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Abstract Cognitive radio networks present challenges at
many levels of design, including configuration, control, and
cross-layer optimization. To meet requirements of band-
width, flexibility and reconfigurability, systematic methods
to model and analyze cognitive radio designs on signal
processing platforms are desired. To help address these
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challenges, we present in this paper a novel dataflow
modeling technique, called parameterized set of modes
(PSM). PSMs allow efficient representation, manipulation
and application of related groups of processing configura-
tions for functional design components in signal processing
systems. PSMs lead to more concise formulations of actor
behavior, and a unified modeling methodology for apply-
ing a variety of techniques for efficient implementation. We
develop the formal foundations of PSM-based modeling,
and demonstrate its utility through two case studies involv-
ing the mapping of reconfigurable wireless communication
functionality into efficient implementations.

Keywords Cognitive radio · Dataflow graphs · Embedded
signal processing · Heterogeneous multiprocessors ·
Model-based design

1 Introduction

Cognitive Radio is an emerging technology that enables
a wireless transceiver to cognitively manage its wireless
spectrum for improved agility and efficiency. Flexibil-
ity and reconfigurability of the implementation at var-
ious layers, including RF, baseband, and MAC layers,
with cross-layer modeling and control, will be impor-
tant to realize the efficiency potential of spectrum shar-
ing. Realizing the potential of cognitive radio will also
require transceivers to dynamically reconfigure commu-
nication parameters based on multidimensional crite-
ria, including channel conditions, link performance, and
user requirements. Meanwhile, increasing bandwidths and
data rates pose new challenges to the baseband (BB)
processing chain, as well as to radio frequency (RF)
processing.
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The above challenges motivate important new research
directions in both software- and hardware-based design of
wireless communication systems. On the software side,
software defined radio (SDR) now utilizes various kinds
of high-performance computing devices, ranging from
multi-core programmable digital signal processors (PDSPs),
streaming SIMD extensions (SSE), to general purpose
graphics processing units (GPGPUs). On the hardware side,
programmable baseband computation and related design
chains have significantly developed to enable more efficient
control of computational resources and hardware. How-
ever, practical and systematic approaches to reconfiguration
based on programmable paradigms are still lacking. For
example, software-based adaptive configuration of radio
frequency chains is still in its infancy, but is a key ingre-
dient of the frequency agile radios needed for cognitive
devices and flexible RF spectrum use. The trend of increas-
ing diversity and flexibility in both the functionality and
the computational platforms of wireless systems results
in complex design spaces that must be considered during
design and implementation. The complexity of these design
spaces and their novel constraints strongly motivate the
development of new design methodologies.

Dataflow models offer a promising foundation for such
design methodologies in part because they provide scal-
able and retargetable representations of signal process-
ing applications [3]. Designers can migrate a common
dataflow model of an application across different types of
computing platforms, while changes are localized to the
implementations of individual actors (dataflow-based func-
tional components). The scalability and retargetability of
dataflow models reduces the designer’s effort in debugging,
validating, and fine-tuning a complex signal processing
application that must satisfy stringent, multi-dimensional
constraints.

To express dynamics in complex signal processing appli-
cations, a number of dynamic dataflow models have been
proposed, including parameterized synchronous dataflow
(PSDF) [2], Boolean dataflow (BDF) [7], and core func-
tional dataflow (CFDF) [15]. PSDF provides semantics
to manipulate application parameters in dataflow mod-
els at run-time. BDF introduces special control actors to
allow data-dependent invocation of actors. CFDF applies
the concept of actor “modes”, where different modes can
have differing dataflow behavior, and mode transitions can
be data-dependent. CFDF is tailored to natural design of
actors with dynamic functionality, and facilitates prototyp-
ing of dataflow applications, as well as identification of
more specialized dataflow behaviors [16], such as BDF,
cyclo-static dataflow (CSDF) [5] or synchronous dataflow
(SDF) [13].

When using CFDF, a designer specifies the behav-
ior of the different modes of each CFDF actor, and the

transitions among these modes. However, as the number
of modes grows and the mode transitions become more
complex, CFDF formulations can become unwieldy in
terms of actor specification, analysis and implementation.
In this paper, we present a novel modeling method, called
parameterized set of modes (PSM), which is a high-level
abstraction that efficiently represents parameterized func-
tionality within groups of related modes for CFDF actors.
PSMs enable novel ways for representing, manipulating and
applying related groups of actor modes that lead to more
concise formulations of actor behavior, and a unified mod-
eling methodology for applying a variety of techniques for
efficient implementation. We develop the formal founda-
tions of PSM-based modeling, and demonstrate its utility
through two case studies involving the mapping of reconfig-
urable wireless communication functionality into efficient
implementations.

2 Background and Related Work

2.1 Background

Dataflow modeling has proven to be valuable in allowing
designers of signal processing systems to describe applica-
tions in an intuitive and structured manner [3]. As system
complexity increases, coarse-grained, dynamic dataflow
models have gained increasing significance for their flex-
ibility and their power in exposing high level application
structure that is relevant for deriving optimized implemen-
tations.

Core functional dataflow (CFDF) is a deterministic sub-
class of enable-invoke dataflow (EIDF) [15] in which
dynamic functionality in an actor is specified as a set
of actor modes. In each mode, the actor possesses deter-
ministic dataflow behavior, meaning that the produc-
tion/consumption rates on all actor output/input ports are
known, constant values. Upon each invocation (actor fir-
ing), the actor executes in its current mode, and in addi-
tion to consuming input tokens and producing output
tokens, the actor selects one next mode from its set of
modes. This next mode determines the mode in which
the next actor invocation executes (unless the actor mode
is reset or otherwise overridden by the controlling sched-
uler). The next mode determined during an actor invo-
cation can be fixed (known at compile time) or data
dependent.

As the level of dynamic behavior in each actor grows,
the size of the actor’s mode set may increase significantly.
For an actor with a large number of parameters and corre-
sponding variations in functionality, a large set of modes
can be difficult to specify, analyze, and map into efficient
implementations. Such parameterized modes can arise when
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applying CFDF to model cognitive radio applications, for
example, due to the handling of different communication
modes, sample rates, or filter configurations. In this paper,
we address the problem of efficient integration of param-
eterization into the mode-based structure of CFDF actor
models.

