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Abstract Constant multiplier performs a multiplication of a
data-input with a constant value. Constant multipliers are es-
sential components in various types of arithmetic circuits,
such as filters in digital signal processor (DSP) units and they
are prevalent in modern VLSI designs. This study presents
efficient algorithms and their fast hardware implementation
for performing multiplying-by-(2k±1), or (2k±1)N, operation
with additions. No multiplications are needed. The value of
(2k±1)N can be computed by adding (±N) to its k-bits left-
shifted value 2kN. The additions can be performed by the full-
adder-based (FA-based) ripple carry adder (RCA) for simple
architecture. This paper presents the unit cells for additions
(UCAs). Results show that the UCA-based RCA achieves
34 % faster than the FA-based RCA. Further, in order to im-
prove the speed performance with lower hardware cost, this
paper also presents a simple and modular hybrid adder with
the proposed UCA concept, where the hybrid adder takes the
lower-bit carry lookahead adder (CLA) as a module and many
of the CLAmodules are serially connected in a fashion similar
to the RCA. Results show that the proposed hybrid adder
achieved speed performance improvement while maintaining
its modular and regular structure.
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1 Introduction

Constant multiplier performs a multiplication of a data-input
with a constant value. Constant multipliers are essential com-
ponents in various types of arithmetic circuits, such as filters
in digital signal processor (DSP) units, dominate the hardware
complexity of digital filters [1]. In addition, they are prevalent
in modern VLSI designs.

The multiplication by a fixed-point constant can be done
“multiplier-less” using additions and shifts only. In such filters
the number of adders determines the implementation cost.
Since the shifters are implemented as hard-wired inter-block
connections, they are considered “free” in transposed imple-
mentation of an FIR filter; each input is multiplied by several
coefficients [1–3]. Constant multiplier design has been inves-
tigated for several decades. However, the emphasis was
placed on minimizing the number of additions required to
achieve the multiplication of a given constant [4].

In this study, the emphasis is placed on performing the
constant multiplication with a faster adder in only one addition
operation. This paper targets the development of the multipli-
cation of a constant (2k±1). The value of (2k+1)N can be
computed by adding N to its k-bit left-shifted value 2kN. On
the other hand, The value of (2k-1)N can be computed by
subtracting N from its k-bits left-shifted value 2kN, or adding
(−N) to 2kN. The additions can be performed by a simple
ripple carry adder (RCA), or a higher speed carry-lookahead
adder (CLA).

The unit cells for additions (UCAs) are introduced in this
study to construct the UCA-based RCA. Results will show
that the UCA-based RCA achieves approximately 34 % faster
than Full-adder-(FA)-based RCAs. In order to further improve
the speed performance, a simple and modular hybrid adder is
also presented, where reasonably smaller bit size of CLA is
used as a module and many modules are serially connected in
a fashion similar to the RCA.
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In the next section, the conventional multiplication of a
constant (2k ± 1) using FA-based RCA is discussed.
Section III presents the proposed UCA-based RCA structures
for (2k±1)N operation. Section IV describes a hybrid adder for
the constant multiplication. Finally, a brief concluding remark
is given in Section V.

2 FA-based RCAs for (2k±1)N Operations

Let N=(an-1an-2…a0) be an n-bit number. For the (2k+1)N
operation, there exists a number m such that n=m×k (if n<
m×k, sign extension is applied). Thus, N can be expressed as
(Am-1Am-2…A0), where Ai=(a(i+1)k-1…aik+1aik), i=0, 1,…,m-
1, and the (2k+1)N operation can be performed by addingN to
its k-bits left-shifted value 2kN, i.e., (1+2k)N=N+2kN, where
2kN=(Am-1Am-2…A00) and 0=(0..00).

N 0 Am−1 … Aiþ1 Ai Ai−1 … A1 A0

þ2kN Am−1 Am−2 … Ai Ai−1 Ai−2 … A0 0
1þ 2k
� �

N Sm Sm−1 … Siþ1 Si Si−1 … S1 S0

ð1Þ

The 3N operation is performed by 3N=N+2 N,

N 0 an−1 an−2 … a1 a0
þ 2N an−1 an−2 an−3 … a0 0
3 N sn sn−1 sn−2 … s1 s0

ð2Þ

and the 9N=N+8 N operation with k=3 is operated as

N 0 0 0 a3m−1 … a3iþ2a3iþ1a3i … a3a2 a1a0
þ 8N a3m−1 a3m−2 a3m−3 a3m−4 … a3i−1 a3i−2 a3i−3 … a0 00 0
9 N s3mþ2 s3mþ1 s3m s3m−1 … s3iþ2s3iþ1s3i … s3s2 s1s0

ð3Þ

On the other hand, (2k-1)N=2kN+(−N)=2kN+N*+1,
where N* is the bit-complement of N, i.e., N*=(Am-

1’Am-2’…A0’) and Ai’=(a(i+1)k-1’…aik+1’aik’), i=0,1,…,
m-1. Thus, (2k-1)N operation can be performed by
adding the k-bits left-shifted value 2kN to N* with an
initial carry of 1. For example, the 7 N operation is
performed as follows,

N * 1 1 1 a3m−1’ … a3iþ2’ a3iþ1’ a3i’ … a3’a2’a1’a0’

