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Abstract One of the key problems in the field of Com-
puter Vision is recovering the geometry from multiple
views of the same scene. Once the homography of two
images is known, the motion of a stereo camera system
can be determined, images can be rectified or image reg-
istration can be performed. A feature-based approach to
determine the homography between two images bases on
the extraction and matching of SIFT features (SIFT, Scale-
Invariant Feature Transform). By extracting image features
from varying images of one scene and finding correspond-
ing image features in both images, the homography of the
scene can be determined. The extraction of image features,
which provide sufficient quality for computation of the
homography of a scene, leads to an algorithm complexity,
that prevents real-time applications on conventional CPUs.
Therefore, we present and discuss an application-specific
instruction-set extensions for a Tensilica Xtensa LX5 ASIP
to accelerate a SIFT feature extraction (ASIP, Application-
Specific Instruction-set Processor). In total, the complete
SIFT feature extraction, executed on an extended processor
is accelerated by a factor of x125 compared to the base-
line processor. At the same time, the accuracy of the SIFT
features is preserved. In addition, the proposed processor
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extensions maintain the full flexibility of an ASIP for a fast
integration of further feature extractors.
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1 Introduction

Nowadays, object detection, object recognition, and object
tracking are mandatory for a large part of computer
vision applications. For advanced driver assistance systems
(ADAS), the goal is not only to detect objects, but also to
interpret scenes. Therefore, the underlying algorithms rely
on 3D information obtained by two or more camera views
of the same scene [22]. Both consecutive images and syn-
chronous images from two cameras offer information of
the scene [17], which is used to feed safety applications
in vehicles. However, these algorithms rely on a robust set
of corresponding 2D image points of the same unknown
3D points. A feature-based approach to solve the problem
of establishing point correspondences in images is SIFT
(Scale-Invariant Feature Transform) [21]. Video surveil-
lance of outdoor premises, e.g. airport aprons, is aimed
at safety and security. Many complex maneuvers involv-
ing aircraft, vehicles and persons are carried out at such
places. A system named ASEV that automatically assesses
situations for airport surveillance is presented in [14]. The
scene analysis bases on the extraction and matching of
SIFT-image features not just to analyze a scene, but also
to improve security against aircraft collisions or detect ser-
vicing activities. High resolution cameras, powerful CPUs
and broadband wireless communication of mobile devices
have shown great potential in mobile visual search [12].
To reduce the latency of wireless communication, data
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reduction is required in the form of an image descriptor.
This trend has received dedicated efforts in MPEG-7 stan-
dardization, namely, Compact Descriptor for Visual Search
(CDVS) [13]. Distributed systems such as smart cameras
are, mobile devices and advanced driver assistance systems
in vehicles call for sufficient performance and a limited
power consumption at the same time. Those features require
special architectures to reach the design goals and to be
flexible, simultaneously.

Evaluated as an excellent performing approach in detec-
tion and recognition quality [23], the computation complex-
ity of SIFT is much higher than other feature-based object
recognition algorithms such as SURF [4]. Furthermore,
SIFT features are invariant to scale, rotation and illumina-
tion, and thus suitable for many applications. In addition
to the high computational cost, SIFT also has high mem-
ory requirements, which prevents a real-time application
for state-of-the-art standard processors. General purpose
architectures (e.g., GPUs or state-of-the-art CPUs) provide
sufficient processing power for image processing but their
power consumption prevents their use in low power sys-
tems. Therefore, specialized architectures are necessary to
guarantee the required processing performance and to meet
the power restrictions.

SIFT is one algorithm providing sufficient quality in fea-
ture extraction from which a number of variations have
been derived. Hence, other feature extractors such as SURF
[4] show commonalities with SIFT. Dedicated hardware
architectures for SIFT-feature extraction with a low power
consumption are available [18], but they suffer from less
flexibility for a fast adaption of future algorithms. Com-
pared to hardware based systems, software based extraction
of image features provides the opportunity to make fast code
adaptions to implement future feature extractors, that might
have lower complexity with similar good algorithmic qual-
ity at the same time. Due to the necessity for accelerated
SIFT processing and the requirement for a flexible platform,
Application-Specific Instruction-set Processors (ASIP) rep-
resent a promising approach with sufficient specialization
and flexibility. By accelerating essential and widely used
elements of general digital image processing and special-
ized feature-based object recognition tasks, the mandatory
processing speed can be reached and simultaneously future
features extractors can be integrated quickly.

Design and implementation of a custom instruction-set
for the computation of SIFT features using a commercially
available ASIP development environment by Tensilica [16]
is presented in this paper. The paper is an extension of a
previously published paper [22], at the SAMOS conference
2014, and gives a more detailed insight to the complexity
of the SIFT algorithm and its implementation as well as its
evaluation for ASPIs. The computationally most intensive
arithmetic tasks are determined by detailed profiling and

are accelerated by special Tensilica Instruction-set Exten-
sions (TIE). These extensions will enable a significantly
higher rate of SIFT feature extraction by accelerating a
set of arithmetic functions. The full flexibility of a pro-
grammable platform is obtained and the full accuracy of
the SIFT algorithm is ensured simultaneously. Compared
to SIFT implementations on non-programmable hardware
architectures, it will be shown that:

– it is possible to reach a significant speed-up of the
SIFT feature extraction using a set of accelerated gen-
eral computer vision hardware instructions and specific
SIFT feature extraction instructions implemented with
Tensilica Instruction-set Extensions and

– that the full flexibility of an ASIP for a fast integration
of future feature extractors is preserved.

This paper is organized as follows: After a review of
related work in Section 2, Section 3 introduces the SIFT
algorithm and gives a short overview about the algorithm’s
complexity. In Section 4, a detailed description of the
application-specific instruction-set processor with its given
accelerators. The results and the evaluation are presented in
Section 5. The paper concludes with Section 6.

