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Abstract The conventional iris recognition methods do
not perform well for the datasets where the eye image
may contain nonideal data such as specular reflection,
off-angle view, eyelid, eyelashes and other artifacts.
This paper gives contributions for a reliable iris recog-
nition method using a new scale-, shift- and rotation-
invariant feature-extraction method in time-frequency
and spatial domains. Indeed, a 2-level nonsubsampled
contourlet transform (NSCT) is applied on the normal-
ized iris images and a gray level co-occurrence matrix
(GLCM) with 3 different orientations is computed on
both spatial image and NSCT frequency subbands.
Moreover, the effect of the occluded parts is reduced
by performing an iris localization algorithm followed by
a four regions of interest (ROI) selection. The extracted
feature set is transformed and normalized to reduce the
effect of extreme values in the feature vector. Next,
significant features for iris recognition are selected by
a two-step method composed by a filtering stage and
wrapper based selection. Finally, the selected feature set
is classified using support vector machine (SVM). The
proposed iris identification method was tested on the

public iris datasets CASIA Ver.1 and CASIA Ver.4-lamp
showing a state-of-the-art performance.

Keywords Graylevelco-occurrencematrix . Iris recognition .
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1 Introduction

Iris recognition is a reliable and accurate biometric identifica-
tion technology due to the uniqueness, aging invariant and
noninvasive characteristics of iris. Moreover, this is a noncon-
tact data acquisition technology.

Since, Flom and Safir [1] proposed the concept of
iris recognition for first time, many research works on
automatic iris recognition have been published. These
approaches comprise, iris preprocessing and segmenta-
tion, iris code generation and finally, comparison and
recognition [2]. An earlier automatic iris recognition
method, based on multiscale Gabor wavelets and ex-
tracted phase information of iris textures, was proposed
by Daugman [3]. Wildes [4] employed a gradient-based
binary edge map and the Hough transform to detect the
iris and pupil boundaries. Iris images were classified by
using the normalized correlation. Recently, many other
automatic iris recognition algorithms have been pro-
posed which are based on the pioneered algorithms of
Daugman [3] and Wildes [4]. Table 1 summarizes the
state-of-the-art automatic iris recognition approaches.
Preprocessing and segmentation generally consist on iris
localization and iris normalization. For iris localization,
which is the process of detecting the inner (iris/pupil)
and the outer (iris/sclera) boundaries in the eye image,
several techniques have been proposed, such as Integro-
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differential operator [3, 5] a combination of Hough
transform and region-based active contours [6], and
thresholding [7]. In iris normalization, most of the al-
gorithms applied Daugman rubber sheet model [3, 5,
7–10]. Most of the methods performed well for ideal
conditions in a very constrained environment [2, 3].
However, iris recognition under nonideal real-world
conditions still presents many challenges not solved by
those algorithms. A nonideal dataset of eye images may
contain occlusions such as eyelids and eyelashes or low
contrast, specular reflections, focus, and nonuniform
illumination. Besides, the off-axis eye image (eye not
oriented horizontally) that occurs frequently in real eye
images is another common problem to overcome in iris
recognition [11]. Recently, some methods have been
proposed [12–15] to segment iris from nonideal eye
images. Datasets CASIA Ver.3 and Ver.4 [16], UBIRIS
Ver.2 [17] have been used to evaluate the proposed
segmentation methods.

On the other hand, different methods have been ap-
plied to extract features from normalized iris images,
such as approaches based on Gabor filters [3], Wavelet

transforms [8–10, 18] Curvelet transforms [5] and 1-D
circular profiles [19]. Even though, the wavelet trans-
form is popular, powerful and familiar among the iris
image processing techniques, it has its own limitations
in capturing directional information such as smooth
contours and the directional edges of the image. This
problem is addressed by Contourlet transform (CT) [22].
In addition to multiscale and time-frequency localization
properties of wavelets, CT offers directionality and an-
isotropy. A 4-level CT method for iris feature extraction
is described in [23], in which normalized images are
partitioned into multiscale and multi-directional
subbands. The normalized energy of subbands are cal-
culated as features to train a support vector machine
(SVM) classifier. Due to downsampling and upsampling,
the CT lacks shift-invariance. To overcome this limiting
factor, Cunha et al. [24] proposed a shift-invariant ver-
sion of CT designated nonsubsampled contourlet trans-
form (NSCT).