2.2 Related Work

A technique called mode grouping for CFDF graphs has
been developed in [14]. It is demonstrated that mode
grouping can improve scheduling results by aiding the dis-
covery of statically schedulable subgraphs. In [18], CFDF
is applied in simulation of dynamic communication sys-
tems. CFDF modeling is also applied as the semantic basis
for the lightweight dataflow design environment, which is
introduced and applied to design and implementation of
wireless communication systems in [19]. These works apply
the CFDF model in various useful ways, but are unable
to streamline their associated analysis or implementation
when manipulating groups of modes that are related through
parameterization. The mode-based parameterization tech-
niques introduced in this paper are developed to bridge this
gap.

Various research efforts have been directed towards inte-
grating dynamic behavior into dataflow models. In [12], a
design framework called SysteMoc is developed for apply-
ing dataflow structures, similar to those used in CFDF,
involving guarded invocations and state transitions specified
by finite state machines (FSMs). The work also includes
design space exploration and code synthesis for FPGA plat-
forms. In [21], a dataflow based analysis method is proposed
for SDR applications. This method adopts the concept of
“SDF scenarios” to incorporate some degree of dynamism
for better estimation of system resource requirements and
throughput. Moreover, methods for quasi-static scheduling
of statically-schedulable sub-graphs within larger dynamic
dataflow graphs are explored in [10].

In the context of the related work described above, the
main contributions of this paper are described as follows.
We enhance the CFDF model of computation by intro-
ducing the concept of parameterized set of modes (PSM),
which incorporates dynamic parameterization into actor
modes, thereby increasing the effectiveness with which
designers can design and implement CFDF-based, dynamic
dataflow models for signal processing systems. PSM-based
modeling of actors provides a common framework for
integrated specification, analysis and implementation that
deeply integrates mode- and parameter-based actor char-
acterizations. Although we develop the PSM model in the
context of CFDF in this paper, we envision that the ideas
can be adapted to related dataflow modeling and program-
ming techniques, such as, for example, SysteMoc [12] and

CAL [9]. Exploring and applying such adaptations is a
useful direction for future work.

3 Parameterized Set of Modes

In this section, we define a new modeling concept, called
parameterized set of modes (PSM), which is motivated
in Section 2 as a method for incorporating dynamically
parameterized modes efficiently into the CFDF modeling
framework.

3.1 Notation

To develop the PSM concept precisely, we first introduce
some notation and review the definition of the CFDF model
of computation. For a given dataflow graph actor A, we
denote the set of input ports of A by (A). We also denote
the set of nonnegative integers by N, and the set of Boolean
values by B. We denote the values in B as true and false.

When using PSMs, we allow CFDF actors to have arbi-
trary sets of parameters. Following notation similar to that
of parameterized dataflow graphs [2], we denote the set of
parameters of a given actor A as (A), and for each parame-
ter in p ∈ (A), we denote the set of permissible values of p
as (p). At any given point during dataflow graph execution,
an actor parameter p has associated with it a unique param-
eter value v ∈ (p), which is referred to as the configuration
of p at that point in time. A configuration for A can then
be specified as a set of configurations for all of the parame-
ters in (A). Some combinations of possible parameter values
may be considered invalid because they do not make sense
together. The set of all valid configurations for A is denoted
as (A). At a given point during execution, the specific con-
figuration for A that is determined by its current parameter
values is referred to as the active configuration of A. Sim-
ilarly, the specific mode that a CFDF actor is in during
a given firing is referred to as the active mode for the
actor.

If S1 and S2 are sets, then by S1 ⊂ S2, we mean
that S1 is a subset (not necessarily a proper subset) of S2.
Thus, S1 can be empty, equal to S2, or a proper subset
of S2.

3.2 Review of CFDF Semantics

As introduced in [15], each CFDF actor A is characterized
by a nonempty set MA of modes in which it can execute, and
for any given mode m ∈ MA, the actor A consumes a fixed
number of tokens per firing on each input port, and produces
a fixed number of tokens per firing on each output port.
These production and consumption rates may vary across
different modes, but must be constant for any given mode.
Each CFDF actor A is also characterized by its enabling
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function εA, which determines whether or not, based on
a given set of token populations on its input FIFOs, A is
enabled. If A has at least one input port, then this enabling
function can be viewed as a mapping

εA : (TA × MA) → B, (1)

where TA = Nin(A) denotes the set of all possible buffer
populations for input ports of A (assuming some underly-
ing ordering of these ports) [15]. If A has no input ports,
then its enabling function reduces simply to the Boolean
constant true. The CFDF formulation of enabling functions
can easily be generalized to take into account finite-capacity
output buffers (i.e., by requiring sufficient free space on
output buffers before allowing an actor to be fireable). For
brevity and clarity, we suppress these details of bounded
buffer CFDF execution in this paper, and we simply assume
that FIFOs have unbounded token capacity, unless otherwise
stated.

3.3 Motivation for Parameterized Sets of Modes

The CFDF formulation can become unwieldy when work-
ing with parameterized actors that have large parameter sets,
especially if one or more actor parameters can affect the
production and consumption rates of an actor. For example,
consider a parameterized downsampler actor that provides
an N : 1 downsampling of its input signal. Such an actor
requires N distinct modes in its CFDF specification even
though the operation of all N alternative modes have closely
related (parameterized) functionality. Using the PSM con-
cept introduced in this section, we can group all of these
related modes together into a single mode set σ , where the
individual mode in σ that is active during any given actor
firing is determined uniquely by the actor parameter set (in
this case, by the parameter N).

As a slightly more elaborate example, consider an actor
S that can function either as a downsampler or an upsam-
pler depending on its configuration. Such an actor could
be useful, for example, as part of a programmable, mul-
tistage subsystem for sample rate conversion. This actor
can be parameterized with two parameters u and N, where
u is Boolean-valued and indicates whether or not S func-
tions as an upsampler (if u = f alse, then the actor
functions as a downsampler), and N provides the upsam-
pling or downsampling factor. Using the PSM concept, this
actor can be specified precisely using two mode sets —
one for the upsampling-related modes, and the other for the
downsampling-related modes. In any given mode set, the
production and consumption rates are determined uniquely
by the actor parameters. For example, in the mode set asso-
ciated with upsampling (u = true), N = 3 yields a
consumption rate of 1 and production rate of 3.

