J Sign Process Syst (2015) 80:121-136
DOI 10.1007/s11265-014-0953-5

Embedded Multi-Core Systems Dedicated to Dynamic

Dataflow Programs

Hervé Yviquel - Alexandre Sanchez -
Pekka Jaiskeldinen - Jarmo Takala - Mickaél Raulet -
Emmanuel Casseau

Received: 10 January 2014 / Revised: 25 July 2014 / Accepted: 8 September 2014 / Published online: 19 October 2014

© Springer Science+Business Media New York 2014

Abstract Multimedia applications and embedded plat-
forms are both becoming very complex in order to improve
user experience. Thus, multimedia developers need high-
level methods to automate time-consuming and error-prone
tasks. Dynamic dataflow modeling is attractive to describe
complex applications, such as video codecs, at a high
level of abstraction. This paper presents a dataflow-based
design approach to implement video codecs on embedded
multi-core platforms. First, we introduce a custom archi-
tecture model to design low-power multi-core chips based
on distributed memory and Transport-Triggered Architec-
ture processor cores. Then, we describe software synthesis

We would like to thank the organizations which have partially
funded this work such as the Center for International Mobility
(CIMO) and the Academy of Finland (funding decision 253087).
We would also give special thanks to the Orcc and TCE communi-
ties as a whole for actively participating in the development of the
tools which offers solid basements to this work.

H. Yviquel (b<) - A. Sanchez - M. Raulet
INSA of Rennes, IETR Rennes, France
e-mail: herve.yviquel @insa-rennes.fr

A. Sanchez
e-mail: alexandre.sanchez @insa-rennes.fr

M. Raulet
e-mail: mickael.raulet@insa-rennes.fr

P. Jaaskeldinen - J. Takala
Tampere University of Technology, Tampere, Finland

P. Jdaskeldinen
e-mail: pekka.jaaskelainen @tut.fi

J. Takala
e-mail: jarmo.takala@tut.fi

E. Casseau
University of Rennes 1, IRISA, Inria, Rennes, France
e-mail: emmanuel.casseau @irisa.fr

techniques to improve dynamic dataflow implementations.
This methodology has been implemented into open-source
tools and demonstrated on video decoders based on the
MPEG-4 Visual standard and the new High Efficiency
Video Coding standard. The simulations achieve real-time
decoding (40FPS) of high definition (720P) MPEG-4 Visual
video sequences on a custom multi-core platform clocked at
1Ghz, which is an improvement of more than 100 % over
previously proposed implementations.

Keywords Dataflow programming - Video coding -
HEVC - Embedded system

1 Introduction

Until recent years, the design of the next generation of
embedded systems was achieved by increasing chip fre-
quency. But, as for general-purpose computers, embedded
systems have hit the power wall of the semiconductor
technology, forcing chip manufacturers to look towards
multi-core architectures to improve the overall system per-
formance. As a result, embedded systems integrate more
and more programmable processors, but contrary to general-
purpose computers, most of embedded systems are tailored
to specific tasks in order to bridge the gap between hardware
efficiency and software flexibility.

In parallel, the increasing complexity of data-intensive
applications, such as video codecs, along with the emer-
gence of massively parallel architectures, has revived the
interest in dataflow programming. Indeed, dataflow pro-
gramming offers a flexible development approach which
is able to build complex and modular applications while
modeling parallelism and communication. The efficiency
of traditional language programs being the result of 50

@ Springer

mailto:herve.yviquel@insa-rennes.fr
mailto:alexandre.sanchez@insa-rennes.fr
mailto:mickael.raulet@insa-rennes.fr
mailto:pekka.jaaskelainen@tut.fi
mailto:jarmo.takala@tut.fi
mailto:emmanuel.casseau@irisa.fr

122

J Sign Process Syst (2015) 80:121-136

years of work on compilers to mainly exploit memory local-
ity, abandoning memory-oriented programming in favor of
dataflow programming requires the development of new
compilation techniques to fully benefit from the processor
architecture.

In this work, we study the modeling and the implemen-
tation of data-intensive embedded systems that benefit from
dataflow modeling so as to achieve performance constraints
imposed by the embedded market. For instance, video
decoders have to provide real-time frame-rates for high-
definition video sequences. This paper makes the following
contributions:

— We introduce an architecture model dedicated to
dynamic dataflow programs that allows design-space
exploration of custom embedded multi-core platforms.
This architecture model is based on distributed memory
organization and exposed-datapath core architecture so
as to improve the global efficiency of the platform
(power consumption and decoding frame-rate).

— We present a set of advanced software synthesis tech-
niques, based on preliminary work [34], that enhance
the performance of implementations of dynamic
dataflow programs using their specific properties and
the flexibility of software systems over hardware
systems

Our design approach has been implemented into open-
source tools and demonstrated on well-known video
decoders, including one based on the new High Efficiency
Video Coding (HEVC) standard. Using FPGA prototyping
and instruction-set simulation, we have evaluated the cur-
rent top-level performance bound of their implementations
on a set of multi-core platforms that target Integrated Circuit
implementation.

The paper is organized as follows. First, the specific
application model which supports our design approach is
described in Section 2. Then, we introduce in Section 3
the architecture model that has been defined specifically
for the application model. Next, we describe in Section 4
our software synthesis methodology to implement dynamic
dataflow programs on multi-core platforms based on our
architecture model. Section 5 presents experimental results
and deeply analyzes our implementations of video decoders.
Finally, we conclude in Section 7.

2 Application Model

Our methodology relies on a programming model based on
the dataflow principle [19, 20]. Indeed, dataflow program-
ming offers a flexible development approach which is able
to build modular applications while expressing parallelism
and communication explicitly. Thus, dataflow programming

@ Springer

is very attractive to implement data-intensive applications
on embedded multi-core platforms.

2.1 Dataflow Modeling

A Model of Computation (MoC) is an abstract specifica-
tion of how a computation can progress. A MoC is useful to
define the semantics of a programming model, i.e. the type
of components it can contain and the way they interact.

Existing dataflow MoCs can be split into two main
classes: The static MoCs [19] allow a predictable behavior
such as the scheduling can be done at compile time, in other
words statically-defined production/consumption rates. The
dynamic MoCs allow a data-dependent behavior [20]. Para-
doxically, most of the studies stay focused on static dataflow
programming [2, 26], even if the development process of
complex applications such as video codecs is largely sim-
plified by the expressiveness and the practicality offered
by dynamic dataflow programming. Indeed, modern video
decoders support advanced features that require a certain
expressiveness. For example, the frames of a video sequence
can be decomposed in pixel blocks of different sizes (like
the Coding-Tree Unit or the tiles of HEVC).

The need for a trade-off between expressiveness and
predictability has brought the definition of so-called “quasi-
static” dataflow models [3, 5, 10]. Quasi-static dataflow dif-
fers from dynamic dataflow in that there are techniques that
statically schedule as many operations as possible so that
only data-dependent operations are scheduled at runtime.
However, even if they seem promising, quasi-static models
are not yet mature enough. To our knowledge, quasi-static
dataflow-based implementations of complex applications,
such as video codecs, have not yet been demonstrated.

2.2 Dynamic Dataflow Programming
Dynamic dataflow programs rely upon a MoC called
Dataflow Process Network (DPN) [20], which is closely

related to Kahn Process Network (KPN) [16]. In this model,
an application is represented as a directed graph G =

-

N B
/
/

- A E >

.
N\ o /

N\

Actions

State

Figure1 A simple network wherein the actors contain their own state,
actions and firing rules.

J Sign Process Syst (2015) 80:121-136

123

(V, E), see Fig. 1, such that V is a set of vertices that rep-
resent computational units, called actors, and E is a set of
unidirectional edges that represent unbounded communica-
tion channels based on FIFO principle. A FIFO channel
e € E can be empty, denoted as L, or can carry a possibly
infinite sequence of data X = [x1, x2, ...] wherein x; € X
are atomic data called tokens.