þ 8N a3m−1 a3m−2 a3m−3 a3m−4 … a3i−1 a3i−2 a3i−3 … a0 00 0
7 N s3mþ2 s3mþ1 s3m s3m−1 … s3iþ2 s3iþ1 s3i … s3s2 s1s0

ð4Þ

Figure 1a shows a full-adder (FA) cell [5, 6]. A FA cell
takes two data inputs, ai-1 and ai, and a carry input bit ci-1,

and produces a carry output bit ci and a sum bit si, for i=0~
n, where a−1=0 and c−1=0. The logic functions are

si ¼ ai⊕ai‐1⊕ci‐1
ci ¼ ai⊕ai‐1ð Þci‐1 þ aiai‐1

ð5Þ

The point-to-point delays of the FA and HA (Half-adder)
cells are

Δcc FAð Þ ¼ Δcarry−in−to−carry−out FAð Þ ¼ 2ΔNAND2

Δcs FAð Þ ¼ Δcarry−to−sum FAð Þ ¼ ΔXOR

Δic FAð Þ ¼ Δinput−to−carry FAð Þ ¼ ΔXOR þ 2ΔNAND2

Δcc HAð Þ ¼ Δic HAð Þ ¼ ΔNOR2Δcs HAð Þ ¼ ΔXOR

ð6Þ

Figure 1b shows an (n+1)-bit FA-based RCA for 3 N op-
eration. The RCA is comprised of (n-2) FAs and 2 HAs con-
nected in series. The critical path includes the input-to- carry
of the right-most HA (Δic(HA)), the carry-to-carry
(Δcc(FA)) of (n-2) FAs, and the carry-to-sum (Δcs(HA))
of the left-most HA, i.e.,

ΔRCA FAð Þ 3Nð Þ ¼ Δic HAð Þ þ n−2ð ÞΔcc FAð Þ þΔcs HAð Þ
¼ ΔNOR2 þ 2 n−2ð ÞΔNAND2 þΔXOR

ð7Þ

In general, the critical path delay of the (km)-bits FA-based
RCA for (2k+1)N operation can be expressed as

ΔRCA FAð Þ 2kþ1ð ÞNð Þ ¼ Δic HAð Þ þ km−k−1ð ÞΔcc FAð Þ þ k−1ð ÞΔcc HAð Þ þΔcs HAð Þ
¼ kΔNOR2 þ 2 km−k−1ð ÞΔNAND2 þΔXOR

ð8Þ

Similarly, the critical path delay of the (km)-bits FA-based
RCA for (2k-1)N operation can be expressed as

ΔRCA FAð Þ 2k‐1ð ÞNð Þ ¼ Δic HAð Þ* þ km−k−1ð ÞΔcc FAð Þ þ k−1ð ÞΔcc HAð Þ* þΔcs HAð Þ*
¼ Δinv þ 2 km−1ð Þ−k½ �ΔNAND2 þΔXNOR

ð9Þ

The term, (HA)* in (9), indicate a HA resulted from a FA
with an input “1”, where Δic(HA)*=Δinv+ΔNAND2,Δ-

cc(HA)*=ΔNAND2, and Δcs(HA)*=ΔXNOR.
By (8) and (9), with k=3, the delays of the RCA in Fig. 1c

and d for 9 N and 7 N operations respectively are

ΔRCA FAð Þ 9Nð Þ ¼ 3ΔNOR2 þ 2 3m−4ð ÞNAND2 þΔXOR ð10Þ

ΔRCA FAð Þ 7Nð Þ ¼ Δinv þ 6m−5ð ÞΔNAND2 þΔXNOR ð11Þ

Finally, Fig. 1e illustrates the (3 m)-bits FA-based RCA
with dual mode for both 7 N and 9 N operations, where
mode=0 for 9 N operation and mode=1 for 7 N operation.
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Similarly, one can easily realize a (km)-bits FA-based RCA
for (2k±1)N operations.

3 UCA-based RCAs for (2k±1)N Operations

This section presents the UCA-based RCAs for (2k+1)N
operation. The implementation concept is readily applied
for (2k-1)N operations.

3.1 UCA-based RCA for 3 N Operation

Consider the 3 N operation, as illustrated in (2). By Shannon
expansion theorem, the carry and sum functions in (5) can be
re-written as

ci ¼ ai’ ai−1ci−1ð Þ þ ai ai−1 þ ci−1ð Þ
¼ ai’W0i−1 þ aiW1i−1 ð12Þ

si ¼ ai⊕ui;where ui ¼ ai−1⊕ci−1 ð13Þ

where W0i-1=ai-1ci-1 and W1i-1=ai-1+ci-1. To construct the
carry propagation paths, we consider both W0i and W1i, in
the next stage. By (12), we can easily derive

W0i ¼ aici ¼ ai ai’W0i−1 þ aiW1i−1ð Þ ¼ aiW1i−1; and
W1i ¼ ai þ ci ¼ ai þ ai’W0i−1 þ aiW1i−1 ¼ ai þW0i−1

ð14Þ

By (13), the functions ui can be expressed as

ui ¼ ai−1ci−1 þ ai−1’ci−1’½ �’ ¼ W0i−1 þW1i−1’½ �’
¼ W0i−1’W1i−1 ð15Þ

(b)(a)

(c) 

