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Abstract We consider the problem of simultaneous sparse
coding and anomaly detection in a collection of data vectors.
The majority of the data vectors are assumed to conform
with a sparse representation model, whereas the anomaly
is caused by an unknown subset of the data vectors—
the outliers—which significantly deviate from this model.
The proposed approach utilizes the Alternating Direction
Method of Multipliers (ADMM) to recover simultaneously
the sparse representations and the outliers components for
the entire collection. This approach provides a unified solu-
tion both for jointly sparse and independently sparse data
vectors. We demonstrate the usefulness of the proposed
approach for irregular heartbeats detection in Electrocardio-
gram (ECG) as well as for specular reflectance and shadows
removal from natural images.
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1 Introduction

Anomaly detection is the problem of detecting patterns that
significantly deviate from an expected model. This prob-
lem has numerous applications such as fraud detection for
banking and businesses, intrusion detection for network
security, fault detection for production systems, health prob-
lems detection for biomedical systems and more, see [1] for
a review. In this paper we assume that the expected behavior
of the data vectors is to conform with a sparse representation
model [2], and address the problem of simultaneous sparse
coding and anomaly detection. This problem can be applied
to three different tasks: 1) anomaly detection within sparsely
represented data vectors. 2) removal of interference from
sparsely represented data vectors. 3) dictionary learning in
the presence of outliers. In this paper we address the first
two tasks, and the latter is beyond the scope of this work.

Related work Joint-sparse coding was addressed by [3,
4] for cases in which all data vectors are contaminated
by either a sparse or a sparsely-represented interference.
Anomaly detection in video was addressed by [5] which
proposed a sparse reconstruction cost to measure the nor-
mality of events, with respect to a dictionary with various
spatio-temporal structures. This problem was addressed also
by [6], which combined online dictionary learning with an
objective function that measures the normality of events.
The work of [7] utilized sparse representations to analyze
stochastic processes over graphs for anomaly detection in
SmartGrids.

Contributions The contributions of this paper are two-fold:
1) A unified formulation for the problem of simultaneous
sparse coding and anomaly detection is provided for jointly
sparse as well as for independently sparse data vectors;
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and a numerical solver is provided for both cases. 2) the
proposed approach is demonstrated to detect irregular heart-
beats in ECG, and remove specular reflections and shadows
from natural images.

Organization Section 2 reviews sparse representations,
Section 3 formulates the problem, Section 4 explains the
proposed approach, and Section 5 demonstrates its perfor-
mance.

2 Sparse Representation Modeling

Sparse representation modeling [2] assumes that a signal
(data vector) y ∈ R

N can be described as y ≈ Dx,
where D ∈ R

N×M is a dictionary and x ∈ R
M is sparse.

Therefore, y is represented by a linear combination of few
columns (atoms) of D. The recovery of the sparse represen-
tation, termed sparse coding, can be obtained by solving the
following problem:

x̂ = arg min
x

‖y − Dx‖2
2 s.t. ‖x‖0 ≤ T0, (1)

where ‖x‖0 is the l0 pseudo-norm that counts the number
of non-zero entries of x, and T0 is the maximum number
of non-zero entries. Problem (1) can be augmented for a
collection of signals:

X̂ = arg min
X

‖Y − DX‖2
F s.t. ‖X‖0 ≤ LT0, (2)

where Y ∈ R
N×L contains L signals {yi ∈ R

N }Li=1, X ∈
R

M×L contains L sparse representations {xi ∈ R
M}Li=1 and

‖X‖0 counts the number of non-zero entries of X. This type
of model is referred to as the Single Measurement Vector
(SMV), since each signal is assumed to be a single measure-
ment associated with a unique non-zero pattern of its sparse
representation (i.e. a unique combination of atoms). The
case in which all the sparse representations share the same
non-zero pattern is referred to as the Multiple Measurement
Vector (MMV) [8] or joint-sparsity model, as illustrated in
Fig. 1. For the MMV case, the following optimization prob-
lem recovers more accurately the sparse representations, by
exploiting the joint-sparsity property:

X̂ = arg min
X

‖Y − DX‖2
F s.t. ‖X‖0,2 ≤ T0, (3)

where ‖X‖0,2 = ∑
j I(‖X(j, :)‖2) counts the number of

non-zero rows, X(j, :) is the j-th row of X and I is the
indicator function:

I(a) =
{

1 if |a| > 0
0 otherwise

.