Additionally to the KPN model, DPN introduces the
notion of firing. An actor firing is an indivisible quantum
of computation which corresponds to a mapping function
f € F, called action, of input tokens to output tokens
applied repeatedly and sequentially on one or more data
streams. This mapping is composed of three ordered and
indivisible steps: data reading, then computational proce-
dure, and finally data writing. These functions are guarded
by a set of firing rules R which specifies when the func-
tions can be fired, i.e. the number and the values of tokens
that have to be available on the input ports to fire the actor.
More formally, every actor a € V is associated with its
own set of firing function F,, and firing rules R, such that
F,=1f1, f2, ..., fuland R, = [R1,R2, ..., RN] within
each function f; € F, is associated to a given firing rule
Rie Ra.

A firing rule Ri defines a finite sequence of pat-
terns, one for each input m of the actor such as Ri =
[P;1, Pi2, ..., Pim] € S™. A pattern P; ; is an acceptable
sequence of tokens in R; on one input j from the input m
of an actor. It is satisfied if and only if P; ; E X ; where X ;
is the sequence of tokens available on the j*# FIFO chan-
nel. The pattern P; ; = L designates any empty list where
any available sequence on input j is acceptable. The pattern
P;, j = [*]is acceptable for any sequence containing at least
one token. The length of a pattern P; ; is denoted | P; ;.

An actor @ € V can fire when at least one of its fir-
ing rules Ri € R, is satisfied. As a result, the DPN model
introduces non-blocking read to the semantic of the FIFO
channel. So that, an action can be executed if and only if the
input data available allow its entire execution. When several
firing rules are satisfied at the same time, a single one is
chosen based on predefined priorities.

All along this paper, we consider only video decoders
even if our approach can be applied to any data-intensive
applications. The application complexity has to justify the
use of dynamic dataflow modeling over more restricted
dataflow modeling that could allow more efficient imple-
mentations.

2.3 Reconfigurable Video Coding

Few years ago, MPEG has introduced an innovative frame-
work, called Reconfigurable Video Coding (RVC) [21], that
can be considered as the first large-scale experimentation
on dynamic dataflow programming. RVC has been initially

introduced to overcome the lack of interoperability between
the various video codecs deployed in the market. The frame-
work allows the development of video coding tools, among
other applications, in a modular and reusable fashion thanks
to a dataflow programming language, and the support of a
complete development environment known as Orcc [33].

actor Abs() int I => uint O0:

1

2 pos: action I:[u] => 0: [u] end
3 mneg: action I:[u] => 0: [-ul

4 guard u < O end

5 end

6

7 priority

8 neg > pos;

9 end

10 end

Listing 1: Description of the absolute value actor
in RVC-CAL

The RVC framework includes a subset of CAL pro-
gramming language [11], known as RVC-CAL, to describe
the behavior of the components of the application, i.e. the
actors, following the semantic of the dynamic dataflow
models. This language is a mixture between imperative and
functional programming languages that introduces useful
abstractions for dataflow programming. Comparing to the
original CAL language, RVC-CAL provides a precise type-
system as well as some practical features. The execution of
an actor is composed of a sequence of ordered steps, applied
repeatedly:

1. First, the actor consumes, or not, a given amount of data
from its input ports.

2. Then, it may modify its internal state.

3. Finally, it produces, or not, a given amount of data to its
output ports.

As a consequence, describing an actor execution, such the
computation of the absolute value presented in Listing 1,
involves the description of its interface such as the input
ports (I) and the output ports (O), its internal state that is
modeled by a set of state variables, as well as the procedu-
ral description of the computational steps and the internal
scheduling that ordered these steps (guards, priorities, etc).

2.4 RVC-Based Video Decoders

The RVC working group has developed, in parallel with
the standardization process, some descriptions of MPEG
video decoders using the RVC framework, such as the
HEVC description which is presented in Fig. 2. In fact,
since the standardization of H.261, all existing ITU/MPEG
video codecs have globally kept the same structure [23].
The difference between the standards comes mainly from

@ Springer

124

J Sign Process Syst (2015) 80:121-136

Figure 2 RVC description of
an HEVC decoder.

Generate

FILTER

Interinfo

ARSER

the evolutions of the algorithmic part that offer an increas-
ing compression rate. As a result, the application graphs of
all RVC-based video codecs are quite similar to the structure
of our HEVC decoder [21]. The description is decomposed
in 4 distinct parts:

1. The first part, called parser, extracts values needed by
the next processing steps from the coded bitstream.
Entropy decoding techniques are used to extract syn-
tax elements whose values are then transmitted to actors
that are concerned.

2. A second part, known as residual, decodes the error
resulting of the image prediction using inverse trans-
forms, such as the well-know IDCT. The transforms
allow spatial redundancy reduction within the encoded
residual image.

3. A next part, called prediction, performs the intra and
inter prediction. Intra prediction is done with collocated
blocks in the same picture whereas inter prediction is
performed as a motion compensation with other pic-
tures. The inter prediction also implies the use of a
buffer containing decoding pictures to be able to per-
form the temporal prediction.

4. And, a last part, called filters, reduces the impact of
the prediction on the image rendering. For example, the
DeBlocking Filter (DBF) is used to smooth the sharp
edges between the macroblocks to improve the quality
of the decoded image.

RVC-based video decoders are described with an aver-
age granularity (at block level), contrary to the traditional
coarse-grain dataflow (at frame level). On the one hand,
this fine-grain streaming approach induces a high potential
in pipeline parallelism and the use of small communica-
tion channels, usually sized between 512 and 8192. On
the other hand, a finest granularity increases the cost of
synchronization between the actors.

To increase the parallelism exposed within the decoder,
the parser can separate the processing of each image com-
ponents, luma and chroma, in three parallel paths (Y, U and
V). The image components are then merged back at the end
of the processing. Table 1 summarizes the properties of the
experimented descriptions of video decoders: Respectively,

@ Springer

the name of the standard, the profile of the decoder, the
parallelization of the decoding for each component, the
number of actors and FIFO channels.

3 Architecture Model

The development of a design flow targeting embedded
multi-core platforms requires the definition of an archi-
tecture model that matches the behavior of the targeted
platform, while keeping a high-level of abstraction and
enough configuration options to allow design-space explo-
ration. Alternatively, architecture models can be presented
as customizable multi-core processor templates that setup
the main architectural aspects.

Considering the complexity of multi-core architectures,
together with the efficiency and the reliability required by
embedded systems, we propose to specialize our architec-
ture model for the execution of dynamic dataflow programs
in order to take advantage of the knowledge inherent to our
application domain.

3.1 Processor Architecture

The processor cores underlying our abstract platform is
based on a VLIW-style architecture known as Transport-
Trigger Architecture (TTA) [9]. TTA processors resemble
VLIW processors in the sense that they fetch and execute
multiple operations statically each cycle. Thus, TTA proces-
sors are able to take advantage of the low-level parallelism
while dataflow models expose explicitly high-level paral-
lelism. A major difference with VLIW processor, however,

Table 1 Statistics about the RVC-CAL description of several MPEG
video decoders.

Codec Profile Version Actors FIFOs

MPEG-4 Visual SP Serial 15 38
Parallel 39 104

HEVC Main Serial 12 83
Parallel 25 185

J Sign Process Syst (2015) 80:121-136

is that TTA processors have only one instruction: move,
which simply transfers data from a processor internal place
to another one. As a result, the data transports between
the register files and the function units are exposed simi-
larly to the data stream between the components of dataflow
models.