(d) 

(e) 

Figure 1 FA-based RCA: a FA
cell; b for 3N; c for 9N; d for 7N;
and e for dual mode – 7N and 9N.
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Figure 2a shows a UCA cell for 3 N operation. The cell is
comprised of three blocks: Carry Propagation Path (CPP)
block, Function ui Generation (FUG) block, and Sum Gener-
ation (SMG) block. The critical path of an n-bit UCA-based
RCA, as illustrated in Fig. 2b, includes an NAND gate in
cell#1, (n-3) UCAs in cell#2 to cell#(n-2), and the inverter,
NOR2, and XOR gates in cell#(n-1), where ΔUCA=ΔNOR2,
i.e., the delay is

ΔRCA UCAð Þ 3Nð Þ ¼ ΔNAND2 þ n−2ð ÞΔNOR2 þΔinv

þΔXOR ð16Þ

3.2 UCA-based RCA for 5 N Operation

Consider the 5 N operation, as shown in (1) with k=2, where
Ai=(a2i+1,a2i), i=0,1,…,m-1, and n=2 m. (Note that a zero is
added as the most significant bit if n is not an even number.)
Two additions, (a2i+1+a2i-1+c2i) and (a2i+a2i-2+c2i-1), are per-
formed. By (5),

c2i ¼ a2i’ a2i−2c2i−1ð Þ þ a2i a2i−2 þ c2i−1ð Þ;
s2i ¼ a2i⊕u2i; where u2i ¼ a2i−2⊕c2i−1;

c2iþ1 ¼ a2iþ1’ a2i−1c2ið Þ þ a2iþ1 a2i−1 þ c2ið Þ;
s2iþ1 ¼ a2iþ1⊕u2iþ1; where u2iþ1 ¼ a2i−1⊕c2i;

ð17Þ

By (17), plugging c2i to c2i+1, we have

c2iþ1 ¼ a2iþ1’ a2i−1 a2i’ a2i−2c2i−1ð Þ þ a2i a2i−2 þ c2i−1ð Þ½ � þ
a2iþ1 a2i−1 þ a2i’ a2i−2c2i−1ð Þ þ a2i a2i−2 þ c2i−1ð Þð Þ;

¼ a2iþ1’a2i’ a2i−1a2i−2c2i−1ð Þ þ a2iþ1’a2i a2i−1 a2i−2 þ c2i−1ð Þ½ �þ
a2iþ1a2i’ a2i−1 þ a2i−2c2i−1½ � þ a2iþ1a2i a2i−1 þ a2i−2 þ c2i−1½ �

¼ a2iþ1’a2i’W002i−1 þ a2iþ1’a2iW012i−1þ
a2iþ1a2i’W102i−1 þ a2iþ1a2iW112i−1

ð18Þ

where

W002i−1 ¼ a2i−1a2i−2c2i−1; W012i−1 ¼ a2i−1 a2i−2 þ c2i−1ð Þ;
W102i−1 ¼ a2i−1 þ a2i−2c2i−1; W112i−1 ¼ a2i−1 þ a2i−2 þ c2i−1;

The 2-bits UCA cell for 5 N, referred to as a UCA2 cell can
be derived as in the following property.

Property 1 The logic functions of the CPP block are
expressed as

W002iþ1 ¼ a2iþ1˙a2i˙W112i−1
W012iþ1 ¼ a2iþ1˙ a2i þ W102i−1ð Þ
W102iþ1 ¼ a2iþ1 þ a2i˙W012i−1ð Þ
W112iþ1 ¼ a2iþ1 þ a2i þ W002i−1

ð18Þ

(a) 

(b) 

Figure 2 UCA-based RCA: a
UCA cell for 3N; and b (n+1)-bit
RCA.
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and the functions u2i and u2i+1 of the FUG block are

u2i ¼ W002i−1’W012i−1ð Þ þ W102i−1’W112i−1ð Þ
u2iþ1 ¼ a2i’ W002i−1’W102i−1½ � þ a2i W012i−1’W112i−1½ � ð20Þ

Proof Consider W002i+1=a2i+1a2ic2i+1, with c2i+1 in (18), we
obtain W002i+1=a2i+1a2iW112i-1. Similarly, one can easily de-
rive the remaining terms in (19). By (17),

u2i ¼ a2i−2⊕c2i−1 ¼ a2i−2c2i−1ð Þ⊕ a2i−2 þ c2i−1ð Þ
¼ a2i−1⊕ a2i−2c2i−1ð Þ½ �⊕ a2i−1⊕ a2i−2 þ c2i−1ð Þ½ �
¼ W002i−1’W102i−1ð Þ⊕ W012i−1’W112i−1ð Þ
¼ W002i−1’W102i−1ð Þ’ W012i−1’W112i−1ð Þþ

W002i−1’W102i−1ð Þ W012i−1’W112i−1ð Þ’

Since

W002i−1W112i−1 ¼ W002i−1; W102i−1’W012i−1’ ¼ W102i−1’;
W102i−1W012i−1 ¼ W012i−1; and W002i−1’W112i−1’ ¼ W112i−1’;

u2i ¼ W002i−1W012i−1’þW102i−1’W112i−1þ
W002i−1’W012i−1 þW102i−1W112i−1’

and since

W002i−1W012i−1’ ¼ 0 and W102i−1W112i−1’ ¼ 0; thus
u2i ¼ W002i−1’W012i−1ð Þ þ W102i−1’W112i−1ð Þ