Intuitively, a PSM-enhanced CFDF specification, or
PSM-CFDF specification, allows an actor’s modes to be
grouped into “clusters” or sets that have related function-
ality, and are therefore efficient to work with as distinct
units — e.g., in terms of design tasks such as specification,
analysis, optimization, profiling, and integration. In general,
the actor groups may overlap, but collectively, they should
“cover” the entire set of modes of the associated CFDF
actor. Furthermore, the actor groups in a PSM-based specifi-
cation should be related uniquely to the actor modes through
the parameters of the given actor.

3.4 Formal Definition of PSM-CFDF

Given a PSM-CFDF actor A with mode set MA, a PSM
ρ for A is a 3-tuple ρ = (S, C, f ), where S ⊂ MA,
C ⊂ domain(A), and f : C → S. The set C, denoted as
psa domain(ρ), can be viewed as the set of possible actor
configurations when the actor is firing in mode set S. The set
S, denoted psa modeset (ρ), is the set of modes in actor A
that is associated with ρ — i.e., whenever A fires in PSM ρ,
it fires one of the modes within psa modeset (ρ). Finally,
the mapping f, denoted Fρ , specifies the unique mode within
psa modeset (ρ) that is active whenever A executes in
mode set S and a given actor configuration is active.

Given a PSM-CFDF actor A with mode set MA, and a set
R of PSMs for A, we say that R covers A if every mode in
MA is contained in the mode set of at least one element of
R — that is, if

MA =
⋃

ρ∈R

psa modeset (ρ). (2)

A PSM-CFDF actor A is a CFDF actor with an asso-
ciated set R of PSMs that covers A, and a family of
mappings {psa nextr,c : I (Fr(c)) → R | r ∈ R and c ∈
DOMAIN(A)}. Here, for a given mode m ∈ MA, I (m)

denotes the set of all possible combinations of inputs — i.e.,
all possible n-tuples of token vectors, where n = in, and the
size of (number of elements in) each token vector is equal to
the consumption rate of the corresponding port in mode m.

In other words, for each pair (r, c), there is a mapping
psa nextr,c, called the next PSM function of PSM r under
actor configuration c, that determines uniquely a specific
mode m′ for any given input data set for that mode; this
mode m′ can be interpreted as the next PSM for the actor —
i.e., the PSM that should be active for the next firing of A.

For a PSDF-CFDF actor A, we denote the associated
set of PSMs at PSMset (A), and the associated family of
mappings as mappings(A).

The next PSM function is related to the invoking func-
tion of A, as defined by CFDF semantics. In particular, for
a given actor firing, the next mode, as determined by the
invoking function, should agree with (be an element of) the
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next PSM, as determined by psa next (r, p). For details on
the CFDF invoking function, we refer the reader to [15].

The concept of PSM is a level of abstraction that helps
the designer to better understand and expose connections
between the actor’s parameters and modes. PSM analysis
can be combined with various processes in a design frame-
work, such as scheduling and processor selection, to name
a few. By grouping into a single PSM the modes of an actor
that share some common property, a designer can manipu-
late the associated modes and apply aspects of the property
in an integrated and systematic way.

3.5 PSM Transition Graph

For a PSM-CFDF actor, the next PSM function defines the
range of modes in which the actor executes in its next invo-
cation. The structure of transitions among PSMs therefore
can provide valuable information about the actor’s dynamic
behavior. These transitions can be expressed formally by a
construction that we call the PSM transition graph.

The PSM transition graph for a PSM-CFDF actor A is
a directed graph Gpsm = (Vpsm, Epsm), where Vpsm is
the set of vertices and Epsm is the set of edges. The set
of vertices is in one to one correspondence with the PSMs
of A; the PSM transition graph vertex associated with PSM
r is denoted as vpsm(r). Two PSM transition graph ver-
tices vpsm(x) and vpsm(y) are connected by a directed edge
e = (vpsm(x), vpsm(y)) if there exist an input vector ν and a
configuration c such that y = psa nextx,c(ν). Such an edge
e is annotated with a label, label(e) = c. Note that mul-
tiple edges can have the same label if different next PSMs
are “reachable” from the same current PSM and same con-
figuration under different input vectors. Compared to finite
state machine (FSM) representation of state transitions, the
PSM transition graph contains higher level information on
the structure of PSMs. Such higher level structure may be
difficult to extract or intuitively understand from conven-
tional FSM-style representations (i.e., where each mode
corresponds to a separate FSM state), especially when the
number of modes is large or their connections are irregular.

Figure 1(b) shows an example of a PSM transition graph.
Further details about the actor in this example are discussed
in Section 5.4.

Figure 1 An example of a PSM-CFDF actor: OFDM demapper
example. (a) Actor interface. (b) PSM transition graph.

3.6 Implementation Considerations

When implementing a PSM-CFDF actor, we do not
anticipate that designers will typically need to explicitly
implement the mappings (mathematical functions) Fρ and
psa next{r, p}. These mappings are useful as analytical
tools, but their explicit realization in software is not in
general essential for the PSM-CSDF model — e.g., an
actor designer would not need to provide a software func-
tion/method or hardware description language module that
is dedicated to implementing each of these mappings.
Instead, for example, critical aspects of Fρ may be validated
through unit testing, and the next PSM may be determined
as a by-product of actor firing — e.g., through an actor-
level application programming interface (API) that is used
by schedulers to invoke the actor.

3.7 Application Example

In this section, we show an example of applying PSM-
CFDF concepts in actor design for a reconfigurable OFDM
demodulator that is geared towards cognitive radio systems.
Such systems can involve significant amounts of parame-
terization in actor designs. Figure 1(a) shows a parameter-
ized demodulator actor that supports different operational
modes, including QPSK and QAM16. The actor maps the
B samples into an M × B bit stream. This actor has two
parameters: M for the number of bits per sample, and B for
the vectorization degree (see [17] for fundamental devel-
opments on actor-level vectorization for signal processing
dataflow graphs). Since M represents the number of bits
for each symbol, M = 2, 4 correspond, for example, to
QPSK, QAM16, respectively. B can take on any integer
value between 1 and Bmax , where Bmax is the maximum
vectorization degree (e.g., as a designer or design tool might
set based on memory constraints). The parameter B allows
symbols to be buffered and processed together in batches
(block processing). For example, if B = 1, then each actor
invocation processes a single input symbol; if B = 10,
then 10 symbols are buffered and processed together in one
invocation.