Note that problems (1)–(3) are NP-hard and their solutions
can be approximated using convex relaxations: the l1 norm
‖x‖1 = ∑

i |xi | often replaces ‖x‖0, and the l1,p norm

‖X‖1,p = ∑
j ‖X(j, :)‖p often replaces ‖X‖0 with p = 1

and ‖X‖0,2 with p = 2.

3 Problem Formulation

Let Y ∈ R
N×L be a collection of signals that are well

approximated by a sparse representations model, exclud-
ing a small number of signals—the outliers—which sig-
nificantly deviate from this model. The collection Y is
described as follows:

Y = DX + E + V, (4)

where D is assumed known, E has few non-zero columns
that equal to the deviation of each outlier from the sparse
representations model, and V is a low-energy noise compo-
nent (‖V‖2

F is small compared to ‖Y‖2
F ).

Our objective is to detect the outliers in Y and recover the
sparse representations. For the SMV case this objective can
be obtained by solving the following problem:

{X, E} = arg min
X,E

‖Y − DX − E‖2
F

s.t. ‖X‖0 ≤ LT0

‖E‖2,0 ≤ K0, (5)

where ‖E‖2,0 = ∑
i I(‖E(:, i)‖2) counts the number of

non-zero columns in E, E(:, i) is the i-th column of E,
and K0 is the maximum number of non-zero columns (i.e.
outliers). Problem (5) encourages a solution in which X is
sparse, however, for the outliers that cannot be represented
exclusively by D, it permits non-zero columns in E. For
the MMV case the objective can be obtained by solving the
following problem:

{X, E} = arg min
X,E

‖Y − DX − E‖2
F

s.t. ‖X‖0,2 ≤ T0

‖E‖2,0 ≤ K0, (6)

where the constraints ensure at most T0 non-zero rows in X
and at most K0 non-zero columns in E.

Figure 1 The non-zeros (dark squares) of the sparse representations
matrix X for the SMV (left) and MMV (right) models.



J Sign Process Syst (2015) 79:179–188 181

4 The Proposed Approach

The solutions to problems1 (5) and (6) can be approximated
by solving the following unconstrained convex problem:2

min
X,E

1

2
‖Y − DX − E‖2

F + α‖X‖1,p + β‖E‖2,1 (7)

where p = 1 for the SMV case, p = 2 for the MMV
case and α, β are a small positive scalars. In addition,
‖E‖2,1 = ∑

i ‖E(:, i)‖2 is the l2,1 norm which provides
a convex relaxation to ‖E‖2,0, and was applied in [9, 10]
for robust non-negative matrix factorization. We propose to
solve problem (7) with the Alternating Direction Method
of Multipliers (ADMM) [11] due to the following rea-
sons: (i) it is suitable for our problem format, (ii) it has
proven convergence properties, and (iii) it leads to a simple,
coordinate-descent structure. In the following we describe
the ADMM method and its application to our problem.

4.1 Alternating Direction Method of Multipliers

ADMM is a numerical method for solving problems of the
following form:

min
X,Z

f (X, Z) s.t. AX + BZ = C, (8)

where X, Z, A, B, C are matrices, and the objective func-
tion is either separable f (X, Z) = g(X) + h(Z) or bi-
convex. ADMM solves (8) by minimizing its Augmented-
Lagrangian:

LA(X, Z, μ, M) = f (X, Z)+ < M, AX + BZ − C >

+μ

2
‖AX + BZ − C‖2

F , (9)

where M is a Lagrange multiplier and μ is a penalty coef-
ficient that controls the penalty level of deviation from the
equality constraint. The minimization of LA(X, Z, μ, M) is

1The observant reader may notice that problem (5) is actually separa-
ble, implying that we can solve for each column of X independently
from the others. Nevertheless, we choose in this paper a joint solver
for two reasons: (i) Giving a unified view of the two problems (5 and
6); and (ii) Our approach loses nothing in terms of complexity nor
elegance when compared to the independent sparse coding tasks.
2Note that the related problem of a sparsely represented interference
matrix E = �C, where � is a dictionary and C is sparse, can be
formulated as follows:

min
X,C

1

2
‖Y − DX − �C‖2

F + α‖X‖1,p + β‖C‖1,1,

and its solution can be also obtained using the proposed approach in
this section.

performed iteratively, while alternating between the mini-
mizations of X and Z:

Xk+1 = arg min
X

LA(X, Zk, μk, Mk) (10)

Zk+1 = arg min
Z

LA(Xk+1, Z, μk, Mk) (11)

Mk+1 = Mk + μk(AXk+1 + BZk+1 − C) (12)

μk+1 = ρμk; ρ > 1. (13)

ADMM can be extended to more than two variables, and its
convergence3 properties are analyzed in [11].