Moreover, TTA processors are ideal for targeting embed-
ded systems. Corporaal states that direct programming of
the data transports reduces the register file traffic when
compared to VLIW [9], but however makes the com-
piler design quite challenging, as it is the compiler that
schedules the data transports and makes sure conflicts
are avoided. Since the compiler makes these decisions at
design time, the run-time system is simplified and hence
there are savings on the processor gate count and energy
consumption.

As an example, Fig. 3 presents a simple TTA-based pro-
cessor composed of three buses, one ALU, one multiplier,
one register file (RF), one load/store unit (LSU) to manage
RAM accesses, and one control unit connected to the ROM
containing the instructions. Like most modern processors,
TTA processors are based on the Harvard architecture that
physically separates storage and pathway for instructions
and data.

Moreover, the TTA-based Co-design Environment (TCE)
makes TTA processors extremely configurable [13]. The
TCE is a toolset for designing custom TTA processors
which includes a flexible compiler. The designer can
make the processor tiny and energy-efficient or, if needed,
increase the instruction-level parallelism of the processor.

3.2 Predefined Configurations of Processors

Table 2 presents 4 predefined configurations of TTA-based
processors used during our experiments (respectively Stan-
dard, Custom, Fast and Huge). The configurations char-
acterize internal aspects of the processors such as the
number of fonctional units (FUs), ALUs, multipliers and
LSU, the number of integer and boolean RFs as well as

Figure 3 A simple processor
based on Transport-Trigger

125
Table 2 Comparison of 4 predefined processor configurations.
Processor Standard Custom Fast Huge
ALUs 1 2 3 12
Multipliers 1 1 1 8
LSUs 1+ 1+ 1+ 2+
Int RFs (32bits) 2x12 3x12 3x14 8x32
Bool RFs (1bit) 1x2 1x2 1x6 1x6
Buses 3 6 18 32
Connectivity Full Full Custom Full

the number of registers they contain, and the number of
buses that interconnect all together FUs and RFs. The
connectivity of the interconnection network is also char-
acterized as Full or Custom. While a Full connectivity
does not limit the data movement between FUs and RFs, a
Custom connectivity avoids the decrease of the clock fre-
quency when the complexity of the interconnection network
increases.

The first processor configuration, called Standard, is
almost equivalent to a RISC processor: inside the TTA
processor the interconnection network is composed of 3
buses that can provide two operands to the FU at each
clock cycle and move the result when it is available.
The 3 last configurations, Custom, Fast and Huge, define
larger processors composed of several FUs and buses able
to take advantage of the instruction-level parallelism of
the application (like a VLIW processor). Concerning the
Huge configuration, its characteristics are deliberately over-
sized to acquire the maximal performance, so this con-
figuration is only used in simulation purposes. The Fast
configuration, introduced in [13], provides clustered TTA-
based processors that can reach high-frequency with large
potential of parallel computing. We assume that a chip
composed of Fast TTA processors can reach 1GHz using
40nm CMOS technology such as demonstrated in previous
work [18].

m——m

Architecture.

Load Redister Glogal

Store ALU Mul Igile Control

Unit Unit

- Port

— Socket
-~ Connection
.~ BuUs

@ Springer

126

J Sign Process Syst (2015) 80:121-136

3.3 Dataflow-Specific Memory Architecture

Now, we introduce an hybrid memory architecture spe-
cially designed for dataflow programs. To limit the
traditional memory bottleneck, our architecture model con-
tains both shared and private memories. As shown in Fig. 4,
the processors (P, ..., Pr) have their own private memo-
ries (M, ..., My) used for executing their actors, but the
processors are also connected, through an interconnection
network, to a set of shared memories (S1, ..., S,) devoted
to inter-processors communications.

Modeling multi-core platforms dedicated to the execu-
tion of DPN-based programs [20] allows us to make the fol-
lowing assumptions: Actors can only communicate through
communication channels. Thus, shared memories do not
need to store data apart from the content of FIFO-based
communication channels, implemented as circular buffers
that are detailed later in Section 4. However, the FIFO are
mapped to local memory when the two actors are mapped
to the same processor. Moreover, the DPN model allows
stateful actors. Thus, local memories may have to store the
current states of the actors that are assigned to the processor
to which they are related. Additionally, local memories have
to store the heap and the call stack used during the execution
of the actions just as traditional programs.

In comparison with the global shared memory architec-
ture used in most general-purpose processors, this hybrid
memory architecture aims to take advantage of the explicit
communication of dataflow model to separate the local
information from the communications. As a result, data con-
gestion is globally reduced so we assume no conflict at all.
Additionally, this architecture reduces the power consump-
tion of the chip since several smaller memory components

Figure 4 An hybrid memory

usually consumes less power than a monolithic centralized
memory component [22].

Moreover, storing communication channels in shared
memory increases the flexibility of the platform. Know-
ing that a single memory component can contain multiple
channels, the compiler has to assign not only actors to pro-
cessors but also FIFO channels to memory components.
Actually, FIFO channels can be freely mapped to memory
components since they are not dependent from each other.
But, some architectural constraints may have to be consid-
ered, such as the topology of the interconnection network or
the size of the memory components.

4 Software Synthesis of Dynamic Dataflow Programs

The main challenge that dynamic dataflow programs have to
face is the demonstration of efficient implementations that
can achieve performance constraints imposed by modern
applications. For instance, video decoders have to provide
real-time frame-rates for high-definition video sequences.

For that reason, this section presents a set of advanced
software synthesis techniques based on preliminary work
[34] that enhance the performance of the implementation of
dynamic dataflow programs using their specific properties
and the flexibility of software systems.

4.1 Specific FIFO Channels

In theory, the DPN model defines FIFO channels with
unbounded capacity [20]. In practice, the FIFO channels
are bounded to limit memory usage and avoid the overhead
of dynamic memory allocation. Actually, bounded FIFO

architecture dedicated to

DPN-based programs. Shared

memories

contain
FIFO channels
(circular buffers)

e “ ﬂ - “
contain
M actors states,
1 memory heaps,
and call stacks

Local
memories

@ Springer

Interconnection network

schedule
and execute
actors

J Sign Process Syst (2015) 80:121-136

127

channels have been studied extensively, but the DPN model
has specificities that make their implementation quite chal-
lenging. An action is fired if and only if its firing rule is
valid. Thus, the implementation of FIFO channels for DPN-
based programs requires the ability to check their state, i.e.
the number of tokens available, and to peek tokens from
input channels, i.e. checking values of incoming tokens
without consuming them, to evaluate action fireability and
thus break conventional FIFO principle.

Now, our dataflow applications also support broadcasting
communication following the /-producer / N-consumers
scheme. Thus, actors can produce data that are trans-
mitted simultaneously to multiple target actors through a
single port. In fact, the implementation of the broadcast-
ing is another critical point of communication in dynamic
dataflow programs, especially for our video decoding appli-
cations that have an extensive use of broadcasting. As a
result, the implementation of our communication channels
has to be able to efficiently broadcast the data over several
actors.

4.2 Branch-Free Communications

In software, FIFO channels are traditionally implemented
by a circular buffer allocated in a shared memory. Read
and write are then achieved by accessing the buffer accord-
ing to read and write indexes that are updated afterwards.
Moreover, the comparison of the indexes is sufficient to
know the state of the FIFO channel. Finally, a peek is
a read without the update of the read index, but any
token can be peeked thanks to the full accessibility of
the shared memory. Using circular buffer to implement
FIFO channels avoids side shuffles of data after each
reading, but implies an advanced management of mem-
ory indexes that can ultimately lead to poor performance.
For instance, the update of the indexes may require check-
ing if the end of the buffer is reached to go back to the
beginning.

