IV), and out-of-
vocabulary (OOV) queries for the baseline LM and CS-KWLM
Interpolation systems on the evalpart1 data.

LLP Systems (evalpart1) all IV OOV

Baseline LM 0.2093 0.2338 0.0924a

CS-KWLM Interpolation (α=0.6) 0.3287 0.3485 0.2343

a It was not zero because the baseline also used the G2P lexicon in Sec-
tion 5 for a fair comparison with the KW-aware systems

Table 5 ATWV for seen and unseen keywords in the LLP task.

LLP Systems (evalpart1) all seen unseen

Baseline LM 0.2093 0.2350 0.1985

CS-KWLM Interpolation (α=0.6) 0.3287 0.2648 0.3574

-35

-30

-25

-20

-15

-10

-5

0

1 2 3 4 5 6

Lo
g 

Ke
yw

or
d 

Pr
io

r 
(e

-b
as

ed
)

Keyword Length L (#word)

ground truth
n-gram baseline
CS-KWLM Int
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example, the system underestimated the prior probabilities at the
scale of 5×108 for the 6-word keywords. The underestimation
problem was alleviated by the proposed methods. By boosting
prior probabilities for each keyword with CS-KWLM, the prior
estimation of the KW-aware system is very close to the real
priors regardless of the number of words in a key phrase.

6.1.5 ATWV for Keywords with Different Lengths

To verify if the underestimation problem of the n-gram LM for
keyword prior estimation is the major factor affecting KWS
performances, we further compared the two systems on key-
words with different lengths. Figure 5 displays the ATWV
curves for the n-gram baseline and the KW-aware systems in
the LLP task. In general, a KWS system has better detection
performance for longer keywords because more acoustic con-
text information is available for the system to make correct
decisions. However, because of the misses caused by the
underestimated keyword priors, the ATWVs of the n-gram
baseline system in Fig. 5 only increased slowly with the key-
word lengths. On the other hand, the ATWV curve for the
KW-aware system has a clear improvement over the baseline
system, and the improvement is especially larger for longer
keywords. For example, the KW-aware system successfully
detected two out of the three five-word keyword, Bđăng ký
mùa hè xanh^, in the evaluation data without any false alarm,
while the n-gram baseline system missed all of them. The
KW-aware system showed a similar ATWV to the n-gram
baseline on single-word keywords because priors of them
were not as seriously underestimated due to LM smoothing [46].

6.2 OpenKWS13 Full Language Pack Task

Our last experiment verifies if the proposed language modeling
approachworks even whenmore system training data are avail-
able. Table 6 shows the performance of FLP systems on the
evalpart1 data. With more training data, the baseline system
achieved the program goal with an ATWV of 0.4578.
However, the performance could be further improved substan-
tially (20 % relative) by adopting the CS-KWLM interpolation
method. This result shows that the underestimation problem
does not go away by simply increasing the amount LM training
data, and the proposed keyword-aware languagemodeling is an
effective solution providing significant performance enhance-
ment irrespective to the amount of system training resources.

7 Conclusion

In this paper, we propose a keyword-aware language model-
ing approach to combine the advantages of the conventional
keyword-filler based KWS and the LVCSR-based KWS sys-
tems. For rapid-prototyping, three methods that approximate
the effect of the keyword-aware grammar are investigated.
Results on the IARPA Babel OpenKWS13 Vietnamese LLP
and FLP tasks showed that the proposed keyword-aware
method is effective in alleviating the prior underestimation
problem of LVCSR-based KWS, especially for long and un-
seen keywords. It also significantly improved the ATWV per-
formance regardless of the amount of system training re-
sources. We are now working on discriminative criteria for
the proposed keyword-aware grammar by only boosting key-
word priors when needed and suppressing the overestimated
priors in the original LM to reduce unwanted false alarms.

Acknowledgments This study uses the IARPA Babel Program
Vietnamese language collection release babel107b-v0.7 with the
LimitedLP and FullLP training sets.
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