4.2 Sparse Coding with Anomaly Detection

In order to apply ADMM to solve problem (7), we add an
auxiliary variable Z and an equality constraint as follows:

min
X,E,Z

1

2
‖Y − DX − E‖2

F + α‖Z‖1,p + β‖E‖2,1 s.t. Z = X.

(14)

Note that by converting Eq. (7) into a constrained problem,
we have decoupled the first and second terms of Eq. (7),
thus, avoiding the need for an iterated-shrinkage [17] solu-
tion for X. The addition of the auxiliary variable Z results in
a closed-form solution for X and a one-shot shrinkage solu-
tion for Z. The Augmented-Lagrangian of problem (14) is
given by:

Lp(X, Z, E, M, μ) = 1

2
‖Y − DX − E‖2

F + α‖Z‖1,p

+β‖E‖2,1+ < M, Z − X >

+μ

2
‖Z − X‖2

F . (15)

The main stages of the ADMM-based solution are summa-
rized in Algorithm 1, and in the following we describe the
update equations of Xk+1, Zk+1, Ek+1. The update equation
of Xk+1 is closed-form (and derived in the Appendix):

Xk+1 =
(

DT D + μkI
)−1 (

DT
(

Y − Ek
)

+ Mk + μkZk
)

.

(16)

The update equation of Zk+1 for the SMV case is obtained
from:

Zk+1 = arg min
Z

α‖Z‖1,1+ < Mk, Z − Xk+1 >

+μk

2

∥
∥
∥Z − Xk+1

∥
∥
∥

2

F
, (17)

which can be simplified to:

Zk+1 = arg min
Z

1

2
‖P − Z‖2

F + γ ‖Z‖1,1, (18)

3Note that problem (7) is convex, therefore ADMM will approach the
global minimum. Since the Frobenius-norm term in (7) is not sepa-
rable, perfect convergence is not guaranteed, however, it was verified
experimentally that the solution obtained by ADMM is sufficiently
accurate after 50 iterations.
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Algorithm 1 Sparse coding with anomaly detection

Solve: minX,E
1
2 ‖Y − DX − E‖2

F +α ‖X‖1,p +β‖E‖2,1.
Input: signals Y ∈ R

N×L, Dictionary D ∈ R
N×M .

Mode: p = 1 for SMV or p = 2 for MMV.
Initialize: set k = 0, Z0, E0, M0, μ0, ρ, ε.
Repeat Until Convergence:

1. Xk+1 = arg minX Lp

(
X, Zk, Ek, Mk, μk

)
.

2. Zk+1 = arg minZ Lp

(
Xk+1, Z, Ek, Mk, μk

)
.

3. Ek+1 = arg minE Lp

(
Xk+1, Zk+1, E, Mk, μk

)
.

4. Mk+1 = Mk + μk
(
Zk+1 − Xk+1

)
.

5. μk+1 = ρμk .
6. k = k + 1.

7. Stop if
∥
∥Zk−Xk

∥
∥2

F

‖Xk‖2
F

< ε

Output: Xk, Ek .

where P = Xk+1 − 1
μk Mk and γ = α

μk . The solution to
problem (18) is the element-wise soft thresholding operator
[11]:

Zk+1 = Sγ (P), (19)

where:

Sγ (a) =
⎧
⎨

⎩

a − γ if a > γ

0 if |a| ≤ γ

a + γ if a < −γ

.

The update equation of Zk+1 for the MMV case is given by:

Zk+1 = arg min
Z

1

2
‖P − Z‖2

F + γ ‖Z‖1,2, (20)

which results in a row-shrinkage operator (as proved in [4]):

Zk+1(j, :) =
{ ‖P(j,:)‖2−γ

‖P(j,:)‖2
P(j, :) if γ < ‖P(j, :)‖2

0 otherwise
,

(21)

where P(j, :) is the j-th row of P.
The update equation of Ek+1 is obtained from:

Ek+1 = arg min
E

1

2

∥
∥
∥Y − DXk+1 − E

∥
∥
∥

2

F
+ β ‖E‖2,1 , (22)

which results in a column-shrinkage operator (similar to the
derivation of Eq. (21)):

Ek+1(:, i) =
{ ‖Q(:,i)‖2−β

‖Q(:,i)‖2
Q(:, i) if β < ‖Q(:, i)‖2

0 otherwise
,

where Q = Y − DXk+1 and Q(:, i) is the i-th column of Q.