The de-mapper in Fig. 1(a) is modeled as a PSM-CFDF
actor A as follows. Actor configurations are specified in the
form (M, B). The set of modes of the actor is given as:

MA = {INIT , QPSK1, QPSK2, . . . , QPSKBmax ,

QAM161, QAM162, . . . , QAM16Bmax } (3)

Based on the functionality, MA can be clustered into 3
PSMs: {ρi = (Si, Ci, fi) | i = 1, 2, 3}, where S1 =
{QPSKn | 1 ≤ n ≤ Bmax}, C1 = {(2, n) | 1 ≤ n ≤ Bmax},
f1(M, B) = QPSKB ; S2 = {QAM16n | 1 ≤ n ≤ Bmax},
C2 = {(4, n) | 1 ≤ n ≤ Bmax}, f2(M, B) = QAM16B ;
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S3 = {INIT }, C3 = {(m, n) | m = 2, 4; 1 ≤ n ≤ Bmax},
f3(M, B) = INIT .

Based on this decomposition into PSMs, Fig. 1(b) illus-
trates the PSM transition graph for the demapper actor.
Upon initialization or reset, the actor enters the INIT mode,
the only mode in ρ3. After initialization, the actor enters a
mode in ρ1, or ρ2, based on the configuration. For any mode
in ρ1, the ratio of the production rate prd(A) to the con-
sumption rate cons(A) is 2. Similarly, for any mode in ρ2,
prd(A)/cons(A) = 4. To avoid clutter in the diagram, edge
labels are not shown.

3.8 Summary

In this section, we have presented an enhancement to the
framework of CFDF modeling called parameterized set of
modes (PSM), and we have introduced the PSM-CFDF
approach to the modeling of dynamic dataflow actors with
dynamically variable parameters. To illustrate the approach,
we have presented a detailed example of an OFDM demap-
per actor that is modeled in terms of PSM-CFDF semantics.
This example and its associated PSM transition graph repre-
sentation concretely illustrate the novel form of higher level
modeling structure that is exposed by the PSM modeling
concept and the associated PSM-CFDF design methodol-
ogy.

4 PSM-level Static Scheduling for CFDF Graphs

In this section, we demonstrate the application of PSM to
efficient scheduling of CFDF-based programs.

A general scheduling approach for CFDF graphs is the
so-called canonical scheduling approach discussed in [16].
In canonical scheduling, a sequential ordering L of the
dataflow graph actors is constructed [16]. At run-time,
the scheduler iteratively traverses the list L, and upon
visiting each actor A, the scheduler checks the enabling
condition (availability of sufficient input data) for A, and
invokes A if the enabling condition is satisfied. This
scheduling approach is useful in the sense that it is very
general (applicable to any CFDF graph), easy to under-
stand, and easy to implement. However, the efficiency
of canonical scheduling can be relatively low because of
the frequency with which enabling conditions must be
checked.

4.1 Statically Schedulable Regions

Static schedules, where the sequence of actor firings is
deterministic and unconditional (not guarded by actor-level
checking of enabling conditions) can be significantly more
efficient and predictable compared to dynamic scheduling

approaches, such as canonical scheduling. Even if the over-
all dataflow graph does not allow for static scheduling (due
to the presence of dynamic dataflow), it may be possible
to identify “statically schedulable regions” of the graph —
i.e., parts of the graph that can be scheduled statically. Such
regions can be scheduled using efficient static scheduling
techniques, which have been developed extensively in the
literature (e.g., see [3]), and then the static schedules for
the different regions can be integrated through a “top-level”
dynamic scheduling mechanism.

In this section, we develop PSM-based methods for con-
structing and applying statically schedulable regions for
efficient implementation of CFDF graphs. The concept of
statically schedulable regions itself is not new, and has been
studied in depth, for example, in the implementation of CAL
programs [11]. Our contribution in this section, which we
refer to as PSM-level static scheduling, is to demonstrate
methods for integrating the concepts of PSMs and stati-
cally schedulable regions, therefore combining the benefits
of both approaches, and enabling structure exposed from
PSMs to help guide the construction of efficient schedules.
More specifically, in our development of PSM-level static-
scheduling, we utilize information about actor parameters
to form hierarchical PSMs, where each hierarchical PSM
is constructed based on combinations of actor modes that
share common scheduling properties.

In the remainder of this section, we outline our pro-
posed PSM-level static scheduling approach and present
experimental results on an application example.

4.2 PSM-level Static Scheduling

PSM-level static scheduling is a hierarchical scheduling
technique, where subgraphs within a dataflow specification
are combined into hierarchical actors, and execution of a
hierarchical actor corresponds to execution of a schedule for
the associated subgraph. If H is a hierarchical actor with
associated subgraph G, we say that H encompasses G, and
G is the nested subgraph of H.

In the class of CFDF-PSM specifications addressed in
this work, a hierarchical actor contains a set of modes, and
can also contain a set of PSMs, just as non-hierarchical
(leaf-level) actors. In the case of a hierarchical actor H,
each mode m of H corresponds, respectively, to a mapping
Zm : Ve → γ , where Ge = (Ve, Ee) denotes the graph
encompassed by H, γ is the set of all actor modes across all
actors in Ve, and Zm(v) ∈ Mv for all v. Recall here that Mv

represents the set of modes for a given actor v.
Intuitively, execution of H in a given mode m ∈ MH

corresponds to execution of the encompassed graph with all
actors operating in the modes specified by Zm. The duration
(termination criterion) of such an execution is a design issue
associated with the construction of H, similar in some ways



J Sign Process Syst (2015) 80:3–18 9

to the concept of “subsystem iteration” in parameterized
dataflow [2]. In this paper, we assume that each execution
of H in a given mode m corresponds to execution of a min-
imal static periodic schedule of the SDF graph, denoted
Gsdf (H, m), that results from fixing the actors in Ge based
on the mode assignments specified by Zm. Exploration of
other kinds of termination criteria in this context is a useful
direction for further work.

In our development of PSM-level static scheduling in this
paper, we assume that the hierarchical actors employed are
provided as part of the specification — i.e., as part of the
design hierarchy. Another interesting direction for future
work is in the development of automated methods to group
(cluster) subgraphs into hierarchical actors for PSM-level
static scheduling.