2 Related Work

The extraction of image features for recovering the geome-
try from multiple views of the same scene is a key problem
in the field of computer vision. An essential contribution
to solve this problem was introduced in 2004 by Lowe
with the SIFT feature extractor [21]. The SIFT algorithm
achieves invariance of features to changes in scale and rota-
tion and, therefore, it provides fundamental characteristics
for implementing a feature-based solution for extracting and
matching image features between two images. In the last
years, investigations have been started to speed-up feature
extraction and feature matching by reducing the complexity
of the algorithm and by reducing the dimension of the fea-
ture descriptor. In 2004, Ke et al. presented PCA-SIFT [19],
which reduces the dimension of the feature descriptors in
order to accelerate the matching of features. Furthermore, in
several implementations, the initial SIFT algorithm has been
adopted [8, 10], but at the expense of accuracy, which leads
to a decrease in feature quality. In the following years, a lot
of alternatives to SIFT have been introduced (GLOH [23],
SURF [4], FAST [25], BRISK [20], ORB [26], BRIEF [7],
FREAK [1]), however, SIFT was evaluated as the hightest
performing approach in detection and recognition quality
[23].

The algorithmic quality entails a complexity which pre-
vents a real-time application on conventional single-core
CPUs for high definition images. In 2008, Zhang et al. [32]
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presented an OpenMP-multicore implementation for SIFT-
feature extraction. With eight cores (2x Intel Quad-Core 2,
2.33 GHz), a frame rate of 45 FPS could be achieved for
VGA images. Wu et al. proposed the SiftGPU implementa-
tion in 2007 [30], which was considered as a GPU reference
implementation for a few years. For a VGA input image, a
frame rate of 27 FPS was achieved for a NVIDIA 8800GTX
GPU. In 2013, Yonglong et al. [31] presented a CUDA-
implementation for SIFT and reached a frame rate of 35
FPS for VGA images for a NVIDIA Telsa C2050 device.
In the same year, Wang et al. [29] introduced an OpenCL
implementation, which processed 74 FPS on a NVIDIA
C2050 GPU with 512×512 pixel per image. Contemporary
GPUs offer sufficient processing speed and flexibility for
complex computer vision applications, but their high power
consumption prevents their usage in low power applications.
A SIFT-feature extraction for smartphones was presented
by Wang et al. [28] in 2013. The ARM-v7a processor with
a mobile GPU as accelerator reached 6 FPS in average
with an power consumption of approximately 1.5 W for
images with a size of 320 × 240 pixel. For this implemen-
tation, the OpenCL framework was used. In addition to a
low power consumption, the SIFT-HW presented in 2012
by Huang et al. [18] provides high processing speed (30
FPS for VGA images), but the lack of flexibility prohibits
its use in a still rapidly evolving algorithm field, such as
feature extraction.

Bonato et al. [6] introduced a mixed architecture for the
extraction of SIFT features. A highly parallelized hardware
architecture was presented to accelerate computationally
high intensive tasks, e.g., the building of pyramids, feature-
point detection or stability checks. The generation of the
descriptor itself is computed on an Altera NIOS II softcore
processor. This mixed architecture runs on an Alter Stratix II
FPGA and achieves a processing rate of 30 fps with almost
the same accuracy as the reference CPU implementation for
QVGA image size.

All mentioned platforms provide either sufficient pro-
cessing performance, a low power consumption or the
desired flexibility, but exclusively two out of those three
features. To find a solution for satisfying all three char-
acteristics, Application-Specifc Instruction-set Processors
(ASIP) represent a promising approach among those
requirements. ASIPs, especially the Tensilica Xtensa ASIP,
have shown their capability in many digital image pro-
cessing applications. Low power consumption combined
with the high flexibility of a programmable proces-
sor and the possibility to accelerate specific algorithm
processing bottlenecks, provides a promising base for
computer vision applications on ASIPs. Banz et al.
[3] achieved a speed-up of over x130 compared to a
basic software implementation for the semi-global match-
ing algorithm and reached a frame rate of 20 fps at

VGA image size with a customized ASIP. Furthermore,
Beucher et al. [5] demonstrated the capabilities of an
instruction-set extension with a real-time ASIP implemen-
tation for motion-compensated frame rate conversion. The
benefit of application-specific instruction-set processors is
also discussed by Fontain et al. [15]. He presents a multi-
core ASIP for 3D target tracking with a speed-up of x22
compared to a general purpose processor.

This paper presents a general set of customized
instruction-set extensions that achieve a sufficient pro-
cessing speed for SIFT feature extracting and fulfill the
low power constraints. Furthermore, full flexibility for
future feature extraction algorithms is retained by using
application-specific instruction-set processors. The results
are evaluated on the Tensilica Xtensa LX5 ASIP.

3 Scale-Invariant Feature Transform

This section is devided into two parts. The algorithm for
extracting SIFT features [21] is presented by a detailed
description of the four major algorithm steps. Furthermore,
a complexity analysis is given in the second part of this
section.

3.1 Algorithm Description

The SIFT algorithm consists of four parts. First, the Gaus-
sian pyramid and the Difference of Gaussian (DoG) pyra-
mid are computed. This step is followed by the feature-point
detection, which includes identification and refinement of
the feature-points and a stability check. The third cal-
culation step is orientation assignment followed by the
determination of the description of each feature.

3.1.1 Building of Pyramids

For a stable localization of feature-points, a scale-space with
a Gaussian kernel is used. The scale-space L(x, y, σ ) is
defined as the convolution of a Gaussian kernel G(x, y, σ )

with various scales and an input image I (x, y):

L(x, y, σ ) = G(x, y, σ ) ∗ I (x, y) (1)

The Gaussian kernel is defined as

G(x, y, σ ) = 1

2πσ 2
e
− x2+y2

2σ2 (2)

in which σ is the scale parameter and depends on the num-
ber of pyramid scales. The next octave of the pyramid is
derived from the previous octave by downsizing the Gaus-
sian image with twice the initial value of the scale parameter
σ . The downsizing is realized by a subsampling which
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halves the image width and height. The total number of
octaves depends on the size of the initial input image.

After the calculation of the Gaussian pyramid the Differ-
ence of Gaussian (DoG) pyramid D(x, y, σ ) is constructed
by subtracting adjacent Gaussian images within an octave:

D(x, y, σ ) = (G(x, y, kσ ) − G(x, y, σ )) ∗ I (x, y)

= L(x, y, kσ ) − L(x, y, σ ) (3)

The parameter k depicts the next higher scale of the Gaus-
sian filtered images in one octave. In Fig. 1, the construction
of the pyramids is shown.