Similarly,

u2iþ1 ¼ a2i−1⊕c2i ¼ a2i−1⊕ a2i’ a2i−2c2i−1ð Þ þ a2i a2i−2 þ c2i−1ð Þ½ �
¼ a2i’ a2i−1⊕ a2i−2c2i−1ð Þ½ � þ a2i a2i−1⊕ a2i−2 þ c2i−1ð Þ½ �
¼ a2i’ W002i−1’W102i−1½ � þ a2i W012i−1’W112i−1½ �

Figure 3a shows the UCA2 cell, where the CPP block can
be realized by using NAND2/NOR2 gates, as illustrated in
Fig. 3b. The critical path, as indicated in red, of the (2 m)-bits
UCA2-based RCA in Fig. 3c includes an INV and an NOR2
gate in cell #0, two NOR2 gates in each of cells #1 to #(m-2),
and the FUG and SMG blocks in cell #(m-1). Thus, the prop-
agation delay is

ΔRCA UCA2ð Þ 5Nð Þ ¼ ΔINV þΔNOR2 þ m−2ð ÞΔUCA2

þΔFUG 5Nð Þ þΔSMG ð21Þ

(b)(a)

(c) 

Figure 3 5N operation: a & b
UCA2 cell; and c UCA2-based
RCA.

J Sign Process Syst (2016) 82:41–53 45



3.3 UCA-based RCA for (2k+1)N Operation

We first construct the CPP block and then the FUG and SMG
blocks

CPP Block Let rj be a binary number, either a 0 or a 1,

#ri ¼ #0 ¼ “˙” Logic AND operationð Þ; if ri ¼ 0;
#ri ¼ #1 ¼ “þ ” logic OR operationð Þ; if ri ¼ 1:

ð22Þ

Thus, W012i+1 in (19) can be expressed as

W r1r0ð Þ2iþ1 ¼ a2iþ1#0 a2i#1W r1’r0’ð Þ2i−1
� � ð23Þ

where r1’ and r0’ are the bit-complement of r1 and r0,
respectively.

Figure 3b shows the block diagram of the UCA2 cells,
where the CPP block is highlighted. The CPP block contains
4 carry propagation paths, Pa, a=0~3, and each path contains
2 gates, Jab, b=0 or 1. The gate type of Jab is determined by

the index of the path output Wab. For example, the output
W10 of the path pa which includes both gates J21 and J20.
Here, W10 means a=1 and b=0, i.e., J21 is an OR gate (be-
cause a=1) and J20 is anAND gate (because b=0). Fig. 4a is a
symbolic representation of that in Fig. 3b.

Similarly, the CPP block of the UCAk cells for (2k+1)N
operation can be expressed as

W rk−1::r1r0ð Þk iþ1ð Þ−1

¼ ak iþ1ð Þ−1#rk−1 …#r1 aki#r0W rk−1’…r0’ðð Þki−1
� � ð24Þ

Figure 4b shows the symbolic representation of the logic
function for the CPP block of the UCAk cell and its delay is
ΔUCA(k)=kΔNOR2.

FUG and SMG Blocks Let U(x0) and U(x1) be defined as
follows: (“x” means “don’t care term”)

U x0ð Þ ¼ W002i−1’W102i−1; U x1ð Þ ¼ W012i−1’W112i−1 ð25Þ

(a) 

(b) 

Figure 4 Symbolic
representation: a for 5N; and b for
(2k+1)N.
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U(x0) takes the terms Wx0, while U(x1) is formed by the
terms Wx1. Let V(0x) and V(1x) be defined as

V 0xð Þ ¼ W002i−1’W012i−1;V 1xð Þ ¼ W102i−1’W112i−1 ð26Þ

Thus, (19) can be expressed as

u2iþ1 ¼ a2i’U x0ð Þ þ a2iU x1ð Þ
u2i ¼ V 0xð Þ þ V 1xð Þ ð27Þ

Figure 5a is the symbolic representation of FUG and SMG
blocks of UCA2 cell for 5 N operation, where U(x0)* is an
AND3 gate with 3 inputs a2i’, W002i-1’, and W102i-1, and
U(x1)* is that with a2i, W012i-1’, and W112i-1. Thus, the delay
path, as shown in Fig. 5b, includes an AND3, a OR2, and a
XOR, and it can be implemented with an INV, an NAND3, an
NAND2, and a XOR as follows,

ΔFUG 5Nð Þ ¼ ΔINV þΔNAND3 þΔNAND2;ΔSMG

¼ ΔXOR ð28Þ

Similarly, the UCA3 cell for 9 N operation, the FUG block
can be expressed as follows,

u3iþ2 ¼ a3iþ1’a3i’U x00ð Þ þ a3iþ1’a3iU x01ð Þþ
a3iþ1a3i’U x10ð Þ þ a3iþ1a3iU x11ð Þ

u3iþ1 ¼ a3i’ V 0x0ð Þ þ V 1x0ð Þ½ � þ a3i V 0x1ð Þ þ V 1x1ð Þ½ �
u3i ¼ V 0x0ð Þ þ V 1x0ð Þ þ V 0x1ð Þ þ V 1x1ð Þ