4.3 Computational Complexity

The complexity of the proposed approach depends linearly
on the number of signals L and polynomially on the number
of atoms M . The complexity of a single ADMM iteration
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Figure 2 Computation time of the proposed approach (SMV mode)
for a varying number of signals between 50,000 to 500,000.

is given by O(M3) + O(MNL) + O(ML) + O(M2L) +
O(ML) + O(NL), where the leading four terms comprise
the complexity of the update step of Xk+1, the fifth term
is the complexity of the update equation of Zk+1, and the
sixth term is the complexity of the update equation of Ek+1.
Figure 2 depicts the measured complexity of the proposed
approach (SMV mode) for a varying number of signals
between L = 50, 000 to L = 500, 000 (using N = 32
and M = 128), demonstrating the linear dependence on the
number of signals .

5 Performance Evaluation

The purpose of this section is to show the usefulness of the
proposed approach, by demonstrating4 it on two very dif-
ferent real life problems: The SMV mode of Algorithm 1 is
utilized to detect irregular heartbeats in ECG signal; and the
MMV mode of Algorithm 1 is utilized for the image pro-
cessing task of specular reflectance and shadows removal
from natural images. The simulations were performed on an
i7 quad-core computer with 8GB of RAM memory.

5.1 Arrhythmia Detection in ECG Signals

Irregular heartbeats, know as Arrhythmia, is a collection
of several types of abnormal cardiac electrical activity.
Arrhythmia is detected by analyzing ECG, which is a non-
invasive technique for monitoring cardiac electrical activity.
The durations of ECG recordings often reach 24 h, which

4All the results in this paper are reproducible with a MATLAB package
that is freely available for distribution.
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promoted research efforts for automatic Arrhythmia detec-
tion algorithms, see for example [12, 13]. In this experiment
we focused on the detection of one type of Arrhythmia
event: a Premature Ventricular Contraction (PVC), which
is demonstrated in Fig. 3. Sparse representations have been
proposed by [14] for ECG source separation problems,
which motivated the utilization of the proposed approach
for Arrhythmia detection: given an ECG signal that contains
mostly normal heartbeats, the key idea is to decompose the
signal into all possible N-samples windows (on the order
of 1 s duration) and train a dictionary that will provide a
sparse representation for these windows. Note that due to
the multiplicity and periodicity of normal heartbeats, their
corresponding windows are highly repetitive, and constitute
the majority among all windows. The dictionary is expected
to enable an accurate sparse representation for the windows
that correspond to normal heartbeats, due to their high con-
tribution to the training stage. However, the windows that
correspond to Arrhythmia events are not expected to be
accurately represented by this dictionary, due to their sig-
nificant deviation from the normal heartbeats waveforms
and their low contribution to the training stage (due to
rareness of such events). Therefore, a possible strategy for
Arrhythmia detection is to solve problem (7) for the SMV
case, since each window is expected to be sparsely repre-
sent by a different combination of dictionary atoms, and
mark columns of E with an l2-norm above a threshold τ as
irregular heartbeats locations.

We validated our approach using the MIT-BIH Arrhyth-
mia Database [15] that contains a collection of 30 min
fully annotated ECG recordings, sampled at 360 Hz. We
analyzed ECG recording #109, which includes 5 40 PVC
events and 2492 regular heartbeats, by extracting all pos-
sible 256-samples windows, leading to initial signal col-
lection dimensions of 256 × 647, 745. Due to normal sinus
rhythm variations in this recording between 77 to 101, this
collection was divided into six segments of 5 min that were
processed independently: the dimension of all windows in
a segment was reduced from 256 to 32 by projection onto
the 32 leading PCA basis vectors of the segment, and an
over-complete dictionary D ∈ R

32×128 was trained using the
K-SVD [16] algorithm for each segment,6 as demonstrated
in Fig. 4. The SMV mode of Algorithm 1 was employed for
each segment with the following parameters: μ0 = 1.0, ρ =
1.25, α = 1.0, β = 2.6, ε = 0.0025, and Arrhythmia
events were detected as column in E with l2-norm above
a threshold τ = 0.1 (the processing time for the 30 min
recording was 176 s). Figure 5 depicts ‖E(:, i)‖2 for the first

5http://www.physionet.org/physiobank/database/html/mitdbdir/
records.htm
6A total of six dictionaries were trained—each using all of the
dimensionality-reduced samples from each segment.
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Figure 3 A Premature Ventricular Contraction (PVC) event interrupts
a series of normal heartbeats in ECG recording #109 from the MIT-
BIH Arrhythmia Database [15].