3.1.2 Feature-Point Detection

The detection of feature-points is realized by analyzing the
DoG pyramid. If a central pixel of a 3× 3× 3 pixels neigh-
borhood is a local minimum or a local maximum, the pixel
is detected as a possible key point. The neighborhood con-
sists of eight pixel surrounding a central pixel and the 3× 3
pixels of both adjacent DoG pyramid scales, as illustrated in
Fig. 2.

Each feature-point has to fulfill several stability checks,
otherwise the candidates are rejected. Therefore, a local
refinement for location and scale is applied. The 2nd degree
Taylor expansion of the scale-space function D(x, y, σ ) is

Figure 2 Key point detection: A central pixel is detected as a key
point, if it is a local minimum or local maximum in a 3 × 3 × 3
neighborhood of the DoG pyramid.

used as a quadratic approximation for location refinement:

D(x̂) = D + 1

2

∂DT

∂x
x̂ (4)

The function value at this refined position is checked for
sufficient contrast by comparing it to an empirical value
introduced in [21]. In a second stability check, all key point
candidates with instabilities from small amount of noise are

Figure 1 Calculation of
pyramids: Resulting images of
the Gaussian pyramid are the
convolutions of a scale
dependent Gaussian kernel with
the adjacent images of lower
scales. The input image for the
next octave is the Gaussian
filtered image that has twice the
initial value of the scale
parameter σ . The images of the
DoG pyramid are computed by
subtracting adjacent Gaussian
images of one octave.
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rejected by analyzing the principal curvature. The princi-
pal curvature is computed by the Hessian matrix H and its
eigenvalues for a key point location. Instead of this com-
putationally expensive task, it is sufficient to calculate the
ratio of the eigenvalues and compare them with an empirical
factor ε by [21]:

T r(H )2

Det(H )
< ε (5)

where T r(H ) is the trace of the Hessian Matrix H and
Det(H ) the determinant.

3.1.3 Orientation Assignment

To achieve invariance to image rotation, a local orientation
is assigned to each key point. The local region of the Gaus-
sian filtered image, with the scale close to the refined key
point position, is used to compute an orientation histogram.
For each pixel within this region, a gradient magnitude
m(x, y) and an orientation θ(x, y) are computed:

m(x, y) =
√

(∂Lx)2 + (∂Ly)2 (6)

m(x, y) =
√

(∂Lx)2 + (∂Ly)2 (7)

with

∂Lx = L(x + 1, y) − L(x − 1, y) (8)

∂Ly = L(x, y + 1) − L(x, y − 1) (9)

By choosing 36 equal bins for the orientation histogram,
each bin covers 10◦ of the circular sector. Depending on
θ(x, y) the magnitudes m(x, y) of the pixel in the local
neighborhood are accumulated in the bins. The peak in the
histogram is called the orientation of a key point.

3.1.4 Feature Description

In the final step of the SIFT algorithm, the distinctive
descriptor for invariance against illumination and viewpoint

is generated. In a local neighborhood, the image gradient
magnitudes and orientations are accumulated to histograms
of n × n subregions (see Fig. 3). Each histogram consists of
8 bins. With n = 4 subregions, the resulting descriptor has
128 elements. To achieve a rotation invariance the histogram
is rotated by the orientation of the feature-point that was
computed in step 3. A final normalization step concludes
the feature-point extraction.

3.2 Complexity Analysis

Regarding the number of operations and the memory
accesses that have to be executed, the extraction of SIFT
features is a challenging task. On the example of pyra-
mid building and the feature-point detection, the number
of operations and the memory consumption is determined
for the non-optimized reference algorithm. The orientation
assignment and the feature description are highly dependent
on the number of found features and on the scene that is
shown in the input image. Since it is only possible to deter-
mine an inaccurate estimation for the number of operations
those two algorithmic steps are therefore omitted from this
section.

3.2.1 Number of Operations

The building of pyramids consists of two steps: first,
the building of the Gaussian pyramid and second, the
building of the DoG pyramid. For both pyramids, it is
possible to ascertain an upper bound of the number of
operations.

The size of the Gaussian pyramid is determined by the
size of the input image width × height and the num-
ber of scales, which is an algorithmic parameter, that
have to be set in advance (see Fig. 1). The scales of
every octave have their own specific size of filter kernel
N × N :

N = 2 · �4 · σs� + 1 (10)

Figure 3 Keyoint descriptor:
The image gradient magnitude
and orientation are accumulated
to histograms of n × n

subregions (here n = 2) with 8
bins each. The gradient
magnitudes are Gauss-weighted
before accumulation.
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with

σs = σinit · k(s−1) ·
√

k2 − 1

and

k = 2
1

#scales

The number of octaves for both pyramids are dependent on
the size of the input image:

#octaves = �ld(MIN(width, height)) − 2� (11)

With the standard SIFT parameters by Lowe ([21])
(#scales = 3, σinit = 1.6) following setup for the
building of pyramids arises:

– #octaves with six scales for the Gaussian pyramid
– #octaves with five scales for the DoG pyramid
– #scales + 2 different sizes of Gaussian kernels

Each N × N filter leads to N × N multiplications and
N × N − 1 additions, whereas each N × N filter has to
be applied for #octaves times for different images sizes.
Assuming an image size of 800 × 640, for this setup, there
are approximately 1.2·109 multiplications and 1.2·109 addi-
tions for the Gaussian pyramid and 3.4 ·106 subtractions for
the DoG pyramid. To find candidates for the feature-points,
each pixel of the DoG pyramid has to be compared with 26
pixels in a local neighborhood. In total, there are 88.7 · 106
comparisons to be executed. Assuming, that one operation
can be executed in one cycle, a system clock of 2.5 GHz
is necessary, to reach one frame per second, just for exe-
cuting the arithmetic operations of the first two algorithmic
steps. This high clock frequency expresses the necessity for
algorithmic optimization and parallelization, to reduce the
number of operations in order to reach the design goal of
SIFT feature extraction on multiple frames per second.

3.2.2 Memory Requirement

SIFT is a data-greedy algorithm, that requires a certain
amount of memory to store temporal result. Typically,
the number of feature-points, that will be found during
the computation, will be below 1 % of the pixel of the
input. Choosing a PGM input image 1 with a resolution of
800 × 640 pixel, 512 kB memory is necessary to store the
image and about 737 kB for the resulting feature-points. To
store the Gaussian pyramid and the DoG pyramid, 17 ∼ 17
MB memory is necessary, which is a factor of 33 compared
to the input image.