ð29Þ

Figure 5c illustrates the delay path for 9 N operation, where
u3i+2, in (29), can be realized by four AND4 gates and one
OR4 gates. However, the term a3i+1’a3i’U(x00) can be realized
by anAND2with a3i+1’ and a3i’ and anAND3which takes the
output of AND2 and two inputs of U(x00). Since the function
AND2 with a3i+1’ and a3i’ can be pre-calculated and the
AND2 gate will not be in the critical path, as shown in
Fig. 5c. The OR4 is realized by a NOR2 followed by a
NAND2. This results in an INV, an NAND3, an NOR2, and
an NAND2 included in the critical path of the FUG block of
the UCA3 cell, i.e.,

ΔFUG 9Nð Þ ¼ ΔINV þΔNAND3 þΔNOR2

þΔNAND2;ΔSMG

¼ ΔXOR ð30Þ

Similarly, the delay path in Fig. 5d for UCA cell is,

ΔFUG 17Nð Þ ¼ ΔINV þ 2ΔNAND3 þΔNOR3;ΔSMG

¼ ΔXOR ð31Þ

3.4 Performance Evaluation

The proposed design methodology is mainly about the struc-
ture of hardware implementation which is based on the newly
developed equations. The actual realization of the proposed

(a) 

(b) (c) (d)

Figure 5 Delay paths: a FUG
and SMG blocks for 5N; b Delay
paths for 5N; c for 9N; and d for
17N.
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UCA, for example, may vary significantly. Therefore, the fol-
lowing performance comparisons were conducted assuming
the same type of hardware realization. Thus, the speed perfor-
mance estimation only consider the total gate delay in the
critical path under the same conditions, where the path delays
and loading effects were not considered for this rough estima-
tion. In fact, the performances are evaluated based on the gate
delays of the standard cells in TSMC 0.18 μmCMOS process
technology, as tabulated in Table 1 [2], where the cell height is
5.04 μm.

The delays of UCA-based RCAs are, n=2t, t≥4, where
(Δinv+(k-1)ΔNOR2) is in Cell#0 for 5 N and 17 N operations,

ΔRCA UCAð Þ 3Nð Þ ¼ ΔNAND2 þ n−2ð ÞΔNOR2 þΔinv þΔXOR

ΔRCA UCAð Þ 5Nð Þ ¼ n−3ð ÞΔNOR2 þ 2Δinv þΔNAND3 þΔNAND2 þΔXOR

ΔRCA UCAð Þ 17Nð Þ ¼ n−5ð ÞΔNOR2 þ 2Δinv þ 2ΔNAND3 þΔNOR3 þΔXOR

ð32Þ

By (8), the delays of FA-based RCAs are, n=2t, t≥4,

ΔRCA FAð Þ 3Nð Þ ¼ ΔNOR2 þ 2 n−2ð ÞΔNAND2 þΔXOR

ΔRCA FAð Þ 5Nð Þ ¼ 2ΔNOR2 þ 2 n−3ð ÞΔNAND2 þΔXOR

ΔRCA FAð Þ 17Nð Þ ¼ 4ΔNOR2 þ 2 n−5ð ÞΔNAND2 þΔXOR

ð33Þ

Based on (32), (33), and Table 1, the delays of both FA-
based RCAs and UCA-based RCAs for 3 N (k=1), 5 N (k=2),
and 17 N (k=4) with the 16~1024 bits were computed and the
values were tabulated in Table 2. Results show that UCA-
RCA for 17 N operation has slightly better than that for 5 N
operation. This is so simply because (2ΔNOR2+ΔNAND2)=
0.1176 ns and (ΔNAND3+ΔNOR3)=0.1044 ns, where the dif-
ference is about 0.01 ns.

Based on Table 2, Fig. 6a and b plot the delays of both FA-
based RCA and UCA-based RCA, respectively, for 3 N, 5 N,
and 17 N operations. Results show that their delays are almost
the same for the same size with the same approach.

Table 2 tabulates the normalized speed performance, where
the delay of FA-based RCA is normalized and set to 1. The
delay ratios of UCA-based UCAs for various bit sizes are
shown in Fig. 6c. Results show that the delay ratios are ap-
proximately 65 % which can be simply calculated from the

delay ratio of UCA cell (ΔNOR2) over a FA cell (2ΔNAND2),
i.e., ΔNOR2/(2ΔNAND2)=0.0426/0.0648=0.66=66%.

Even though the proposed UCA-based RCAs are
about 34 % faster than the FA-based ones, their speed
performance is still too slow particularly for wider bit
sizes. The following section attempts to further improve
the speed performance.

4 Hybrid Adders for (2k±1)N Operations

As mentioned, the RCA achieves lower hardware cost,
while the CLA offers high speed performance. In order
to achieve higher speed performance for the additions, a
hybrid adder combining RCA and CLA (or generate-
propagate adder), as shown in Fig. 7, is presented.
The adder is simple and modular, where the lower bit
CLA is taken as a module.