1 transp: action

2 IN:[src] repeat 16 // Input pattern
3 ==>

4 O0UT:[dst] repeat 16 // Output pattern
5 var

6 int (size=16) dst[16] =

7 [stc[4 * column + row]

8 for int row in O .. 3,

9 for int column in O .. 3

10]

11 end

Listing 2: Transposition of a 4x4 block in CAL

Avoiding checks on the position of the indexes is how-
ever possible using absolute indexes with the cost of

additional modulo operations. Thus, performing read and
write increases the indexes infinitely until the overflow of
the variables. Since computing the modulo is costly on most
processor architectures, it is translated to a simple right shift
by forcing the size of the buffer to a power of two. Paradox-
ically, such a constraint on the size of the communication
channels does not have a large impact on the memory usage,
especially compared to the large needs of video decoders.
Indeed, the initial sizes of our FIFO channels being reason-
able, the round-up to the next power of two is relatively
small.

Broadcasting tokens can be implemented in two ways
according to the locations of the targets:

1. Asking the source actor to broadcast itself the tokens
into multiple communication channels: While the
implementation is natural, the data are copied for each
target.

2. Using circular buffers with multiple read indexes, the
smallest one being the global index: While this imple-
mentation reduces the data movements to maximum,
the managing of the FIFO channels is complicated and
all the FIFO channels need to be mapped on the same
address space.

4.3 Copy-Free Communications

One of the high-level features of CAL is its ability to
describe multi-rate actions [11], i.e. actions reading and
writing pools of data at each firing, such as the very simple
example presented in Listing 2, a transposition of 4x4 pixel
block, that reads and writes 16 tokens by firing. In fact,
multi-rate actions are common for video coding since the
pictures are usually processed block after block. Following
this semantic, the body of a multi-rate action, such as the
one described in Listing 2, is translated into a function
composed of 3 steps as follows [24, 29]:

1. Reading: Incoming tokens are read in order from the
input FIFO channels and stored into the local variables
referenced by the input pattern. E.g., in Listing 2, 16
tokens are read from the input port IN and stored in the
local array src.

2. Processing: The action is processed, as defined in its
CAL description, using the local variables referenced
into the input and output patterns as interfaces. As a
consequence, the processing of data is not necessarily
described in order.

3. Writing: Outgoing tokens are written in order from
local variables referenced by the output pattern into
the output FIFO channels. E.g., in Listing 2, 16 tokens
are written successively from the local array dst to the
output port OUT.

@ Springer

128

J Sign Process Syst (2015) 80:121-136

While this implementation stays respectful of the FIFO
principle, with the exception of the peeking, it also involves
two additional copies between the circular buffers and the
local variables (knowing that only one copy is mandatory).

void transp() {
int indSrc, indDst;

1

2

3 for(int row = 0; row<=3; row++) {
4

5

for(int col = 0; col<=3; col++) {
indSrc = (IN->rdInd + (4*col+row)) %

IN->SIZE;

6 indDst = (0UT->wrInd + (row*4+col)) %
OUT->SIZE;

7 0UT->buff[indDst] = IN->buff[indSrc];

8 }

9 }

10 IN->rdInd += 16;
11 0UT->wrInd += 16;
12 }

Listing 3: Copy-free and branch-free action

Since our FIFO channels are implemented in shared
memory without access restriction, we can remove all the
additional copies to local buffers by accessing directly to the
content of the FIFO channels within the processing of the
action. So, accesses to input and output variables, such as
src and dst, are replaced by direct accesses to FIFO chan-
nels, such as IN and OUT respectively. Unfortunately, race
conditions, i.e. synchronization issues, can occur when the
action processing does not ensure that the FIFO accesses are
performed in order (such as the accesses to src). But, the
DPN model defines an action firing as a quantum of execu-
tion [20], in other words an action firing is an atomic step
that cannot be interrupted. Thus, the FIFO indexes can be
updated just once at the end of the action without changing
the semantic of the application, such as presented in Listing
3. Then, the implementation stays respectful of the FIFO
principle of the DPN model. Indeed, other processors can-
not access the FIFO rooms involved by this processing since
the FIFO indexes are not updated until the action is entirely
processed.

To summarize, the three first steps of action firing (Read-
ing, processing, and writing) can be merged together, reduc-
ing the memory footprint and the number of instructions
to implement the action, as long as the FIFO indexes are
updated after the action processing, and thus let the other
actors using newly produced data and newly released rooms.

4.4 Aligned Communications

Our branch-free implementation prevents potential opti-
mizations due to absolute indexes. In fact, the compiler
cannot know if the access are aligned in the memory or if
the end of the circular buffer is reached during the execu-
tion of the current action. Thus, we generate two versions

@ Springer

of all actions, standard (Listing 3) and aligned (Listing 4),
that are executed according to the current position in cir-
cular buffers. Only two versions are generated to limit the
scheduling overhead, even for more complex actions that
may access to multiple inputs and outputs. Moreover, the
accesses can be considered always aligned when the pro-
duction/consumption rates of the associated actions match
with the size of the FIFOs.

The aligned version of the action is called whenever the
tokens are linearly accessible in all the buffer. So, the rel-
ative indexes can be considered as invariant in order to be
computed only once at the beginning of the action (simi-
lar to loop-invariant code motion). Additionally, the aligned
accesses to the circular buffer are vectorizable since the
width of the FIFO channels within our applications are often
inferior to the bus width (8 or 16 bits are common val-
ues in video processing). As a result this optimization is
very powerful for processors that exploits instruction-level
parallelism and word-level parallelism.

1 void transp_aligned () {

2 int IN_rdInd = IN->rdInd % IN->SIZE;
3 dint OUT_wrInd = 0OUT->wrInd % OUT->SIZE;
4 int ind_Src, ind_Dst;

5 for(int row = 0; row<=3; row++) {
6 for(int col = 0; col<=3; col++) {

7 indSrc = IN_rdInd + (4*col+row);

8 indDst = OUT_wrInd + (row*4+col);

9 0UT->buff [indDst] = IN->buff [indSrc];
10 }

11 3

12 IN->rdInd += 16;

13 0UT->wrInd += 16;

14 ¥

Listing 4: Aligned action

4.5 Multi-level Dynamic Scheduling

As defined by Lee and Parks [20], the execution of a DPN-
based actor is modeled by the repeated evaluation of the
firing rules that are, in case of a success, followed by the fir-
ing of the associated action. This process is usually defined
as the action scheduling. The action scheduler can be imple-
mented by a simple function that evaluates the firing rules
in order [29] such as presented in Listing 5. In theory, the
scheduler evaluates only two conditions to determine the
fireability of an action: the amount of tokens required in the
input channel (hasTokens), and the potential condition on
the values of tokens and/or state variables (isSchedulable).
In practice, the scheduler has also to ensure that enough
rooms are available in the output channels to allow the firing
of the action without blocking (hasRooms).

Additionally, the scheduler checks if a sufficient number
of tokens are aligned in all the FIFO channels to be able to

J Sign Process Syst (2015) 80:121-136

129

execute the optimized version of the action (areAligned). In
some specific cases, we can directly insure that the FIFO
accesses will be always aligned. As an example, the align-
ment is guaranteed when the consumption/production rates
are constant and divisor of the size of the FIFO channel.

Apart from this internal scheduling, the execution of a
DPN program in a concurrent environment requires actor
scheduling to order and time the actor execution in case
there is more actors than processors. In previous works [31,
32], we have introduced run-time actor mapping/scheduling
strategies dedicated to DPN-based actors. Our schedul-
ing strategies execute the current actor until it cannot fire
anymore to exploit spatial and temporal locality. Then,
the scheduler switches to the next actor which is chosen
according to the strategy.

To conclude, the execution of DPN-based programs
involves a complex scheduling that has to be performed at
runtime. While they are two distinct levels of scheduling,
actor scheduling and action scheduling, they are intimately
related since the success of the action scheduling within an
actor is directly dependent on the production/consumption
performed by its predecessors/successors. These schedulers
have to be carefully designed to not reduce dramatically the
performance since they are executed at run-time.