Compared to other algorithms, which can be imple-
mented on a streaming architecture [24] to reduce the
number of operations and to avoid a large amount of tem-
poral results, the proposed work dispenses this approach

1PGM - Partable GrayMap; image file format for storing image data
without any compression

since the amount of data which needs to be held inside
the processor in conjunction with the controlling overhead
exceeds its internal storage capacity. Differing architectural
concepts, e.g. dedicated hardware architectures on FPGAs,
provide possibilities of massive parallel data processing
with memory onchip to store temporal results, which leads
to SIFT-streaming concepts which skips the storage of the
DoG-pyramid.

To compute the orientation and the SIFT-descriptor itself,
random memory accesses without any pattern have to be
performed, which slow down the extraction of the SIFT-
feature extraction. As soon as the feature-points candidates
are found, the DoG pyramid can be discarded again, but
both pyramids have to be accessible during the computation,
which leads to a high memory consumption.

4 Application-Specific Instruction-Set Extension
for SIFT Feature Extraction

The large number of operations resulting from the com-
plexity of SIFT and the design goal to reach a certain
frame rate is a challenge in the digital video process-
ing, even for medium-sized VGA images. Control intensive
parts of SIFT, e.g., stability checks or histogram generation,
lead to branching and therefore to stalls in the processor
pipeline. Furthermore, SIFT is a memory intensive algo-
rithm, due to the large amount of intermediate results,
such as the image pyramids and the arbitrary memory
accesses during the orientation assignment and descrip-
tor generation. To meet the high performance demands of
the SIFT algorithm, the number of cycles can be reduced
significantly by extending the processor with special func-
tional units. This leads to a significant acceleration of
SIFT processing on an application-specific instruction-set
processor.

In a detailed algorithm analysis, the computationally
intensive processing steps have been ascertained and the
most cycle consuming parts have been split into three
problem-setups: First, there is a large number of operations
to execute; second, branching causes idle cycles in the pro-
cessor pipeline; and third, long memory accesses delay the
read stage in the processor pipeline.

After an introduction to the Tensilica LX5 processor,
selected extensions of the processor are presented, related to
the three problem-setups mentioned above.

4.1 Tensilica LX5 Processor

The baseline processor for this investigation is the Ten-
silica Xtensa LX5 ASIP. The Xtensa LX5 consists of a
32-bit architecture, which is configurable in several hard-
ware options. Furthermore, the instruction set is extendable by
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self-defined instructions and register files using a verilog-
like description language called TIE (Tensilica Instruction
Extension) [27].

Tensilica offers multiple options to configure the 32-bit
baseline processor. The SIFT-ASIP utilizes an integrated,
fully pipelined, 32-bit multiplier, which requires two exe-
cution cycles. Furthermore, an integrated integer divider,
which computes quotient and remainder (modulo operation)
for 32-bit integer numbers, is implemented. Depending on
the input bit patterns, the operation takes two to 13 cycles
for a division. The non-pipelined hardware divider leads to a
processor stall until a division is completed. The generation
of the feature-point descriptor requires the resolution and
dynamic of single-precision floating point numbers. There-
fore, a floating point unit is added to the baseline processor
to avoid massive cycle consumption by emulating floating
point operations on fixed point hardware. A basic single-
precision operation requires up to 100 cycles compared to
a floating point operation, if it is emulated on fixed point
hardware instead of using a floating point unit.

The Xtensa LX5 processor offers the possibility of using
special states. States are meant for maintaining temporar-
ily used data inside the processor. Direct register accesses
rather than long memory accesses improves the perfor-
mance of the processor. States behave like self-defined
registers that can be read and written by special functional
units. The advantages of states are demonstrated in the FIR-
und ISQRT-unit. Hereinafter, states in figures are displayed
through color coding.

The processor can be configured with a 5-stage pipeline
or 7-stage pipeline. The 5-stage pipeline consists of
the stages instruction fetch, register-read,
execute, execute/memory access and register-
write. A 7-stage pipeline has one extra stage for
instruction fetch and, in addition, an extra stage for
memory accesses. Those two extra stages are meant
for processors with a clock rate that would be lim-
ited by slow memory accesses. By choosing a 7-stage
pipeline, slow memory accesses can be executed in
two pipeline stages instead of reducing the clock rate.
The pipeline can be customized by adding new special

functional units into the execution state of the pipeline.
Those special functional units are defined by the designer
and, conceivably, the critical path in a special functional
unit can decrease the processor’s clock rate. To prevent
a reduction of the clock rate, the execution of special
functional units for complex operations can occupy two
execution pipeline stages. A scheduling of the operation
defines which part of the operation is performed in which
pipeline stage.

In order to ensure parallel data processing and to sup-
port long data words, new register files can be inserted into
the pipeline. The register file can be customized regarding
width and size. In this work, the pipeline has been extended
with a new 64-bit register file GRF, in addition to the 32-
bit base core register file AR. All modifications of the basic
processor pipeline are shown in Fig. 4.

This work proposes three types of special functional
units. Firstly, there are data handling units (e.g., STORE64,
MOVE64, or SHIFT64) for the 64 bit register file. Sec-
ondly, there are basic computer vision special functional
units (FIR) and thirdly, there are special SIFT-units, which
accelerate arithmetic functions (e.g., ISQRT, ATAN,
SINE, or histogram computations). All three types of units
are designed to process data in one or two pipeline execu-
tion stages. An overview of the instruction-set extension is
given in Table 1. In the following part, each special func-
tional unit for accelerating the SIFT processing is presented
separately.

4.2 Gaussian Pyramid

The first calculation step in the SIFT feature extraction is
the building of the image pyramids through multiple Gaus-
sian filterings (see Eq. 1). Dependent on the input image
size, there are �log2(MIN(width, height)) − 2� octaves.
For each octave, five Gaussian filterings with different ker-
nel sizes have to be computed. Due to the fact that a
Gaussian filter is a separable and symmetric FIR-filter, the
computation can be divided into horizontal and vertical pro-
cessing steps to save operations. In addition, a buffer for
storing intermediate results is implemented. For a VGA

Figure 4 Pipeline scheme of
the Xtensa LX5 processor for an
arithmetic instruction execution
showing the new register file
and special functional units.
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Table 1 Implemented special functional units of the Xtensa LX5 processor for accelerating the SIFT feature extraction and number of pipeline
execution cycles.