4.3 Construction of SDF Scheduling PSMs

Building on the concepts introduced in Section 4.2, we
introduce a simple method to partition the mode set MH

of a hierarchical actor H in a manner that facilitates con-
struction of statically schedulable regions. This leads to
a unique partitioning of MH into a set of PSMs that we
refer to as SDF scheduling PSMs. The method is useful in
systematically decomposing the structure of a hierarchical
PSM-CFDF actor in a manner that that captures subsystem-
level, multi-mode behavior that is common in cognitive
radio systems.

The process of constructing SDF scheduling PSMs oper-
ates by iterating through all modes in H, and dividing the
modes into subsets (PSMs) S1, S2, . . . , Sk, where all modes
in a given Si correspond to the same SDF repetitions vec-
tor for the encompassed graph G(e). In other words, if
m1, m2 ∈ Si , and a ∈ Ve, then q1(a) = q2(a), where
q1 and q2 denote, respectively, the SDF repetitions vec-
tors of Gsdf (H, m1) and Gsdf (H, m2). The resulting mode
sets S1, S2, . . . , Sk are then parameterized with one more
scheduling parameters that can be configured and adapted
based on considerations such as the given performance con-
straints, repetitions vectors qi , and structure of G(e). This
process depends on fundamental properties of the SDF rep-
etitions vector and requires that the set of SDF graphs
{Gsdf (H, m) | m ∈ Mh} satisfy SDF consistency con-
ditions. For details on SDF fundamentals and consistency
conditions, we refer the reader to [13].

In cognitive radio systems, actors can often be configured
statically or dynamically by various parameters, resulting
in large sets of possible actor modes. If the actors’ mode
spaces are viewed independently, the total number of possi-
ble mode combinations to consider can grow exponentially,
making the system unwieldy and inefficient for schedul-
ing analysis. The integration of PSM techniques to hier-
archical CFDF modeling techniques, as introduced in this

section, introduces an alternative, more compact designs
space — the design space of scheduling parameters for the
PSMs S1, S2, . . . , Sk — that facilitates efficient scheduling,
including the application of SDF scheduling techniques to
statically schedulable regions.

4.4 Synthetic Example

To illustrate the PSM-level static scheduling technique
introduced in Sections 4.2 and 4.3, Fig. 2 shows a synthetic
CFDF graph with 2 parameters, p1 and p2. Intuitively, the
parameters p1 and p2 control (select) the modes of A and
C, respectively, and p1 and p2 together control the mode
of B. The parameter values and their corresponding actor
modes, production rates, and consumption rates are shown
in Table 1. Here, the special actor ctrl reads parameter val-
ues from an input source (e.g., a file), checks their validity,
and sends them as tokens to A, B and C.

Now suppose that H is a hierarchical actor that encom-
passes the subgraph associated with actors A, B, and C. The
actors enter “initialization modes” A0, B0 and C0, respec-
tively, upon system reset, and wait for parameter tokens that
are passed from ctrl. After receiving the parameter values,
the actors continue to their respective operational modes, as
specified by the received parameters, until all data from src
has been processed.

Analyzing the repetitions vectors in MH , and the mode
space of H, and constructing SDF scheduling PSMs leads to
the PSMs outlined in Table 2. The common repetitions vec-
tors in the same scheduling PSM allows a common static
schedule to be applied across all modes in that PSM. For
example, for PSM1, the static schedule σ1 = ABC can
be applied as the schedule for H. Similarly, for all modes
in PSM2, we can apply the static schedule σ2 = AB(2C).
Here, we apply looped scheduling notation, where a paren-
thesized term of the form (mX), where m is a non-negative
integer (or a symbolic expression that resolves to a non-
negative integer) and X is a sequence of actor firings,
represents the successive execution m times of the sequence
X. For background on the construction and manipulation
of looped schedules for synchronous and parameterized
dataflow graphs, we refer the reader to [2, 4].

For the entire application graph in this example, we can
apply the schedule σtop = srcσH (nsnk), where n is the

Figure 2 A synthetic CFDF graph that is used to illustrate PSM-level
static scheduling concepts.
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Table 1 Details of actor parameters, modes, and dataflow rates.

Actor Configuration Mode Prod Cons

A N/A A0 0 (0,1)

p1 = 0 A1 1 (2,0)

p1 = 1 A2 1 (1,0)

B N/A B0 0 (0,2)

(p1, p2) = (0, 0) B1 2 (1,0)

(p1, p2) = (0, 1) B2 2 (2,0)

(p1, p2) = (1, 0) B3 1 (2,0)

(p1, p2) = (1, 1) B4 1 (1,0)

C N/A C0 0 (0,1)

p2 = 0 C1 1 (2,0)

p2 = 1 C2 1 (4,0)

mode-dependent firing rate (iteration count) for snk, and
σH is configured dynamically as σ1 or σ2 based on the
currently-active scheduling PSM.

We constructed the PSMs and schedules outlined here
by hand, and based on these constructions, we implemented
this synthetic application graph using the lightweight
dataflow environment (LIDE), which is a tool for experi-
menting with dataflow techniques in arbitrary simulation-
or platform-oriented languages, such as C, CUDA, MAT-
LAB, and Verilog [19, 20]. Specifically, in our experiments
we employed LIDE-C and LIDE-CUDA, which are C-
and CUDA-oriented versions of the LIDE environment,
respectively.

We implemented each actor as a simple sample rate
converter that inserts or discards tokens to achieve the spec-
ified dataflow rates. The experiment is carried out using a
desktop computer equipped with an Intel Core i7-2600K
8-core CPU, and 16GB memory. Figure 3 shows the exe-
cution time of the graph using CFDF canonical scheduling
and PSM-level static scheduling. For our implementation
of PSM-level static scheduling, we used the hierarchy of
schedules σtop, σ1, and σ2 defined above. In this example,
the average execution time improvement of PSM-level static
scheduling among the different modes of H is 11.9%.

Although it is based on a synthetic dataflow graph, the
simplicity of this example helps to demonstrate concisely
and concretely the proposed PSM-level static scheduling

Table 2 Scheduling PSMs of the hierarchical actor H.

PSMs Mode of H Mode of ABC q

PSM1 H0 A0 B0 C0 (1,1,1)

H1 A1 B1 C1 (1,1,1)

H2 A2 B4 C2 (1,1,1)

PSM2 H3 A1 B2 C2 (1,1,2)

H4 A2 B3 C1 (1,1,2)
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Figure 3 Execution time comparison between canonical scheduling
and PSM-level static scheduling for the synthetic example of Fig. 2.

approach, and the potential for performance improvement
using the approach.