15 min (formed by concatenation of the results from the
first 3 segments), demonstrating accurate matching between
most of the non-zero l2-norm columns and the ground truth
annotations of this recording. Due to the randomness of the
initial dictionary used in the K-SVD algorithm, the entire
experiment was repeated 10 times, resulting in an average
of 97.18 % true positive detections with standard deviation
1.89 %, and an average of 2.82 % false negatives with stan-
dard deviation 1.89 %. Additional 13 non-PVC events were
detected on average, which corresponded to noise and wave-
form distortions. In order to demonstrate the effectiveness
of the proposed approach, we repeated the same experiment
using independent sparse coding per each ECG window: we
employed the Orthogonal Matching Pursuit (OMP) algo-
rithm to reconstruct each dimensionality-reduced window
using the trained dictionary (with a fixed number of atoms).
A window was marked as an outlier if its reconstruction
error exceeded a threshold τOMP . We set the threshold value
to achieve (approximately) the same true positive rate of
the proposed approach, and obtained the following result:
an average (over 10 experiments) of 98.46 % true positive
detections with standard deviation 1.79 %, and 55.2 non-
PVC events. Namely, the OMP-based approach resulted in
a significantly higher false positive rate, compared to the
proposed approach.

5.2 Specular Reflectance and Shadows Removal
from Natural Images

The reflection of light from surfaces is associated with
two main components [18]: diffuse and specular. The dif-
fuse component scatters light uniformly in all directions,
whereas the specular component scatters light in a direction

http://www.physionet.org/physiobank/database/html/mitdbdir/records.htm
http://www.physionet.org/physiobank/database/html/mitdbdir/records.htm
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Figure 4 ECG dictionary:16 atoms of one ECG segment, displayed after reconstruction using the 32 leading PCA basis vectors of the segment.

that depends on the angles of incident light and the surface
normal. Light energy due to specular reflections is often
concentrated, causing strong bright regions (highlights) to
appear in the image, as demonstrated in Fig. 7 (left column).
These bright regions can cause computer vision algorithms
such as segmentation, shape from shading, stereo, and
motion detection to produce errors. Therefore, there has
been significant interest in specular reflectance removal, see
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Figure 5 Arrhythmia detection: columns of E with an l2-norm above
τ = 0.1 indicate an ECG anomaly.

[19] for a review. According to Phong shading model [18],
the intensity of the diffuse component at image pixel k is
given by:

ik(λ) = L(λ)ρk(λ) max(0, n̂k · v̂), (23)

where λ is the wavelength (color), L(λ) is the inten-
sity profile of incident light, ρ(λ) is the albedo, n̂ =
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[nx, ny, nz]T is the surface normal, and v̂ = [vx, vy, vz]T
is a unit vector pointing to the direction of incident light.
Equation (23) is interpreted as follows: The measured
intensity is given by the product of the source inten-
sity, the albedo and the cosine of the angle θi between
the surface normal and direction of incident light. In the
case that |θi | > π/2 the intensity equals zero, which
results in a self-shadow7 effect. By column-stacking m

pixels, and neglecting the self shadowing effect (i.e. allow-
ing |θi | > π/2), the following matrix formulation is
obtained:

i(λ) = N(λ)v̂ ∈ R
m×1, (24)

where

i(λ) =
⎡

⎣

i1(λ)
i2(λ)

...

⎤

⎦ ∈ R
m×1, N(λ) =

⎡

⎢
⎣

L(λ)ρ1(λ)n̂T
1

L(λ)ρ2(λ)n̂T
2

...

⎤

⎥
⎦ ∈ R

m×3.

(25)

Given a collection of K images of a diffuse object, pho-
tographed from the same view-point and under varying
light source directions, the following rank-3 model is
obtained:

I(λ) = N(λ)V, (26)

where

I(λ) =
⎡

⎢
⎣

i1(λ)

i2(λ)
...