Category Instruction Description #EX Used in

Data Handling LOAD64 Load 64 bit into register 1 General

STORE64 Store 64 bit word to memory 1

MOVE64 Move 64 bit to different register 1

SHIFT64 Shift 16 bit subwords by 1 subword 1

Special Functional FIR Symmetric and separable FIR-filter 1 Building of Pyramids

Units (Base CV) vertical and horizontal unit

Special Functional ISQRT INIT Initialization step 1 Orientation Assignment and

Units (SIFT) ISQRT Calculation of integer square root 1 Feature Description

ATAN Calculation of arctangent 1

SINE INIT Initialization step 1 Feature Description

SINE Calculation of sine and cosine 2

HIST VAL Calculation of histogram entries 2

HIST POS Calculation of histogram positions 1

input image, there are 31 Gaussian filterings to perform and
therefore, 62 FIR-filter steps. The overall number of cycle
reduction in this processing step has a large impact on the
overall SIFT processing performance. The design of the spe-
cial functional unit for the horizontal and vertical filter step
is identical, but the loading of image data differs. Due to the
image processing direction, the vertical processing direction
uses four special functional units for parallel image pro-
cessing. The block diagram of the special functional unit is
shown in Fig. 5.

In each execution step, one pixel is streamed into the
FIR-unit and one resulting pixel is computed. The pixel val-
ues are temporarily saved in a shift register, implemented by

states, for the next computation step. After four iterations,
the four resulting pixels have to be stored with a special data
handling command. The additionalmode-input specifies the
kernel size of the filter matrix. Applying a one hot code,
the associated multiplexer chooses the correct input pixel.
All spare kernel entries are multiplied by zero. The correct
filter coefficients are locally stored in a table with themode-
entrance as coefficient selection. A 7× 7 FIR-unit is shown
in Fig. 5 for clarification. Each scale of the image pyramid
has a different filter kernel size, which depends on the ini-
tial Gaussian sigma and the number of scales (see Eq. 10).
For the original SIFT parameter set of [21], the maximum
filter kernel size is 27× 27, which is used for the evaluation

Figure 5 FIR unit for
calculation of a Gaussian
filtering. A single pixel is
processed in each execution
cycle. The mode input selects
the size of the filter kernel and
the different kernel coefficients.
Special state registers are shown
as color coded.
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Figure 6 Special functional
unit for an iterative computation
of the integer square root. After
initializing the process variables
place and remainder, the
operation has to be executed n

2
times to compute the result of a
n bit number.

presented later. The FIR-unit provides an accuracy of 8 bit
integer and 8 bit fraction, which is sufficient to ensure the
precision of later computations.

4.3 Calculation of Orientation

During the orientation assignment, the pixel wise image
orientation representation has to be changed from the
cartesian to the polar form. For each conversion, the
magnitude (Eq. 6) and the angle (Eq. 7) have to be
computed by a square root and an arctangent operation,
respectively.

Magnitude Representation - For computing the magnitude
of the representation conversion, the integer square root
(ISQRT) is utilized in combination with a range adjustment.
The integer square root is defined as the largest integer
smaller than the full precision square root. With the itera-
tive method from [9], full accuracy can be assured. After
an initialization step and assuming an n bit input number,
the two cycle special functional unit needs

⌈
n
2

⌉
iterations to

compute the ISQRT.
The ISQRT unit has three input variables (see Fig. 6)

of which place and remainder are process variables and

need to be initialized. By using states for the process vari-
ables, the iterative process doesn’t suffer from long memory
access. The workload in one iteration of three shifts, two
additions, one subtraction and one comparison for multi-
plexing are executed in one cycle.

Angle Representation - The computation of the orientation
direction is based on the approximation of the arctangent.
In [2], an octant approximation atan(x

y
) = atanoctant is

presented in which four different second-order polynomial
approximations are used to determine the angle:

atan1,8 = y

x

[
1.0584 − sign(y) · 0.273 · y

x

]

atan2,3 = π

2
− x

y

[
1.0584 − sign(x) · 0.273 · x

y

]

atan4,5 = sign(y) · π+ y

x

[
1.0584 + sign(y)· 0.273 · x

y

]

atan6,7 = −π

2
− x

y

[
1.0584 − sign(x) · 0.273 · x

y

]
(12)

The special functional unit (see Fig. 7) has a two-stage struc-
ture. In the first step, the four polynomials are evaluated in
parallel. The correct value is selected in the second step.
This selection is based on the octant of the two input values.

Figure 7 Special functional
unit for the two stages
computation of the arctangent.
In the first step four
second-order polynomial
approximations are computed in
parallel. Afterwards depending
of the input value’s octant, the
correct value is selected.
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The four polynomials require two divided values as
input values. These computationally intensive operations
are accelerated by special Tensilica dividers. The ATAN-unit
itself needs one cycle for a 32-bit integer result, which is an
angle representation.

4.4 Calculation of Descriptor

The last step of the SIFT feature extraction is the gen-
eration of the descriptor. The descriptor is composed of
multiple histogram entries. Based on the polar representa-
tion of the image gradient, the histogram entries and their
position in the histogram have to be computed. To acceler-
ate the computation, two special functional units HIST VAL
and HIST POS have been included in the pipeline. Further-
more, each histogram is rotated by its previously computed
orientation. This computation step requires the computa-
tionally expensive functions sine and cosine. To accelerate
these functions, the Xtensa LX5 processor is extended
with the special functional unit SINE INIT and SINE for
trigonometrical computations.