1 void Transpose4x4_0_scheduler () {

2 while (1) {

3 if (hasTokens(fifo_Src, 16) &&
isSchedulable_transp()) {

4 if (hasRooms (fifo_Dst, 16)) {
5 goto finished;
6 }
7 // Fire the action
8 if (areAligned(fifo_Src, 16) &&
areAligned (fifo_Dst, 16))
9 transp_aligned () ;
10 } else {
11 transp () ;
12 }
13 } else { // Check the next action...
14 goto finished;
15 T
16
17 finished:
18 return; // Return to actor scheduler
19 }
Listing 5: Action scheduler
5 Results

This section studies the implementation of dynamic
dataflow programs on TTA-based multi-core platforms. In
general, communication and synchronization are the major
sources of inefficiencies on every multi-core system. Thus,

we deeply analyze the internal behavior of the applications
(communication, decomposition, etc) before presenting the
global performance.

5.1 Experimental Setup

The software implementations are generated by use of the
TTA back-end of Orcc [30], then the generated code is
compiled and simulated thanks to the TTA-based Co-design
Environment (TCE) [13]. The evaluation is made thanks to
the instruction-set simulator including in the TCE.

The experiments have been conducted for some of the
RVC descriptions of video decoders that have been intro-
duced in Section 2.4, and using different video sequences.
During all our experiments, all the FIFO channels in our
applications are bounded to 8192 elements in order not to
impact on the results. In fact, this specific size of FIFOs
allows the buffering of two of the biggest pixel blocks
defined in the HEVC standard, i.e. Coding Tree Blocks
containing 64x64 samples.

5.2 Analysis of Internal Communications

A major interest of dataflow programs is the explicit com-
munication between the components of the application
that makes them easier to analyze. In DPN-based video
decoders, communication rates are usually irregular and
very sensitive to multiple factors (size of the FIFO channels,
actor scheduling, etc). But, communication rates become
globally stable when the observed time-slice is sufficient.

Figure 5 presents the communication rate observed at
each output port of actors within the MPEG-4 Visual and
HEVC decoders during the decoding of few frames of the
tested video sequences. Figure 5 additionally presents the
degree of broadcasting of the actors ports, i.e. the number of
actors to which the ports are connected, in order to highlight
the duplication of data.

We can clearly identify two categories of communica-
tions from the results presented in Figure 5:

— The video stream is characterized by a large amount
of data that usually goes through the decoder by a sin-
gle path (for instance parser_blkexp.QFS in Fig. 5a).
Besides, broadcasting the video stream involves a large
amount of data duplication but is only performed one
or two times (For instance motion_add.Vid in Fig. 5a),
when the decoded frames are transmitted to both the
display and the image buffer used by the inter pre-
diction. This stream being clearly the largest of the
application, this specific broadcast can be the cause of
a data congestion.

— The control communications are characterized by a
small amount of data disseminated through multiple

@ Springer

10
9

MO WS OMmN A

J Sign Process Syst (2015) 80:121-136

W Rate M Broadcast

(a) MPEG-4 Visual

45000000
40000000
35000000
30000000
25000000
20000000
15000000
10000000

130

si030e 196.e)} JO JaquinN

NSO S MmN o

|

0

70000000
60000000
50000000
40000000
30000000
20000000
10000000

SU®X0} 0 JaquinN

Now, let us take a look at the application decomposition

which is fundamental for targeting multi-core platforms.
Indeed, we need to balance the computation load on the
available processors to fully benefit from the parallelism.

decoders, i.e the computational workload of the actors. The

bution of the computational workload within the video
results for two video decoders, MPEG-4 Visual and HEVC,
are presented in Fig. 6. The workloads are evaluated for each
actor independently in a standalone simulation. In other

source of bottlenecks, causing either data congestions or
Workload distribution We start by analyzing the distri-

management overheads.
5.3 Analysis of the Application Decomposition

(b) HEVC

channels within the video decoder. A typical example is
the transmission of the type of the current block, parse-
header.BTYPE in Fig. 5a. A major part of these commu-
nications is produced by the parser which extracts the
syntax elements from the input stream to parametrize
the actors. As opposed to the video stream, broadcast-
ing the control information implies a smaller amount of
data but more consumers. For example, control tokens
so even a small amount of data can introduce a lot
of checks to control the state of the communication
channels.

generated by the parser may be transmitted to most
To sum up, the video stream is processed block after

of the next actors, like Algo_Parser.CUInfo in Fig. 5b,
block through the actors which behave according to con-

Figure 5 Communication analysis (rates and broadcasting) within RVC-based video decoders.
pringer

trol data. Moreover, the broadcasting may be an additional

A's

J Sign Process Syst (2015) 80:121-136

131

Workload
30%

25%
20%

15%

10%

5% I

. | | .
é SR &

LSS R S S &SP S
CSEEEESE SIS S S I
IR 5/ S D@ T o S
@oéff & ,g’e (oé/,g&qu';’ Q(?-c?gf’f_@‘ \é-\?»&;@/é&/

. /
@oQé\\oQ/Q Qr& Q@Q}/@Q./Q;? &®§® 2 &Q‘F &é\'
&

(a) MPEG-4 Visual

Workload
30%

25%
20%
15%

10%

- m]
S kS

& ¢ o &> & S o
F LI EIT L F v
SF ST LTI I
S & ¢ & &SP @ o &
S’ F L 9" &
% YR Q‘\o OS @ &L &
&S &7 NN &
N ¥ &L 0/ N
FELE S N
Q Q QQJ QQ/
(b) HEVC

Figure 6 Repartition of the computational workload within our implementations of RVC-based video decoders.

words, each actor is simulated on its own processor with all
incoming data available, in order to hide the impact of the
stream dependences within the network.

The results clearly show that our description of MPEG-
4 Visual is more equitably balanced than our description
of HEVC. This difference can be partially explained by
the difference between the applications granularity, for
instance the inverse transforms, designed with 1 actor (the
IDCT2D) in MPEG-4 Visual and with 12 actors (the ITs)
in HEVC.

Moreover, it should be noted that the computational
workload could be balanced more equitably by increas-
ing the coarse-grain parallelism in the decoder. In video
decoding, increasing the parallelism is usually achieved by
separating the decoding of the image components or by
splitting the image. On the one hand, the separation of the

Speed-up
5 Custom M Fast
X

5%

4x

(a) MPEG-4 Visual

W Huge

processing of the components is bounded by the luma
processing which is four times the complexity of each
chroma processing. On the other hand, the decomposition
of the image itself is restrained by the spatial and temporal
dependences resulting of the prediction. Actually, parallel
processing is one of the main achievement of the emerg-
ing HEVC standard [27] that introduces several advanced
decomposition (wavefront, tiles, etc).

Internal parallelism Thanks to the flexibility of TTA pro-
cessors in our design flow, we can also study the potential
parallelism within the actors. In fact, the predefined proces-
sor configurations, presented in Section 3.2, have all their
own parallel processing capability, which let us study the
ILP potential within actors. Therefore, Fig. 7 presents the
execution speedup of actors of the two video decoders on

Speed-up
6x

& 2) > &S (¢] N
FSLX{IET L€ F oy §
SFTFPIIELF S 75
& ¥ & & @@ > &
SFSLSLELLE S
v,@/é/.gg\&°/§\°@\§ &
LS SE &
g S b
MRS, §
(b) HEVC

Figure 7 Exploring the parallelism potential of actors composing video decoders thanks to their execution speedup on TTA-based processors
using Custom, Fast and Huge configurations from a sequential execution with Standard configuration.