⎤

⎥
⎦ ∈ R

m×K, V = [v̂1, · · · , v̂K ] ∈ R
3×K.

(27)

Therefore, the diffuse component can be modeled by a low-
dimensional subspace, and the works [20, 21] proved that
the dimension of this subspace is upper bounded by 9. The
basis for this subspace can be computed from the PCA basis
of the images. However, specular components and shad-
ows are not represented by this subspace. Therefore, we
can solve problem (7) with the MMV mode, in order to
decompose the images Y (each column of Y is one column-
stacked image) into diffuse components DX, and specular
components and shadows E as follows: the diffuse compo-
nents of all images are expected to be jointly-sparse with
respect to the PCA basis D, whereas the specular compo-
nents and shadows are assumed to appear in a subset of

7This is in contrast to cast-shadows, where one part of an object is
shadowed by another part.

Figure 7 Specular reflectance removal: input images (left), diffuse
components (center) and specular components (right).

the images, thus, by minimizing ‖E‖2,1 the columns of E
would contain those parts of the images that do not con-
form with the joint-sparsity model. In our experiment we
used a collection of 37 images (195 × 317 pixels) of a
wrist watch, photographed from the same view-point and
using 37 different illumination conditions. We computed
the PCA basis of Y ∈ R

61,815×37 and used it as the dic-
tionary D. We further employed Algorithm 1 and set p =
2, α = 4.5, β = 0.5, μ = 0.05, ρ = 1.15, ε = 10−10.
Figure 6 presents convergence of the algorithm within 35
iterations (processing time was 22 s) to a joint-sparsity
pattern with 3 non-zero rows (a 3-dimensional subspace).
Figure 7 presents specular reflectance removal results (best
viewed in the electronic version of this paper) for five
images: the obtained diffuse components (equal to DX(:, l),
where l is the corresponding index of each input image) are
free of specular reflections and the shadows are significantly
removed.

For the case of color images, the low-dimensional sub-
space model still holds since for a certain image pixel,
only the albedo and incident light intensity are color (wave-
length) dependent. Using an RGB color representation we
obtain the following model:

iRGB =
⎡

⎣
i(R)

i(G)

i(B)

⎤

⎦ =
⎡

⎣
N(R)v̂
N(G)v̂
N(B)v̂

⎤

⎦ =
⎡

⎣
N(R)

N(G)

N(B)

⎤

⎦ v̂ ∈ R
3m×1.

(28)
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Figure 8 Specular reflectance and shadows removal from color
images: input images (left), diffuse components (center) and specular
components (right).

Given a collection of K color images of a diffuse object,
photographed from the same view-point and under varying
light source directions, a rank-3 model is obtained, simi-
lar to Eq. (26). Figure 8 demonstrates specular reflectance
and shadows removal results for color images: the obtained
diffuse components are free of specular reflections and the
shadows are significantly removed.

6 Conclusions

Sparse coding and anomaly detection are important tasks,
with numerous signal processing applications. This paper
presented a unified approach for simultaneous sparse cod-
ing and anomaly detection for both jointly-sparse and
independently-sparse signal models. The usefulness of the
proposed approach was demonstrated for two challenging
real-life problems: Arrhythmia detection in ECGs and spec-
ular reflectance removal from natural images. Due to the
constantly growing number of signals that are well modeled
by sparse representations, the proposed approach could be
combined in many existing and emerging applications.

Appendix

The update equation for Xk+1 is obtained by solving:

min
X

1

2

∥
∥
∥Y − DX − Ek

∥
∥
∥

2

F
+ < Mk, Zk − X > +μk

2

∥
∥
∥Zk − X

∥
∥
∥

2

F
.

(29)

The solution of Eq. (29) is computed from:

∂

∂X

(
1

2
Tr

{(
Y − DX − Ek

) (
Y − DX − Ek

)T
}

+ Tr
{
(Zk − X)T Mk

}

+μk

2
Tr

{(
Zk − X

) (
Zk − X

)T
})

= 0, (30)

which results in:

DT
(

Y − DX − Ek
)

+ Mk + μk
(

Zk − X
)

= 0, (31)

and the update equation is given by:

Xk+1 =
(

DT D + μkI
)−1 (

DT
(

Y − Ek
)

+ Mk + μkZk
)

.

(32)
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