4.1 UCA-based Hybrid Adder for 3N Operation

For 3N operation, by (14), the carry-out bits at the first 4
stages of the CPP blocks can be written as follows,

W 00 ¼ a0W 1−1
W01 ¼ a1W10 ¼ a0a1 þ a1W0−1
W 02 ¼ a1a2 þ a0a2W 1−1
W03 ¼ a2a3 þ a0a1a3 þ a1a3W0−1

W 10 ¼ a0 þ W 0−1
W11 ¼ a1 þW00 ¼ a1 þ a0W1−1
W 12 ¼ a2 þ a0a1 þ a1W 0−1
W 13 ¼ a3 þ a1a2 þ a0a2W 1−1

ð34Þ

Thus, both W03 and W13 can be written as

W03 ¼ R01 þ R00W0−1 W13 ¼ Q01 þ Q00W1−1 ð35Þ

where

R00 ¼ a1a3; R01 ¼ a2a3 þ a0a1a3;Q00 ¼ a0a2; Q01

¼ a3 þ a1a2 ð36Þ

Table 1 Cell delay data [2]

Delay (ns) Delay (ns)

NAND2 0.0324 NOR2 0.0426

NAND3 0.0453 NOR3 0.0591

AND2 0.0841 OR2 0.0656

XOR 0.1447 XNOR 0.1453

INV 0.0261

Table 2 Performance evaluation for RCAs

Bits 16 32 64 128 256 512 1024

3N Operation FA 1.09 2.13 4.2 8.35 16.65 33.24 66.41

UCA 0.8 1.48 2.84 5.57 11.02 21.93 43.74

5N Operation FA 1.07 2.11 4.18 8.33 16.62 33.21 66.39

UCA 0.83 1.51 2.87 5.60 11.05 21.96 43.77

17N Operation FA 1.03 2.06 4.14 8.29 16.58 33.17 66.35

UCA 0.82 1.50 2.86 5.59 11.04 21.94 43.76
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Similarly, both W07 and W17 are expressed as

W07 ¼ R11 þ R10W03 W17 ¼ Q11 þ Q10W13 ð37Þ

where

R10 ¼ a5a7; R11 ¼ a6a7 þ a4a5a7; Q00 ¼ a4a6; Q01

¼ a7 þ a5a6

By (35), both W07 and W17 in (37) can be re-written as

W07 ¼ R11 þ R10R01 þ R10R00W0−1
W17 ¼ Q11 þ Q10Q01 þ Q10Q00W1−1

ð38Þ

Figure 8a shows a 32-bits hybrid adder, where each CLA
unit processes 8-bit data. Each CLA unit, adopting the parallel
prefix adder structure [7, 8], is comprised of two 4-bit RQ
generator units (RQGUs, or RQGU-4), a 2-bit CLA (or

CLA-2), and two 4-bit Function U generation units (FUGUs,
or FUGU-4). The RQGU-4, as shown in Fig. 8b, realizes the
functions in (34) and it replaces both PG unit and Block CLA-
4 (BCLA-4) in the conventional CLA structure. The CLA-2,
as illustrated in Fig. 8c, implements the functions in (35) and
(38), and the FUGU-4 in Fig. 8d, is for the functions in (34)
and (15). Note that ci=(W0i,W1i) in Fig. 8a, The delays of
these units can be expressed as

ΔRQGU−4 ¼ ΔNAND3 þ ΔNAND2; ΔCLA−2 ¼ 2 ΔNAND3;
ΔFUGU−4 ¼ ΔNAND3 þΔNAND2 þΔINV þΔNOR2;ΔSUM ¼ ΔXOR;

The critical path of the 32-bit hybrid adder includes a
RQGU-4, four CLA-2 s, a FUGU-4, and a SUM, i.e.,

ΔHyA 3Nð Þ 32ð Þ ¼ ΔRQGU−4 þ 4ΔCLA−2 þΔFUGU−4 þΔSUM

¼ 10ΔNAND3 þ 2ΔNAND2 þΔINV þΔNOR2 þΔXOR

In general, for n=2t, t>3, the delay

ΔHyA 3Nð Þ nð Þ ¼ ΔRQGU−4 þ n=8ð ÞΔCLA−2 þΔFUGU−4 þΔSUM

¼ n=4þ 2ð ÞΔNAND3 þ 2ΔNAND2 þΔINV þΔNOR2 þΔXOR
ð39Þ

Similarly, the 4-bit CLA module of the hybrid adder in
Fig. 8 can be replaced by 8-bit one. The delay is

(b)(a)

(c)

Figure 6 Speed performance: a
FA-based RCA; b UCA-based
RCA;and c comparison.

Figure 7 Hybrid adder – RCA & CLA.
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ΔHyA 3Nð Þ nð Þ ¼ ΔRQGU−8 þ n=16ð ÞΔCLA−2 þΔFUGU−8

þΔSUM ð40Þ

where

ΔRQGU−8 ¼ ΔAND5 þΔOR3;
ΔFUGU−8 ¼ ΔAND5 þΔOR4 þΔINV þΔNOR2:

ð41Þ

The CLA module of the hybrid adder may include
multi-level structure similar to the conventional CLA.
For example, the CLA module of the 64-bit hybrid ad-
der in Fig. 9 is with 2-level CLA structure. Let L de-
note as the number of levels in the CLA module. Thus,
the delay of such hybrid adder is, r=m*2L, m=4 or 8,
L≥2, and n≥2r,