4.5 Application Example

In this section, we demonstrate a practical example of PSM-
level static scheduling that is relevant to the cognitive radio
domain. Figure 4 shows a dynamically configurable RPSK
modulator that supports multiple source rates and multiple
Phase-Shift-Keying (PSK) modulation schemes. The hier-
archical actor R encompasses a subgraph that contains two
CFDF actors src (using a minor abuse of notation), and T,
whose modes are shown in Table 3. Here, r and m specify
the source rate and the modulation scheme, respectively.

Using PSM-level static scheduling, we derive 4 PSMs,
as shown in Table 4. The static schedule for each PSM
is then constructed by hand, implemented in LIDE, and
compared with canonical scheduling, as in Section 4.4. We
see from the results that in this example, the performance
improvement from applying PSM-level static scheduling is
higher compared to that of the small, synthetic example in
Section 4.4. In terms of the execution time per graph iter-
ation (i.e., per minimal periodic scheduling iteration of the
derived SDF subgraphs), PSM-level static scheduling out-
performs canonical scheduling by an average of 45.4%, as
shown in Fig. 5. Here, the average is taken across the 6
operational modes for the hierarchical actor R.

Figure 4 A dynamically configurable RPSK modulator in CFDF.
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Table 3 Dynamic actors in the RPSK application.

Actor Mode Prod Cons

src INIT 0 1

src1 1 0

src2 2 0

T INIT 0 (0,1)

BPSK 1 (1,0)

QPSK 1 (2,0)

16 − PSK 1 (4,0)

4.6 Summary of PSM-level Static Scheduling

In this section, we have demonstrated a specific method,
called PSM-level static scheduling, for applying the PSM
modeling approach. There are many possible ways of apply-
ing PSMs in the design process, and the method presented
in this section can be viewed as a specific way that we have
studied and experimented with to help validate the utility of
the PSM model. Although the PSM-level static schedules
experimented with in this section were constructed by hand,
their foundation in the PSM and CFDF formalisms makes
them amenable to derivation through general, automated
techniques. Development of such automated tool support for
PSM-level static scheduling and other applications of PSMs
is a useful direction for further investigation.

5 PSM-level Actor Mapping on Heterogeneous
Platforms

5.1 Overview

In this section, we demonstrate the application of PSMs to
mapping actors in a CFDF-based dataflow program onto a
heterogeneous platform. The targeted platform here consists
of a general purpose CPU (called “host”), and a graphics
processing unit (GPU) that is used to accelerate selected
actors. The GPU is controlled by the host, and has a separate
memory address space.

Table 4 PSMs of the hierarchical actor R in the RPSK application.

PSM Mode of R Mode of src T q

PSM1 R0 INIT, INIT (1,1)

R1 src1, BPSK (1,1)

R2 src2, QPSK (1,1)

PSM2 R3 src1 QPSK (2,1)

R4 src2, 16 − PSK (2,1)

PSM3 R5 src1 16 − PSK (4,1)

PSM4 R6 src2 BPSK (1,2)
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Figure 5 Execution time comparison between canonical scheduling
and PSM-level static scheduling for the RPSK application.

The execution of an actor in this environment on the
GPU device generally involves three steps: host-to-device
data transfer, on-device execution, and device-to-host data
transfer. The data transfers between processors can result in
significant overhead, which makes it unfavorable in some
scenarios, such as when the amount of data to be processed
is relatively small. Thus, the selection of actors to execute
on the GPU (processor assignment) is an important problem
for performance optimization.

We first formulate a general version of the processor
assignment problem that is addressed in this section, and
we describe our PSM-level processor selection approach in
this general context. Then we present experimental results
for PSM-level processor selection on the specific CPU-GPU
heterogeneous platform described above.

5.2 PSM-level Processor Selection

Suppose that we have a CFDF graph G = (V, E), and a
target platform consisting of a (possibly heterogeneous) pro-
cessor set P = {p1, p2, . . . , pn}. Also, for an actor A in G,
let MA denote the set of CFDF modes of A. The objective
of PSM-level processor selection is to derive a set of PSMs
and a “top-level” quasi-static schedule with the goal of opti-
mizing a pre-defined performance metric. More specifically,
PSM-level processor selection involves the following tasks:

• for each actor A, derivation of a set of n PSMs
selection(A) = ν(A, 1), ν(A, 2), . . .ν(A, n), where
each ν(A, i) represents the subset of modes in MA that
are to be assigned (during graph execution) to processor
pi ;

• construction of a “top-level”, quasi-static schedule
that executes actors in G based on the dynamically-
determined processor assignment defined by
{selection(A)} | A ∈ V together with the current
parameter values (actor configurations) of the actors
in V.
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In our development of PSM-level processor selection in
the remainder of this section, our targeted performance met-
ric is throughput. However, the proposed processor selection
framework can be readily targeted to other metrics, such
as latency or memory utilization or to composite metrics,
such as latency-constrained throughput optimization, and
memory-constrained latency optimization.

5.3 Profile-based Selection

In this section, we develop a profile-driven approach to
PSM-level processor selection. We refer to this approach
as profile- and PSM-based processor selection (PAPPS). In
PAPPS, a three-dimensional “profile table” is used to char-
acterize the performance of specific actor modes on specific
processors. In particular, for a given mode m ∈ MA for an
actor A, and a given processor p ∈ P , prof (A, m, p) pro-
vides an estimate of the execution time of mode m for actor
A on processor p. The profile table entries for a given actor
can be obtained, for example, by iteratively (e.g., through
appropriate simulation scripts) executing the actor on each
processor in every mode and averaging the results for each
mode.

After the profile table is constructed, PSMs for each actor
A are formed by grouping together modes that perform best
on a specific processor with ties being broken arbitrarily.
Thus, for each actor A and each i ∈ {1, 2, . . .n}, we have
that

ν(A, i) =
⋃

{{m} | i = argminj (A, m, pj )}. (4)

In the PAPPS approach, ties with respect to the argmin
function in Eq. 4 are resolved arbitrarily (as implied earlier),
although more sophisticated schemes can be envisioned
that take ties or “near-ties” (multiple alternatives that have
competitive performance) into account in strategic ways.
Such exploration of more sophisticated PSM-based pro-
cessor assignment schemes is an interesting direction for
further work.