Calculation of Histogram Values - To avoid boundary
effects in which the descriptor abruptly changes, trilinear
interpolation is used to distribute the value of each gradi-
ent sample into the adjacent histogram samples. Therefore,
each histogram entry is multiplied by a weight of 1 − d

for each dimension (row, column and orientation), where d

is the distance of the sample from the central value of the
histogram entry. Three dimensions result in eight possible
Gaussian weighted histogram values:
coef [1]=mag · d r · d c · d o

coef [2]=mag · d r · d c · (1 − d o)

coef [3]=mag · d r · (1 − d c) · d o

coef [4]=mag · d r · (1 − d c) · (1 − d o)

coef [5]=mag · (1 − d r) · d c · d o

coef [6]=mag · (1 − d r) · d c · (1 − d o)

coef [7]=mag · (1 − d r) · (1 − d c) · d o

coef [8]=mag · (1 − d r) · (1 − d c) · (1 − d o)

where mag is the Gaussian weight and d r, d c and d o

depict the distances of the three dimensions row, column
and orientation, respectively. All histogram coefficients can
be computed in parallel by implementing a tree of 14 mul-
tipliers with max. two multipliers in chain. In this case, 14
multipliers have to be implemented. A reasonable trade-
off between computation time versus resource usage is a
two step computation for the histogram values. In Fig. 8,
the special functional unit HIST VAL is shown, which
occupies two stages in the processor pipeline. The spe-
cial functional unit requires four input values, which are
routed through a connection matrix for the first multiplica-
tion stage, which consists of eight multipliers. The results
are fed back to the connection matrix as inputs for the
second multiplication stage. As depicted, each multiplier
has two multiplexers to choose the correct input value. By
accepting two cycles for this computation, six multipli-
ers can be saved compared to a one cycle solution of this
computation.

Calculation of Histogram-Positions - Not every histogram
coefficient is selected to fit in the resulting descriptor.
Dependent of the position in the subregions, a histogram
coefficient is accepted or declined, which leads to intense
branching in the computation. To avoid performance loss
due to branching, a validation mask is generated for each
set of eight histogram coefficients that are mentioned above.
In the special functional unit HIST POS, the position of a
histogram coefficient and its validation is computed. With
the widely used parameter set of [21], the histogram con-
sists of 128 entries 8 bit each. To decode 128 entries in
a histogram, 7 bits are required. In addition there is one
validation bit needed (see Fig. 9). To avoid branching, the
memory area for the histogram is doubled to 256 entries.
The invalid coefficients are accumulated in the lower 128
entries of the histogram, which are skipped in the later SIFT
processing. Only the valid entries are accumulated in the
correct positions.

Figure 8 Special functional
unit for computing the
histogram entries. The four
input unit consists of eight
multipliers and needs two cycles
to generate eight coefficients of
8 bits each. The results of the
first multiplication step are fed
back to the connection matrix.
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Figure 9 Special functional unit for computing the histogram posi-
tion and its validations. The position in the histogram is generated
by the three dimensions of the trilinear interpolation. By comparing
thresholds the validation of each position is ensured.

Sine Approximation - The orientation’s sine and cosine are
required for the computation of the histogram rotation. To
accelerate the computation of those trigonometric func-
tions, the processor is extended with the special functional
unit SINE INIT and SINE (see Fig. 10a and b). To save
resources, the similarity between sine and cosine and the
geometry of the sine function are exploited. The control
input mode can toggle between sine and cosine computa-
tion. Furthermore, only the positive half-wave of the sine
is determined and the resulting sign of the value is set by
a range-multiplexer. The sine approximation is a quadratic
polynomial approximation computed in two stages to gain
more precision:

temp = abs(inV al) ·
(
4

π
− 4

π2
· abs(inV al)

)
(13)

sine = 0.225 ·
(
temp2 − temp

)
+ temp (14)

The input value inV al for this operation is a scaled float
number, which is converted to an integer. The result of this
operation is a 32-bit integer number. It takes two execution

stages in the pipeline to perform the computation. The ini-
tialization step consists of the mode selection (sine/cosine)
and the preparation of the input value for the computation
(see Fig. 10a). The first approximation step is performed
as well. Due to the low complexity of the initialization and
the resulting short execution time, it is useful to move the
MAC-operation of Eq. 13 to the initialization step. Thereby,
an additional execution step in the pipeline is avoided,
however, both functional units are highly interlaced and can-
not be used standalone in different context. For fast data
accesses in the sine computation itself, all necessary values
are stored in states. As shown in Fig. 10b, the remain-
ing operations for the sine computation are distributed to
two execution stages and to the register-write stage of the
pipeline.

5 Evaluation

This section is divided into five parts. First, the speed-up
provided by the proposed arithmetic functional units is pre-
sented. Based thereon, in the second part the speed-up for
the four major algorithmic steps are discussed. In part three,
the relation of image size, number of feature-points and
number of execution cycles is presented. In part four, the
gate count for the extended processor is shown. Finally, the
section ends with the presentation of an efficiency measure
for the SIFT-ASIP.

5.1 Acceleration of Arithmetic Functions

In Table 2, an overview of the special functional units
of accelerated arithmetic functions is presented. To show
the speed-up of the accelerated arithmetic functions, the
extensions are compared with the standard libraries and
the reference code, executed on the baseline processor. The
baseline processor makes no use of a single precision float-
ing point unit, no special multiplier nor divider units. Each
function call for the accelerated implementation invokes at
least one special functional unit and some data pre- and
post-processing for the faster computation of an arithmetic
function.

The arctangent computation and the integer square root
computation are invoked approximately 2,100 times in aver-
age for one detected feature-point. Depending on the local
neighborhood of a feature-point, a varying number of pixel
is included for the calculations and consequently, a deter-
ministic cycle count cannot be given. Reducing the cycle
count from 5,552 cycles to 30 cycles for one arctangent
computation and from 366 cycles to 22 cycles for one inte-
ger square root computation, the total cycle count could be
reduced by 12.3 Mio. cycles per feature just for these two
computations.
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Figure 10 Special functional units for computing sine and cosine -
initialization step and computation step. a. Special functional unit for
initialization of the sine and cosine computation. In addition to the
initialization step, the MAC-operation of Eq. 13 is executed by this
functional unit. Reused data is stored in states for fast access by the

following special functional unit. b Special functional unit for com-
puting sine and cosine. All operations are performed in two execution
stages and the register-write stage of the pipeline. The input’s sign is
used to determine which half-wave is selected as output.

The processor extension for the sine function reduces the
sine computation to 6 cycles instead of 3,772 cycles, which
means a speed-up factor of x629. With a number of 500
feature-points for one image, this instruction-set extension
saves 1.9 Mio. cycles per frame, compared to the baseline
processor.