ΔHyA 3Nð Þ nð Þ ¼ ΔRQGU−m þ 2 L−1ð ÞΔBCLA−2 þ n=rð ÞΔCLA−2þ
ΔFUGU−m þΔSUM

ð42Þ

4.2 UCA-based Hybrid Adder for (2k+1)N Operation

Similar to the derivation process for 3 N operation in
(35)-(38), the following component delays can be derived
from Property 1 for 5 N operation, where

ΔRQGU−4 5Nð Þ ¼ ΔRQGU−4 3Nð Þ ¼ ΔNAND3 þΔNAND2;
ΔFUGU−4 5Nð Þ ¼ 2ΔNAND3 þ 2ΔNAND2 þΔINV;
ΔRQGU−8 5Nð Þ ¼ ΔRQGU−8 3Nð Þ ¼ ΔNAND3 þΔNAND2 þ 2ΔNOR2

ΔFUGU−8 5Nð Þ ¼ 2ΔNAND3 þ 2ΔNAND2 þ 2ΔNOR2 þΔINV;

ð43Þ

Similarly, one can also derive for 17 N operation as

ΔRQGU−4 17Nð Þ ¼ ΔRQGU−4 3Nð Þ ¼ ΔNAND3 þΔNAND2;
ΔFUGU−4 17Nð Þ ¼ 3ΔNAND3 þΔNAND2 þΔINV þΔNOR3;
ΔRQGU−8 17Nð Þ ¼ ΔRQGU−8 3Nð Þ ¼ ΔNAND3 þΔNAND2 þ 2ΔNOR2;
ΔFUGU−8 17Nð Þ ¼ 3ΔNAND3 þΔNAND2 þ 2ΔNOR2 þΔINV þΔNOR3:

ð44Þ

For 9N operation with k=3, the UCA3 cells are employed
and each cell contains 3 bits. Thus, the delays are

ci=(W0i,W1i) (a)

(d)(c)(b)
Figure 8 Proposed hybrid adder for 3N operation: a 32-bit hybrid adder; b RQGU-4; c CLA-2; and d FUGU-4 & SUM.

Figure 9 Sixty-four-bits hybrid
adder with 2-level CLA module.
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ΔRQGU−3 9Nð Þ ¼ 2ΔNAND2;
ΔRQGU−6 9Nð Þ ¼ ΔAND4 þΔOR3 ¼ ΔNAND2 þΔNOR2 þΔOR3

ΔFUGU−3 9Nð Þ ¼ 3ΔNAND2 þΔINV þΔNOR2 þ 2ΔNAND3;
ΔFUGU−6 9Nð Þ ¼ 2ΔNAND2 þ 2ΔNOR2 þΔINV þΔNAND3 þΔOR3:

ð45Þ

Similarly, for (2k+1)N operations, the k-bit cells, UCAk
cells, are employed. Thus, the hybrid adder may include the
k-bit CLA modules.

4.3 Performance Evaluation

This section roughly estimates the speed performances of the
FA-based RCAs, UCA-based RCA, and the hybrid adders
with various bit sizes for 3N, 5N, 9N, and 17N operations.

However, the performance evaluation process is readily ap-
plied for any bit sizes and (2k±1)N operations.

The speed performance is roughly evaluated based on the
gate delays of the standard cells listed in Table 1, where the
AND (NAND) and OR (NOR) gates are limited to their fan-
ins up to 3. Thus, the AND5 and OR4 gates in (41) are imple-
mented in two-level logic gates, i.e., AND5=(AND3)
•(AND2), and OR4=(OR2)+(OR2).

The delays of the RQGU-4 and RQGU-8 for 3N, 5N, and
17N operations are the same. By Table 1,