@ Springer

132

J Sign Process Syst (2015) 80:121-136

Custom, Fast and Huge processors according to their exe-
cution time on a Standard processor. As said previously, the
Standard processor is equivalent to a RISC processor that
can only perform one operation at a time because of its 3
buses. The actors are again executed in a standalone fashion
to hide stream dependence.

The results clearly show two types of actors. On the one
hand, actors that benefit well from the parallel capabilities
of TTA-based processors by presenting impressive speedups
that reach factors up to 3, such as the one processing the
inverse transform. We define them as the compute-intensive
actors. On the other hand, actors that do not take advantage
from the parallel capabilities of TTA-based processors by
presenting speedups that hardly reach factors of 1.5, such as
the ones involved in entropy decoding. We define them as
control-intensive actors. However, some actors of the HEVC
decoder that are known to be compute-intensive have not
demonstrated large speedups, such as the predictions and
the loop filters. This can be explained by the development
state of the application.

From all these results, we can identify the traditional bot-
tleneck actors of our RVC-based video decoders: The parser
that is controlled by a complex scheduling (e.g. the parser of
our HEVC decoder contains about 200 actions), the buffer
which is usually strangled by the number of hardly pre-
dictable memory accesses, and finally the predictions as
well as the loop filters that all involve complex process-
ing requiring careful implementations. In conclusion, video
decoders are now complex applications containing hetero-
geneous algorithms which make their implementation so
challenging.

For that reason, the actor mapping system included in our
design flow considers both the communication rates and the
computational decomposition for the design decisions, as
explained in Section 5.4.

5.4 Analysis of Performance

Finally, we analyze the global performance of our RVC-
based video decoders. Let us point out that a func-
tional implementation of a video decoder running on an
embedded multi-core platform is very difficult to obtain.
Indeed, debugging dataflow programs within embedded
multi-core platforms is a hard and time-consuming task
that requires an expertize from hardware and software
aspects. Moreover, the simulation speed is rapidly becom-
ing one of the main limitations in front of the application
complexity.

The evaluated platforms are composed of Fast TTA pro-
cessors interconnected by shared memories following the
architecture defined in Section 3. We assume that such plat-
forms can be clocked at 1GHz. Indeed, previous work has

@ Springer

Table 3 Maximal frame-rates achieved by our embedded implemen-
tation using the Fast TTA configuration clocked at 1GHz when each
actor is mapped to its own processor.

Decoder Sequence Size FPS
MPEG-4 Visual Foreman QCIF 1750
— 39 processors OldTownCross 720P 40
HEVC BasketBallPass 240P 40

— 12 processors KristenAndSarah 720P 5

These frame-rates have been evaluated during an execution of the
entire multi-core platform using the instruction-set simulator.

shown that the processor cores can already reach 1GHz
using 40nm technology [18]. Thus, the results are obtained
from a simulated execution, but let us point out that suc-
cessful implementations of the MPEG-4 Visual decoder
has already been synthesized on two different FPGA
boards clocked at 100MHz: Altera Stratix III and Xilinx
Virtex 6.

Maximal performance Table 3 summarizes the maximal
decoding frame-rates achieved with our implementation on
both the MPEG-4 Visual decoder and the HEVC decoder. In
order to get the maximal performance, each actor is mapped
to its own processor. Thus, there is no need for an actor
scheduling strategy: The global scheduling is achieved by
the action scheduler that checks repetitively the validity of
the firing rules.

Besides the functional demonstration, the results also
show a large difference of performance between the two
decoders, i.e. the frame-rate observed on MPEG-4 Visual
is about 8 times better on sequences with identical defi-
nition. This can be explained by the performance tuning
that we have already made on the description of MPEG-4
Visual, along with the algorithmic complexity of the new
standard and the development status of our description of
HEVC. Considering the current performance, our imple-
mentation of HEVC cannot achieve real-time decoding of
high definition sequences.

However, these results open promising perspectives
about a more optimized implementation, that would include
highly optimized assembly kernels (like most commonly-
used video codecs [15]). Knowing the high parallel pro-
cessing capabilities of TTA processors, such assembly-
level optimization can speed-up the decoding suffisently to
achieve real-time decoding. Moreover, processing resources
can be shared between the actors to reduce the number of
processor without impacting too much the performance, as
shown by the following paragraphs.

Influence of the core number Now, let us take a look at
the influence of the number of processors available on the

J Sign Process Syst (2015) 80:121-136

133

platform. In fact, some of the actors have to share the same
processor in realistic implementations. Indeed, the number
of processors available must be limited so as to reduce the
power consumption of the platform.

As opposed to the previous experimentation, the actors
are mapped by an automated system [31] which takes into
account the irregularity of our applications thanks to a pro-
filing step, as presented in Fig. 8. Our mapping system
starts by analyzing the communication rates and the com-
putational loads, as we did respectively in Section 5.2 and
Section 5.3. Then, the system tries to balance the com-
putation load of the actors to parallelize the work while
reducing the inter-core communications. For this purpose,
we use multi-level graph partitioning schemes implemented
in Metis tool [17]. In other words, two actors communicat-
ing a lot with each other have more chance to be executed on
the same processor. Finally, the actors are scheduled locally
on each processor core by a simple runtime strategy known
as round-robin [32].

Figure 9 presents the influence of the number of pro-
cessors on the frame-rate of the MPEG-4 Visual decoder.
In this case, we consider the decoding of a video sequence
with a smaller definition, i.e. foreman at QCIF resolution, to
reduce the simulation time. The decoding is again simulated
using the Fast configuration for the TTA processors.

First of all, the results clearly show that the accelera-
tion rate is not linear according to the number of cores.
In fact, the form of the curve clearly shows the limit of
the coarse-grain parallelism (task-level) of the application.
Actually, the maximum decoding frame-rate of our MPEG-
4 Visual decoder is reached with 16 processors. Increasing
further the number of processors does not provide higher
decoding frame-rate. These results can be explained by
the complexity of the data dependencies in video decoding
(spatial and temporal). Higher parallelism can be achieved
thanks to parallel decoding technics (framebase, tiles,
wavefront, etc).

Figure 8 Actor mapping
system based on computation
and communication analysis

9x

L 4

h 4

8x h
X
6X
5x
4x

Speed-up

3x
2X
1x

0x
0 5 10 15 20 25 30 35 40

Number of processors

Figure 9 Influence of the number of processors on the performance
of MPEG-4 Visual decoder.

Thus, the maximum speedup in comparison with the
single processor execution is 8.1x, and achieved with 16
processors. Therefore, the maximum speedup achieved with
our embedded implementation is much bigger than the
maximum speedup achieved with the implementation on
general-purpose processors (which seems to be around 3x
[31]). This can be mainly explained by the fact that the
communications between the cores within our embedded
implementation do not induce any overhead compared to
more conventional communication and memory schemes
implemented in general-purpose processors. To conclude,
these results demonstrate the interest of the dedicated mem-
ory organization that we have designed specifically for our
custom embedded multi-core platforms (see Section 3.3).

6 Related Work

Implementing video codecs using dynamic dataflow mod-
eling has already been heavily studied within the RVC

Application

Interconnection network

(a) Applying

mmal mapping (e) Applying

efficient mapping

(d) Processing
actor mapping

—P (12

&z -

(b, f) Executing application

Platform

(c) Profiling 23
application

@ Springer

134

J Sign Process Syst (2015) 80:121-136

community. However, most of the studies do not target
multi-core platforms based on distributed memory orga-
nization, but platforms such as FPGA/ASIC [1, 4, 25]
and general-purpose processors [14, 29]. In previous work
[30], we have already implemented an MPEG-4 Visual
decoder on a platform composed of TTA processors inter-
connected by hardware FIFO channels. This approach tar-
gets application-specific platforms which makes it much
less flexible than our new approach. Outside of the archi-
tecture side, our software synthesis which is also applicable
on general-purpose processors has significantly improved
the performance: We observed an improvement of more
than 100 % of the decoding frame-rates over previous
implementations (at equal frequency) [34].