Once the PSMs are constructed based on Eq. 4, a top-
level, quasi-static scheduler is used to visit actors according
to some scheduling policy, and to execute each visited actor
A using a target processor that is (dynamically) selected
based on the currently-active PSM for A. In other words,
each time an actor A is visited by the scheduler, the current
mode m of A is examined to determine the active PSM (i.e.,
the unique ν(A, i) that contains m), and then processor pi is
selected as the processor on which to execute the next firing
of A.

Canonical scheduling, described in Section 4, is a gen-
eral policy that can be used as the top-level scheduling
policy in this context. However, in some cases, static analy-
sis of the parameterized application structure can be applied

to streamline the policy — for example, by statically fix-
ing the order of schedule traversal in a way that eliminates
or greatly reduces the need for run-time enable condi-
tion checking. We demonstrate a simple example of such
static-analysis-based streamlining in Section 5.4.

5.4 OFDM Demodulation

To demonstrate the PAPPS approach, we have applied it
to an OFDM demodulator and a heterogeneous CPU/GPU
implementation platform, as described in Section 5.1.
Orthogonal frequency division multiplexing (OFDM) is
used extensively in high-speed wireless communication
systems because of its spectral efficiency, robustness in
terms of multi-path propagation, and high bandwidth effi-
ciency [8]. The OFDM demodulator is one of the fundamen-
tal subsystems of LTE and WiMAX wireless communica-
tion systems.

Figure 6 illustrates a runtime-reconfigurable OFDM
demodulator that is modeled as a CFDF graph. Here, actor
SRC represents a data source that generates random values
to simulate a sampler. In a wideband OFDM system, infor-
mation is encoded on a large number of carrier frequencies,
forming an OFDM symbol stream. In baseband process-
ing, a symbol stream can be viewed in terms of consecutive
vectors of length N. The symbol is usually padded with a
cyclic prefix (CP) of length L to reduce inter-symbol infer-
ence (ISI) [1]. In Fig. 6, the CP is removed by actor RCP.
Then, actor FFT performs a fast Fourier transform (FFT) to
convert the symbol stream to the frequency domain.

In practical systems, further processing, such as fre-
quency domain synchronization and channel estimation, is
required to remove various channel effects. In this case
study, however, we use a simpler design that directly per-
forms symbol demapping to illustrate the PAPPS methodol-
ogy. Actor Demap is a parameterized symbol demapper that
performs M-ary QAM demodulation, with a configurable
QPSK configuration (M = 2 or M = 4). The output bits
are collected by the data sink (actor SNK).

For the targeted CPU/GPU platform described in
Section 5.1, all of the actors in our OFDM demodulation
system have CPU implementations, and some of the actors
have GPU implementations.

Figure 6 PSM-CFDF model of a configurable OFDM demodulator.
(a) Original dataflow graph. (b) Vectorized dataflow graph.
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Each actor A has a parameter, called the vectoriza-
tion degree and denoted by β(A), which is the number
of OFDM symbols to be processed in a single activation
(scheduler visit) of the actor. If the actor A is understood
from context, then we sometimes drop the “(A)” and sim-
ply write β. Vectorization of signal processing dataflow
graph actors, also referred to as “block processing”, is use-
ful in optimizing throughput, which is the targeted objective
in our development of PSM-level processor selection (see
Section 5.2) [17]. Here we assume that the same demap-
ping scheme can be applied to all symbols to be processed
in one activation, so that SIMD processing can be applied in
vectorized executions.

In addition to β, actors in this design have a parameter M,
which prescribes the number of bits per symbol. For exam-
ple, if M = 4 and β = 10, this means that the system is
operating in a mode that uses QAM16 as the demapping
scheme, and executes actors in blocks of 10 firings each. A
third actor parameter is the OFDM symbol length, which we
denote by N.

The parameter values in this example determine the mode
of each actor, and the actor mode determines the produc-
tion and consumption rates. Note that this is not always
the case in CFDF actors, where, for example, the next
mode for an actor can be different from the current mode
even though there is no change in parameter settings (e.g.,
see [15]). However, because there is no such dynamics
involved with next mode determination in this example,
the actors can be mapped into corresponding parameter-
ized synchronous dataflow (PSDF) actors [2]. The example,
therefore demonstrates the applicability to PSM techniques
to PSDF graphs.

Table 5 shows the valid parameter values for the actors in
our OFDM demodulation system. The mode set of Demap
is given by Eq. 3 in Section 3. Similarly, for other actors,
valid combinations of parameter values lead uniquely to
their mode settings. These details for the other actors are
omitted here for brevity.

5.5 Application of PAPPS to the OFDM Demodulation
System

The PSM-CFDF actors RCP, FFT and Demap are each
implemented on both the CPU and GPU processors. Fol-
lowing the profiling approach described in Section 5.3, each
actor A is profiled in every mode in its mode set MA for

Table 5 Actor parameters in the OFDM demodulator system.

Parameter Domain

β {1, 10, . . . , 100}
N {512, 1024}
M {2, 4}

both the CPU and GPU implementations. The results are
then used to construct the profile table prof.

In our experiments, an NVIDIA GTX680 GPU with
2GB memory and an Intel Core I7 3.4GHz CPU with 8GB
memory are used for GPU implementation and CPU imple-
mentation, respectively. Figure 7 illustrates the profile table
prof for the actors. The maximum latency for all vectoriza-
tion degrees considered is less than 8 ms, which is tolerable
in many software defined radio contexts. In the case of RCP,
which removes the cyclic prefix from the received signal,
the CPU implementation performs better in all settings. This
is due to the small amount of computation performed in
this actor compared to the large CPU-GPU memory trans-
fer overhead. As a result, selection(RCP) contains only one
non-empty PSM; the PSM associated with the GPU has no
modes.

For the FFT actor, the GPU implementation always per-
forms better than the CPU implementation in the same
mode. Thus, for this actor, the PSM associated with the CPU
has no modes. For the Demap actor in the 16-QAM modes
(M = 4), the GPU implementation outperforms the CPU
implementation for all values of the vectorization degree β.
In the QPSK modes (M = 2), there is less difference in per-
formance, and the CPU implementation generally performs
better for lower β values, while the GPU implementation
performs better for higher β values. The smaller computa-
tional load in the QPSK modes makes the memory transfer
overhead more significant, which leads to a smaller perfor-
mance gain from the GPU. In summary, the Demap actor
has two non-empty PSMs ν(Demap, p1) and ν(Demap, p2).