The generation of the histogram values for the descriptor
is highly dependent on the extracted number of feature-
points. Furthermore, the region size out of which the
histogram is generated, depends on the Gaussian scale,

in which the feature-point was detected. Therefore, the
number of invocations for histogram generation varies
from feature-point to feature-point. On average, the spe-
cial functional units for the histogram generation are
invoked approximately 1,500 times for one feature-point.
With a number of 500 feature-points in one image, this
results in 750,000 invocations per frame. With a speed-
up of x89 for the histogram generation, the number of
cycle reduction has a great impact on the SIFT feature
extraction.

Table 2 Cycle count for accelerated arithmetic functions for the Xtensa LX5 processor compared with the cycle count for the baseline processor.

Function C-Reference Accelerated Speed-Up #Invocations

[#cycles] [#cycles] (per feature)

Arctangent 5,552 30 185 ∼ 2, 100

Integer square root 366 22 16 ∼ 2, 100

Sine 3,772 6 629 2

Histogram generation ∼ 16, 000, 000 ∼ 180, 000 89 ∼ 1, 500

Gaussian Filtering 4,906,469,155 2,595,499 1,890 1

For each function, the cycle count of one invocation is presented. Furthermore, the average number of invocations for one feature-point is given.
The resolution of the input image for the Gaussian Filtering is 800 × 640 pixel. The filter size of the Gaussian filtering is 15 × 15.
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Table 3 Cycle count for SIFT feature extraction for the baseline processor and the proposed extended processor.

Algorithm Baseline Processor Extended Processor Speed-Up

Building of Pyramids 48,336,848,554 41,023,999 1,178

Feature-point Detection 999,349,517 216,614,138 5

Orientation Assignment 1,527,402,586 28,013,088 55

Feature Description 9,053,651,191 195,270,505 46

Total 59,917,251,848 480,921,730 125

The resolution of the input image is 800 × 640 pixel.

The special functional unit for a FIR filter has to be
evaluated for a complete Gaussian filtering to make it com-
parable. By processing an image of 800 × 640 pixel with a
filter size of 15×15 for one selected filter step, the extended
processor achieves a speed-up of x1,890 as opposed to the
non-accelerated code execution for the same filter step. In
total, the Gaussian pyramid consists of five different fil-
terings. The overall speed-up for the computation of the
Gaussian pyramid is presented in the following section.

5.2 Acceleration of Algorithmic Steps

In Table 3, the cycle count for the implementation of the
SIFT feature extraction on the baseline processor and the
extended processor is presented. The baseline processor is
a core configuration without a floating point unit or other
Tensilica provided accelerators. The resolution of the input
image is 800 × 640 pixel, which results in seven octaves
for the Gaussian pyramid. Each algorithmic step according
to Section 3 is evaluated on its own. In addition, the overall
speed-up of the SIFT feature extraction is given.

Utilizing all the special functional units presented above,
the resulting speed-ups are x1178 for the construction of
the image pyramids, x5 for detection of the feature-points,
x55 for the orientation-assignment and x46 for the genera-
tion of descriptors. Compared to the SIFT implementation
on the basic Xtensa LX5 core, the number of total process-
ing cycles, and thus the processing speed, could be reduced
by a factor of over x125 for the extended processor.

The increased speed-up for pyramid building compared
to the speed-up of the remaining algorithmic steps can be

explained by the fact, that just the first algorithmic step
consists of a very regular calculation. In the remaining
algorithmic steps, irregular memory accesses and strong
branching prohibit a larger speed-up factor for this proces-
sor configuration.

5.3 Image Dependent Effects

The four arithmetic parts of the SIFT-algorithm can be
divided into two categories: image size dependent and
feature-point related. The building of pyramids and a
small part of feature-point detection can be categorized
as image size dependent computation time, whereas the
cycle count of the orientation assignment, feature descrip-
tor generation and parts of the feature-point detection are
highly dependent of the extracted number of feature-point
candidates.

To show the relation between different image sizes and a
varying number of extracted feature-points, three different
test cases are presented:

1. 800 × 640 pixel, 1 feature-point
2. 800 × 640 pixel, 256 feature-points
3. 320 × 240 pixel, 256 feature-points

With this test configuration, the partition between image
size dependent cycle count and feature-point related cycle
count can be shown (see Table 4).

The cycle count for the building of pyramids is propor-
tional to the number of pixels for the later pyramids. The
factor of x6.6 between the image sizes of the different con-
figurations can be found approximately by comparison of

Table 4 Cycle count of the
extended processor for the four
algorithmic steps for different
sizes of the input image in
relation to the number of found
feature-points.

320 × 240, 256 FP 800 × 640, 256 FP 800 × 640, 1 FP

Building of Pyramids 6,280,360 41,023,999 41,023,999

Feature-point Detection 31,111,397 216,614,138 216,283,876

Orientation Assignment 24,082,018 28,013,088 94,243

Feature Description 190,521,195 195,270,505 1,321,832

Total 251,994,970 480,921,730 258,723,950
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the cycle count. The feature-point detection is also strongly
dependent on the input image size. In addition, there is
a small cycle count, dependent on the number of found
feature-points, which is below 1 % of the total cycle count
for this algorithmic step and hence, can be ignored. Com-
paring the cycle count for the orientation assignment and the
feature description, it can be seen that this calculation step is
proportional to the number of found feature-points. The dif-
ference between the cycle count of the small and large input
image with identical number of feature-points results from
the different input images. Because of the images’ differing
content, the size of the local neighborhood of pixels for the
orientation assignment differs for those two test cases.

5.4 Silicon Area - Equivalent Gate Count

The equivalent gate count (without memories) for using a 45
nm standard CMOS technology is presented in Table 5. Due
to the architectural extensions, a total area increase from
93,000 gates to 456,976 gates is observed, which is a factor

Table 5 Core area requirements of the accelerated ASIP for a generic
45nm GS process - estimations by Tensilica design tools.