ΔRQGU−4 ¼ ΔNAND3 þΔNAND2 ¼ 0:0777ns
ΔRQGU−8 ¼ ΔAND5 þΔOR4

¼ ΔNAND3 þΔNAND2 þ 2ΔNOR2 ¼ 0:1629ns
ΔRQGU−3 ¼ 2ΔNAND2 ¼ 0:0648ns

ΔRQGU−6 ¼ ΔNAND þΔNOR2 þΔNOR3 þΔINV ¼ 0:1602ns

ð46Þ

Table 3 Performance
comparison (a) 4-bit modules

Bits 16 32 64 128 256 512 1024

3 N Operation L=1 0.55 0.73 1.09 1.82 3.27 6.17 11.94

L=2 0.68 0.86 1.22 1.95 3.40 6.30

L=3 0.81 0.99 1.35 2.08 3.53

L=4 0.94 1.12 1.48 2.21

L=5 1.07 1.25 1.61

5 N Operation L=1 0.95 0.77 1.13 1.85 3.30 6.20 12.00

L=2 0.71 0.90 1.26 1.98 3.43 6.33

L=3 0.84 1.03 1.39 2.11 3.56

L=4 0.97 1.16 1.52 2.24

L=5 1.10 1.28 1.65

17 N Operation L=1 0.66 0.84 1.20 1.93 3.38 6.27 12.07

L=2 0.79 0.97 1.33 2.06 3.50 6.40

L=3 0.92 1.10 1.46 2.18 3.63

L=4 1.05 1.23 1.59 2.31

L=5 1.18 1.36 1.72

Bits 32 64 128 256 512 1024

(b) 8-bit modules

3 N Operation Bits 32 64 128 256 512 1024

L=1 0.72 0.90 1.26 1.99 3.44 6.34

L=2 0.85 1.03 1.39 2.12 3.57

L=3 0.98 1.16 1.52 2.25

L=4 0.89 1.07 1.43

5 N Operation L=1 0.76 0.94 1.30 2.02 3.47 6.37

L=2 0.89 1.07 1.43 2.15 3.6

L=3 1.01 1.2 1.56 2.28

L=4 1.14 1.33 1.69

17 N Operation L=1 0.83 1.01 1.37 2.1 3.55 6.44

L=2 0.96 1.14 1.5 2.23 3.68

L=3 1.09 1.27 1.63 2.36

L=4 1.22 1.4 1.76
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Based on (39, 40, 41, 42, 43, 44, 45, and 46), the delays of
the hybrid adders are calculated and tabulated in Table 3.

Results show that the delays are indeed improved as the
number of levels, L, increases. For example, for 17 N operation
with 1024 bits, the delays was improved from 66.51 ns for the
FA-based RCA to 43.64 ns for the proposed UCA-based RCA,
as shown in Table 2, Further, the delay is reduced to 12.07 ns
and 6.44 ns for the proposed hybrid adders with 4-bits and 8-
bits modules, respectively, as illustrated in Table 3 and plotted
in Fig. 10a. The delays can be further decreased to 2.31 ns and
1.76 ns by using the proposed hybrid with 4-levels of 4-bits and
8-bits modules, respectively, as plotted in Fig. 10b.

4.4 Discussion

The proposed UCA design concept has the advantages of
better speed performance than the conventional FA design
approach. This sub-section compares the speed performance
of the UCA-CLA and conventional CLA (CV-CLA). The de-
lays of both BCLA-4 and CLA-4 [5–7] are

ΔCLA−4 ¼ ΔAND5 þΔOR5 ¼ ΔNAND3 þΔNAND2 þΔNOR3 þΔNOR2

ΔBCLA−4 ¼ ΔAND4 þΔOR4 ¼ 2 ΔNAND2 þΔNOR2ð Þ

For n-bit CV-CLAs, n=4t, with CLA-4 and BCLA-4 mod-
ules, the delay is

ΔCV−LA ¼ ΔPGU þ 2 t−1ð ÞΔBCLA−4 þΔCLA−4 þΔSUM ð47Þ

and the delay of an n-bit UCA-CLA is

ΔUCA−CLA ¼ ΔRQGU−4 þ 2 t−2ð ÞΔBCLA−4 þΔCLA−4

þΔFUGU−4 þΔSUM ð48Þ

Note that the delay (ΔRQGU-4+ΔFUGU-4) in UCA-CLA is
compared with (ΔPGU+2ΔBCLA-4) in CV-CLA. Table 4 com-
pares the speed performance of CV-CLA and UCA- CLA for
3 N, 5 N, and 17 N operations with various bit sizes.

The UCA-CLAs for 3N, 5N, and 17N operations respec-
tively achieve approximately 30%, 25%, and 15% less delays
than CV-CLA for 16-bit addition, and about 13 %, 11 %, and
7% for 1024 bit addition. Asmentioned, the delay of FUGU-2k

block increases with k considerably. Thus, the proposed UCA-
CLAs may gain the advantage of better speed performance for
lower values of k. The proposed simple and modular UCA-
RCA are perfectly applied for those constant multiplications
with smaller bit sizes, such as 3 N, 5 N, and 7 N operations
for arithmetic coding, Booth encoding, and the divider design
[9] as a cost-effective solution. For higher speed performance,
the proposed UCA-CLA can also be applied.

5 Conclusion

Constant multiplier performs a multiplication of a data-input
with a constant value. They are essential components in var-
ious types of arithmetic circuits, such as filters in digital signal
processor (DSP) units and they are prevalent in modern VLSI
designs. This study has presented efficient algorithm and fast
hardware implementation for (2k±1)N operation with addi-
tions. No multiplications were needed.

The salient features of the proposed UCA design concept
came from the use of the carry function of (12) instead of (5),
thus improving the propagation delay path and achieving
34 % in speed performance improvement. The design concept
is perfectly applied for the RCA design for faster speed. The
proposed UCA-HyA provides a cost-effective solution for
constant multiplication, and the proposed UCA-CLA further
improves the speed performance.

(a) 

(b) 

Figure 10 Propagation delays for 17N operation with 1024 bits: a
Various adders; and b Hybrid adders with 4-bits and 8-bits modules.

Table 4 Performance comparison (CLA Modules)

CLA-4 module Normalized ratio

Bits 16 64 256 1024 16 64 256 1024

CLA 0.77 1.07 1.37 1.67 1 1 1 1

3N 0.55 0.85 1.15 1.45 0.71 0.79 0.84 0.87

5N 0.58 0.88 1.18 1.48 0.76 0.83 0.86 0.89

17N 0.66 0.96 1.26 1.56 0.85 0.89 0.92 0.93
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In addition, the study presents the hardware implementa-
tion for (2k+1)N operation, how to apply the proposed UCA
design concept for any other form of constants with one addi-
tion also leads a very interesting topic for future research.
Finally, as mentioned in [2], the constant divider can be de-
veloped in a similar way.
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