Table 6 shows the grouping of actor modes into PSMs
when applying the PAPPS method based on the achieved
profiling results illustrated in Fig. 7.

We have implemented the OFDM demodulator system
on the targeted CPU/GPU platform using a PAPPS-based
processor selection scheme based on the PSMs illustrated
in Table 6. We streamlined the top-level scheduler (see
Section 5.3) by observing that even though the production
and consumption rates of actors can vary based on the active
actor modes, the variations in this application are interde-
pendent such that the dataflow graph exhibits SDF behavior,
and furthermore, the repetitions vector remains constant. In
particular, the repetitions vector is specified by q(A) = 1
for each actor A regardless of what actor modes are active.
This allows us to implement the top-level scheduler with-
out any run-time checks for actor enabling conditions. Note,
however, that even though SDF techniques are employed,
the derived scheduler should not be viewed as a form
of static scheduling because the processor assignment can
change dynamically.

As in the case study of Section 4, we implemented the
top-level scheduler by hand. This scheduler implementa-
tion incorporates the PAPPS method for dynamic processor
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Figure 7 Actor profiles for application of PAPPS to the OFDM demodulator: (a) RCP actor; (b) FFT actor; (c) Demap actor in 16-QAM modes;
(d) Demap actor in QPSK modes.

selection based on the PSM decompositions illustrated in
Table 6. Building on the developments of this section to
construct automated scheduler derivation for PAPPS-based
implementation is an interesting direction for future work.

5.6 Experimental Results

We compared the application throughput of alternative
implementations in terms of the execution time per (vec-
torized) application iteration, where an application iteration

Table 6 PSM grouping based on CPU and GPU performance pro-
files for processor selection. PSM1 and PSM2 are the sets of modes
that have shorter execution times for CPU- and GPU-based execution,
respectively.

Actor PSM1 PSM2

RCP N = 512, 1024; 1 ≤ β ≤ 100∅

FFT ∅ N=512, 1024; 1 ≤ β ≤ 100

Demap{N=1024,M = 4, β = 1} {N=1024,M= 4, 10≤ β ≤100}
{N=512,M = 4, β = 1, 10} {N=512,M = 4, 20≤ β ≤100}
{N=1024,M=2, β = 1, 10} {N=1024,M= 2, 20≤ β ≤100}
{N=512,M=2, 1≤ β ≤ 40}{N=512,M = 2, 50≤ β ≤100}

in this context corresponds to the processing required for
(β × N) symbols of the enclosing OFDM system. Because
we compare alternative processor selection schemes with β

fixed for each comparison point, this method of throughput
comparison does not favor any particular kind of scheme.

Figure 8 shows the execution time per application
iteration for three types of processor selection schemes:
(1) all actors are assigned to the CPU (“CPU”), (2)
RCP, FFT and Demap, the most computationally-intensive
actors, are assigned to the GPU (“GPU”), and (3) proces-
sor selection is performed dynamically using our imple-
mented PAPPS-based scheduler (“PAPPS”). The speedups
achieved by using PAPPS, compared to methods (1)
and (2), are also shown in the figure. The average
speedup achieved by PAPPS in this application over a
CPU implementation is more than 1.5X. In the setting
where the largest amount of data is present (1024-FFT
and 16-QAM), the average speedup is more than 2X
over all vectorization degrees. The achieved speedup is
limited by the cost of data transfer between CPU and
GPU memory for each actor. This data transfer over-
head has been taken into account in the reported speedup
values.
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Figure 8 Execution time and speedup under three types of proces-
sor selection schemes for the OFDM demodulator system: (a) 1024-pt
FFT, 16-QAM; (b) 512-pt FFT, 16-QAM; (c) 1024-pt FFT, QPSK; (d)
512-pt FFT, QPSK. Solid lines represent execution times while dashed

lines represent the speedup obtained by using the PAPPS approach.
The brown dashed line with an “up-triangle” represents the speedup
of PAPPS over CPU (scheme (1)); the black dashed line represents the
speedup of PAPPS over GPU (scheme (2)).

Compared to the GPU implementation scheme (scheme
(1)), the PAPPS scheme achieves an average of 20%
improvement in throughput over the GPU scheme. How-
ever, the vectorization step applied in our implementation
generally results in increased latency for the system. In
wireless communication applications, latency is a critical
design constraint, and thus, vectorization should be applied
carefully to ensure that excessive latency does not result.

In our experiments, the vectorization degree is set to be
no more than 100. As shown in Fig. 8, this results in a max-
imum latency of 8ms, which is reached when N = 1024
and β = 100. This is at a tolerable level of latency for
many kinds of software radio systems. For example, 8ms is
only a small fraction of the typical 250ms end-to-end delay
for data packets, which is described for the communica-
tion systems discussed in [6]. In cases where there are more
stringent latency constraints, the vectorization degree can be
bounded more tightly to trade off throughput performance
for decreased latency.

The experiments presented in this section along with the
other examples discussed in this paper are provided to give a

concrete idea of the kind of approaches that are supported by
the PSM framework. These can be viewed as representative
examples that help to give a sense of the diverse possi-
bilities for applying the proposed methods. Further study
into applying these methods and developing design opti-
mizations that build on them is a useful direction for future
investigation.

6 Conclusions

In this paper, we have introduced a new dataflow mod-
eling technique called parameterized set of modes (PSM)
and demonstrated its relevance and application to design
and implementation of signal processing systems for cog-
nitive radio applications. PSMs enable novel ways for
representing, manipulating and applying related groups
of actor modes that lead to more concise formulations
of actor behavior, and a unified modeling methodology
for applying a variety of techniques for efficient imple-
mentation. To demonstrate the utility and versatility of
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PSMs in signal processing system design processes, we
have developed two case studies involving mapping of
important kinds of reconfigurable wireless communica-
tion subsystems into efficient implementations. The PSM
methods introduced in this paper allow implementation
techniques like those introduced in the case studies to
be developed according to a common modeling frame-
work, which allows such techniques to be better under-
stood, integrated, and optimized. Several useful directions
for future work have also emerged from the developments
of this paper, including the investigation of automated
techniques for applying PSMs to efficient static region
derivation and to processor selection on heterogeneous
platforms.
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