Category Extension Area

[Gates]

Register Files Standard RF 1,196

Custom RF 16,958 5 %

States 33,804 9 %

Data Handling LOAD64 257 < 1 %

STORE64 257 < 1 %

MOVE64 53 < 1 %

SHIFT64 0 0 %

Special Functional FIR (x4) 81,556 22 %

Unit (Base CV)

Basic Functional ISQRT INIT 0 0 %

Unit (SIFT) ISQRT 567 < %

ATAN 19,463 5 %

SINE INIT 5,485 2 %

SINE 19,606 5 %

HIST POS 1,150 < 1 %

HIST VAL 125,223 34 %

Total additional area 363,976 100 %

LX5 baseline processor 93,000

Total Area 456,976

of x4.9. The detailed breakdown of the gate count relies on
the pre-synthesis estimations, provided by Tensilica tools.

One special functional unit for computing the FIR-
filtering requires 20,389 gates. For parallel image process-
ing and the reduction of memory accesses, the processor is
extended with four of those units, which results in 26 % of
the total additional area. In total, there are 56 multipliers and
56 adders mapped to 81,556 gates for the FIR-units.

For the HIST VAL-unit, an additional gate count of
125,223 gates is required. The functional unit consists of
eight multipliers, which are shared in two consecutive exe-
cution stages of the pipeline. This sharing reduces the
required silicon area by prohibiting the execution of con-
secutive HIST VAL instructions. Even though the number
of multipliers in the FIR-unit is four times larger than
the number in the HIST VAL-unit, the gate count of the
HIST VAL-unit is 1.5 times larger than the gate count of
the FIR-units. This large difference can be explained by the
fact, that the multipliers in the FIR-units have constant val-
ues as inputs. In contrast to conventional multipliers, basic
arithmetic functions with constant inputs can be synthesized
with a much smaller gate count.

In Table 6, the synthesis results of the Synopsys design
tools for 45 nm standard CMOS technology are shown.
Each processor setup related to the single algorithmic steps
can perform as a standalone processor and includes some
identical overhead for full functionality, e.g., the GRF regis-
ter file. Therefore, the area results differ from the estimated
results by the Tensilica design tool. For a TSMC 45 nm
technology, the processor with all extensions reaches a
frequency of 400 MHz and uses silicon area of 0, 591 mm2.

Depending of the number of extracted feature-points the
accelerated processor will reach a frame rate of 1.58 fps for
an input image of 320× 240 pixel or appr. 1 fps for an input
image of 800 × 640 pixel. The heterogeneous system the
of [6] reaches a frame rate of 30 fps for an image size of
320× 240 pixel and therefore, it outperforms the ASIP pre-
sented in this work, but the ASIP features full flexibility for
the implementation of further image feature extractors.

Table 6 Core area requirements of the accelerated ASIP for a TSMC
45nm GS process - synthesis with Synopsys design tools.

Core Configuration Area Area Max. Freq.

[Gates] [mm2] [MHz]

Baseline Porcessor 77,440 0.120 625

Building of Pyramids 227,522 0.355 416

Feature-point Detection 95,123 0.148 416

Orientation Assignment 107,649 0.168 500

Feature Description 216,544 0.338 500

Full Core 379,087 0.591 400
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Table 7 Speed-up and relative additional hardware to determine the efficiency of the instruction set extension of the extended processor. A value
of 1 expresses the meaning off no speed-up with no extra hardware resources. For an overview of the available special functional units, see Table 1.

Configuration Speed-Up Add. Hardware Efficiency ε

Baseline Processor 1 1 1

+ B-ISEa 1.01 1.24 0.82

+ B-ISE + FIR 5.53 3.19 1.73

+ B-ISE + FIR + ISQRTb + ATAN 6.42 3.59 1.79

+ B-ISE + FIR + ISQRT + ATAN + SINE + HISTc 124.59 5.40 23.06

aB-ISE - Baseline Instruction Set Extension: new register file, defined stages and special functional units for data handling.
bISQRT - ISQRT INIT and ISQRT.
cHIST - HIST VAL and HIST POS.

5.5 Efficiency

In order to evaluate the quality of the extended proces-
sor, the efficiency ε = benef it

eff ort
is determined. The profit

equals the reached speed-up by the presented instruction set
extensions (ISE) (see Table 1), whereas the effort reflects
the additional hardware resources, that have to be spent by
utilizing the special functional units.

By definition, the baseline processor features an effi-
ciency ε = 1. With an initial effort of the gate count of
baseline processor, the reached speed-up is 1. In relation to
the execution cycles of the baseline processor, it is possible
to calculate a speed-up for the SIFT feature extraction, tak-
ing into account which part of the instruction set extension
is used. Furthermore, the additional hardware depicts the
relative additional hardware of each accelerated algorithmic
step, compared to the base processor (see Table 7).

The base instruction set extension (B-ISE), which con-
sists of the stages and new register file, reaches an efficiency
of 0.82. This value can be explained by the fact, that addi-
tional hardware is necessary, but there is no considerable
speed-up reached. The B-ISE is just the groundwork for the
following ISE and is not intended to accelerate the SIFT
feature extraction. By adding the FIR-ISE to the basline pro-
cessor and the B-ISE, the efficiency rises to 1.73, which
confirms, that the acceleration of the SIFT execution out-
weighs the additional hardware consumption. Furthermore,
the additional processor extension with the ISQRT-ISE
and ATAN-ISE increases the efficiency slight. The fully
extended core with all instruction set extensions is 23.06
times more efficient compared to the baseline processor,
which results from a speed-up of 124.59 by using 5.40 times
more hardware than to the initially core. By this efficiency
measure, the impact of new instruction set extensions can
be evaluated in relation to the additional hardware, which is
an important aspect in evaluating the quality of the extended
processor.

6 Conclusions

In this paper, the design and implementation of a suitable
instruction-set extension for SIFT feature extraction based
on the Tensilica Xtensa LX5 ASIP is presented. The results
show, that the proposed hardware extensions lead to a signif-
icant speed-up factor of x125 when compared with the base
processor. The speed-up was obtained by considering sev-
eral techniques while designing the processor extensions.
By reducing the number of operations, avoiding branch-
ing and eliminating memory accesses, the number of cycles
could be significantly reduced. This improvement can be
achieved while maintaining the flexibility of the enhanced
processor by implementing general hardware extensions as
well as a specialized set of SIFT-specific instructions. In
total, the silicon area requirement increases by a factor of
x4.9 while the number of cycles decreases by a factor of
x125 for an input image with a resolution of 800 × 640
pixel.
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