Other studies from the literature try to improve the pre-
dictability of dynamic dataflow programs so as to allow
compile-time optimizations. Some of them determine the
possible executions to prune all unreachable execution paths
in order to remove all unnecessary tests [7, 12]. However,
they are limited by their need of input data to perform
their analysis, which makes them unsafe in general case.
Some other approaches try to reduce the number of tests
performed during the scheduling by detecting restricted
dataflow models [28], or by using actor machines that
also considers the evaluation results of previous firing rules
[8]. However, these techniques have not yet demonstrated
performance improvements of tested applications.

Regarding the HEVC standard, to our knowledge all
existing software decoders are based on multi-threaded
implementations, such as the reference software (HM)
[6] and OpenHEVC [15]. Multi-threaded implementations
assume that the architecture of the executing platform is
based on a global shared memory organization. On the one
hand, these implementations have been demonstrated very
efficient mainly due to the minimization of data movements
during the processing. On the other hand, their paralleliza-
tion is limited since embedded platforms based on shared
memory cannot scale beyond a certain number of processor
cores because of power consumption.

To sum up, our work tries to bridge the gap between
the efficiency of low-level implementations and the flexi-
bility/reliability of high-level implementations in order to
facilitate the design of complex applications, such as video
codecs, on parallel embedded systems.

7 Conclusion

This paper presents a methodology based on dataflow
modeling to implement video codecs on embedded multi-
core platforms. We have introduced an architecture model
to design low-power multi-core platforms using a dis-
tributed memory organization that directly benefit from

@ Springer

the dataflow modeling. We have also presented advanced
software synthesis techniques to enhance the implementa-
tion of dynamic dataflow programs on embedded multi-
core platforms using branch-free, copy-free and aligned
implementations to tackle communication and computa-
tion issues. Our methodology has been validated both on
MPEG-4 Visual and HEVC decoders. The results show an
improvement of more than 100 % of the frame-rate over
previously proposed dataflow implementations, and achieve
real-time performance on HD video sequences using the
MPEG-4 Visual decoder while keeping a high-level of
abstraction.

References

1. Abid, M., Jerbi, K., Raulet, M., Déforges, O., Abid, M. (2013).
System Level Synthesis Of Dataflow Programs: HEVC Decoder
Case Study. In Electronic System Level Synthesis Conference
(ESLsyn), 2013.

2. Bamakhrama, M.A., Zhai, J.T., Nikolov, H., Stefanov, T. (2012).
Amethodology for automated design of hard-real-time embedded
streaming systems. In 2012 Proceedings of Design, Automa-
tion and Test in Europe, Conference and Exhibition (DATE),
(pp. 941946): IEEE.

3. Bebelis, V., Fradet, P., Girault, A., Lavigueur, B. (2013). BPDF: A
Statically Analyzable DataFlow Model with Integer and Boolean
Parameters. In Embedded Software (EMSOFT), 2013 Proceedings
of the International Conference on.

4. Bezati, E., Casale Brunet, S., Mattavelli, M., Janneck, J.W. (2013).
Synthesis and Optimization of High-Level Stream Programs. In
Electronic System Level Synthesis Conference (ESLsyn), 2013.

5. Bhattacharya, B., & Bhattacharyya, S.S. (2001). Parameterized
Dataflow Modeling for DSP Systems. IEEE Transactions on
Signal Processing, 49(10), 2408-2421.

6. Bossen, F., Bross, B., Siihring, K., Flynn, D. (2013). HEVC
Complexity and Implementation Analysis. IEEE Transactions on
Circuits and Systems for Video Technology, 22(12), 1685-1696.

7. Boutellier, J., Raulet, M., Silvén, O. (2013). Automatic Hierarchi-
cal Discovery of Quasi-Static Schedules of RVC- CAL Dataflow
Programs. Journal of Signal Processing Systems, 71(1), 35—40.

8. Cedersjo, G., & Janneck, J.W. (2012). Toward Efficient Execution
of Dataflow Actors. In Signals, Systems and Computers (ASILO-
MAR), 2012 Conference Record of the Forty Sixth Asilomar
Conference on, (pp. 1465-1469).

9. Corporaal, H. (1997). Microprocessor Architectures: from VLIW
to TTA. Chichester, UK: John Wiley & Sons.

10. Desnos, K., Pelcat, M., Bhattacharyya, S.S., Aridhi, S. (2013).
PiMM: Parameterized and Interfaced Dataflow Meta-Model for
MPSoCs Runtime Reconfiguration. In Embedded Computer Sys-
tems (SAMOS), 2013 International Conference on.

11. Eker, J., & Janneck, J.W. (2003). In CAL language report: Spec-
ification of the CAL actor language. Technical report. Berkeley:
University of California.

12. Ersfolk, J., Roquier, G., Lilius, J., Marco, M. (2012). Scheduling
of dynamic dataflow programs based on state space analysis. In
1EEE International Conference on Acoustics, Speech, and Signal
Processing, 2012. ICASSP-12, (pp. 1661-1664).

13. Esko, O., Jidiskeldinen, P., Huerta, P., de La Lama, C.S., Takala,
J., Martinez, J.I. (2010). Customized Exposed Datapath Soft-
Core Design Flow with Compiler Support. In Proceedings of the
2010 International Conference on Field Programmable Logic and
Applications, (pp. 217-222).

J Sign Process Syst (2015) 80:121-136

135

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Gorin, J., Wipliez, M., Préteux, F., Raulet, M. (2011). LLVM-
based and scalable MPEG-RVC decoder. Journal of Real Time
Image Processing, 6(1), 59-70.

Wassim Hamidouche, Mickaél Raulet, Olivier Déforges. (2014).
Parallel SHVC decoder: Implementation and analysis. In Multi-
media and Expo, 2014 IEEE International Conference on.

Kahn, G. (1974). The semantics of a simple language for parallel
programming. Information processing, 74, 471-475.

Karypis, G., & Kumar, V. (1998). A Fast and High Quality Multi-
level Scheme for Partitioning Irregular Graphs. SIAM Journal on
Scientific Computing, 20(1), 359-392.

Kultala, H., Esko, O., Jidskeldinen, P., Guzma, V., Takala, J.,
Xianjun, J., Zetterman, T., Berg, H. (2013). Turbo decoding on
tailored OpenCL processor. In 2013 9th International Wireless
Communications and Mobile Computing Conference (IWCMC),
(pp- 1095-1100): IEEE.

Lee, E.A., & Messerschmitt, D.G. (1987). Synchronous data flow.
Proceedings of the IEEE, 75(9), 1235-1245.

Lee, E.A., & Parks, T. (1995). Dataflow process networks. Pro-
ceedings of the IEEE, 83(5), 773-801.

Mattavelli, M., Raulet, M., Janneck, J.W. (2013). MPEG recon-
figurable video coding. In Bhattacharyya, S.S., Deprettere, E.F.,
Leupers, R., Takala, J. (Eds.) Handbook of Signal Processing
Systems, (pp. 281-314). New York: Springer.

Mische, J., Metzlaft, S., Ungerer, T. (2014). Distributed Memory
on ChipBringing Together Low Power and Real-Time. Technical
report: University of Augsburg.

Richardson, L.LE.G. (2003). H.264 and MPEG-4 Video Compres-
sion: Video Coding for Next-generation Multimedia. New York:
John Wiley & Sons Inc.

Roquier, G., Wipliez, M., Raulet, M., Janneck, J., Miller, 1.D.,
Parlour, D.B. (2008). Automatic software synthesis of dataflow
program: An MPEG-4 simple profile decoder case study. In Sig-
nal Processing Systems, 2008. SiPS 2008. IEEE Workshop on,
(pp. 281-286).

Siret, N., Wipliez, M., Nezan, J.-F., Palumbo, F. (2012). Gen-
eration of Efficient High-Level Hardware Code from Dataflow
Programs. In Proceedings of Design, Automation and Test in
Europe (DATE).

Stuijk, S., Basten, T., Akesson, B., Geilen, M., Moreira, O.,
Reineke, J. (2011). Designing next-generation real-time streaming
systems. In Proceedings of the seventh IEEE/ACM/IFIP inter-
national conference on Hardware/software codesign and system
synthesis - CODES+ISSS ’11, (pp. 3-4).

Sullivan, G.J., Ohm, J.-R., Han, W.-J., Wiegand, T. (2012).
Overview of the High Efficiency Video Coding (HEVC) Standard.
IEEE Transactions on Circuits and Systems for Video Technology,
22(12), 1649-1668.

Matthieu, W., & Raulet, M. (2012). Classification of Dataflow
Actors with Satisfiability and Abstract Interpretation. Interna-
tional Journal of Embedded and Real-Time Communication Sys-
tems, 3(March), 49-69.

Wipliez, M., Roquier, G., Nezan, J.-F. (2009). Software Code
Generation for the RVC-CAL Language. Journal of Signal Pro-
cessing Systems, 63(2), 203-213.

Yviquel, H., Boutellier, J., Raulet, M., Emmanuel, C. (2013).
Automated design of networks of Transport-Triggered Archi-
tecture processors using Dynamic Dataflow Programs. Signal
Processing Image Communication, 28(10), 1295-1302.

Yviquel, H., Casseau, E., Raulet, M., Jadskeldinen, P., Takala,
J. (2013). Towards run-time actor mapping of dynamic dataflow
programs onto multi-core platforms. In Image and Signal Process-
ing and Analysis (ISPA), 2013 8th International Symposium on,
(pp. 732-737).

Yviquel, H., Casseau, E., Wipliez, M., Raulet, M. (2011). Effi-
cient multicore scheduling of dataflow process networks. In Signal

33.

34.

Processing Systems (SiPS), 2011 IEEE Workshop on, (pp. 198—
203).

Yviquel, H., Lorence, A., Jerbi, K., Sanchez, A., Cocherel, G.,
Mickaél, R. (2013). Proceedings of the 21st ACM international
conference on Multimedia, 863-866.

Yviquel, H., Sanchez, A., Jaiskeldinen, P., Takala, J., Raulet,
M., Casseau, E. (2014). Efficient Software Synthesis of Dynamic
Dataflow Programs. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on.

Hervé Yviquel is currently
a postdoctoral researcher in
the Institute of Electronics
and Telecommunications of
Rennes (IETR), where he
works on the implementation
of video codecs on multi-
core platforms using dataflow
modeling. He is also one
of the main developers of
the Orcc project, a develop-
ment environment dedicated
to dynamic dataflow program-
ming. Before in 2013, he
received a Ph.D in computer
science from the University of

Rennes 1. His research interests include the modeling and the imple-

mentation of data-intensive applications.

Alexandre Sanchez is cur-
rently a research engineer
in the Institute of Electron-
ics and Telecommunications
of Rennes (IETR). He is
one of the developers of
the Orcc project, a develop-
ment environment dedicated
to dynamic dataflow program-
ming. Before he has been
software developer in various
companies in France for more
than ten years.

@ Springer

136

J Sign Process Syst (2015) 80:121-136

Pekka Jaiskeldainen (Dr.
Tech.) has worked with
exposed datapath processor
architecture customization
and programming since 2002.
He has led the development
work of the TTA-based Code-
sign Environment (TCE), a
toolset for rapid customiza-
tion of VLIW-style parallel
processors based on the
Transport-Triggered Architec-
ture. He received his master’s
degree in 2005, and doctor’s
degree in 2012 from Tampere
University of Technology.
Both of the thesis involved topics in parallel processor design and
TTAs. His current research interests include programmable paral-
lel platforms and compiler techniques for enhancing performance
portability of parallel programs.

Jarmo Takala received his
M.Sc. (hons) degree in Electri-
cal Engineering and Dr.Tech.
degree in Information Tech-
nology from Tampere Univer-
sity of Technology, Tampere,
Finland (TUT) in 1987 and
1999, respectively. From 1992
to 1995, he was a Research
Scientist at VTT-Automation,
Tampere, Finland. Between
1995 and 1996, he was a
Senior Research Engineer at
Nokia Research Center, Tam-
pere, Finland. From 1996 to
1999, he was a Researcher at
TUT. Since 2000, he has been
Professor in Computer Engi-
neering at TUT and currently Dean of the Faculty of Computing and
Electrical Engineering of TUT. Dr. Takala is Co-Editor-in-Chief for
Springer Journal on Signal Processing Systems. During 2007-2011 he
was Associate Editor and Area Editor for IEEE Transactions on Sig-
nal Processing and in 2012-2013 he was the Chair of IEEE Signal
Processing Society’s Design and Implementation of Signal Processing
Systems Technical Committee. His research interests include circuit
techniques, parallel architectures, and design methodologies for digital
signal processing systems.

@ Springer

Mickaél Raulet received in
2006 a Ph.D. degree from
INSA in electronic and sig-
nal processing in collaboration
with Mitsubishi Electric ITE
(Rennes France). He is cur-
rently in the research Institute
of Electronics and Telecom-
munications of Rennes (IETR)
where he is a research engi-
neer in rapid prototyping of
standard video and he is
a project leader of several
French and european projects.
He is also a member of a new
research institute IRT B-COM
(http://b-com.org) His particular interests include dataflow program-
ming, signal processing systems and reconfigurable video coding.
Since 2007, he is particularly involved in the ISO/IEC MPEG stan-
dardization activities as a Reconfigurable Video Coding Expert. He
is the author of 3 book chapters and more than 80 international con-
ferences and journal papers. Dr Mickal Raulet serves as a member of
the technical commitee of the Design and Implementation of Signal
Processing Systems (DISPS) of the IEEE Signal Processing Society.

Emmanuel Casseau received
the M.S. degree in Electri-
cal Engineering in 1990 and
the Ph.D degree in Electri-
cal and Computer Engineer-
ing from the Universite de
Bretagne Ouest, France, in
1994. From 1994 to 1996
he was a research engineer
in the French National Tele-
com School, ENST Bretagne,
France. From 1996 to 2006
he was an Associate Professor
in the Electronic Department
at the Universite de Bretagne
Sud, France. He is currently
a Professor in IRISA/INRIA
(French National Institute for Research in Computer Science and Con-
trol), Universite de Rennesl, France. His research interests include
system design, high-level synthesis, SoCs design methodologies and
reconfigurable architectures for multimedia applications.

http://b-com.org

	Embedded Multi-Core Systems Dedicated to Dynamic Dataflow Programs
	Abstract
	Introduction
	Application Model
	Dataflow Modeling
	Dynamic Dataflow Programming
	Reconfigurable Video Coding
	RVC-Based Video Decoders

	Architecture Model
	Processor Architecture
	Predefined Configurations of Processors
	Dataflow-Specific Memory Architecture

	Software Synthesis of Dynamic Dataflow Programs
	Specific FIFO Channels
	Branch-Free Communications
	Copy-Free Communications
	Aligned Communications
	Multi-level Dynamic Scheduling

	Results
	Experimental Setup
	Analysis of Internal Communications
	Analysis of the Application Decomposition
	Workload distribution
	Internal parallelism
	

	Analysis of Performance
	Maximal performance
	Influence of the core number

	Related Work
	Conclusion
	References