Several methods for feature extraction, representing differ-
ent aspects of the iris images, were reported [8, 25]. To reduce
the computational cost and to improve the classification

Table 1 State-of-the-art of iris recognition.

Iris recognition
approaches

Preprocessing and Segmentation Feature extraction Classification

Iris localization Iris normalization

Daugman [3] Integro-differential operator Homogenous rubber
sheet model

2D Gabor filters Hamming distance

Wildes [4] Image intensity gradient
and Hough transform

Low pass Gaussian filter,
spatial sub-sampling

Laplacian pyramid
decomposition

Normalized
correlation

He, Z. et al. [20] Ada-boost cascade iris
detector, Pulling and
pushing elastic model

Daugman’s rubber
sheet model

Regional ordinal
measure

Hamming distance

Farouk, R.M. [6] Circular Hough transform,
region-based active contours

– Gabor wavelet Elastic graph

Tsai, C. et al. [21] Image intensity gradient
and Fuzzy curve-tracing
(FCT) algorithm

The nonlinear
normalization

Gabor filter Probabilistic fuzzy
matching

Poursaberi and Araabi [7] Extended-minima morphology
operator with suitable
threshold

Modified Daugman’s
rubber sheet model

Daubechies2 wavelet Hamming distance

Roy, et al. [8, 9] Level set methods with edge
stopping function and energy
minimization algorithm

Daugman’s rubber
sheet model

Daubechies wavelet Adaptive
asymmetrical
SVM (AASVMs)

Belcher, C. et al. [15] Rectangular images around
the pupil

Daugman’s rubber sheet
model

Region-based SIFT
features

Euclidean distance

Chen and chu [19] 2D wavelet filtering, Image
intensity and Thresholding

Mapping to a fixed-size
rectangular and
partitioned normalized
iris image into 3 and
again into 2 regions

1-D circular profile Probabilistic Neural
Network (PNN)

Szewczyk et al. [10] Filling the light source
reflection, non-concentric
circles based modelling
of iris boundaries

Daugman’s rubber sheet
model

Reverse biorthogonal
wavelet transform

Hamming distance
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performance, a selection of the best discriminative features is
highly desirable.

To address the highlighted issues, the paper provides the
following contributions:

1. An overall contribution: A new scale-, shift- and rotation-
invariant iris recognition method, in time-frequency and
spatial domains is proposed. The effectiveness of our
approach is validated, through a set of experiments using
CASIA dataset Ver.1 and Ver.4-lamp.

2. Iris segmentation: to determine the pupil region, among
labeled regions in binary eye image, a pupillary boundary
detection method is proposed. The contribution here is a
new way for selection of the pupil region that consists of
selecting a region with the largest area and the smallest
eccentricity in the binary image. Moreover, in some of
related works (Table 1) only the upper and/or lower part of
the iris image (texture) is used to remove the occluded
regions by the eyelid and eyelashes, which results in loss
of significant “information”. Therefore, to mitigate this
problem after detection of limbic boundary, a four-ROIs
selection method is proposed.

3. Feature extraction: after normalizing the selected regions
of interest some textural features are extracted from the
gray level co-occurrence matrix (GLCM). The
GLCM is calculated on both spatial image and
frequency subbands of NSCT decomposition. More-
over, numerical features are calculated directly on
NSCT frequency and spatial iris image.

4. Feature selection: to reduce the influence of extreme
values, the extracted features are transformed, normal-
ized and then fed into our feature selector. Selection
of the features using well known automatic feature
selectors is not accurate enough to get the best results;
most of these feature selectors, select feature elements
from all the feature-types which can not yield the best
selection. In order to obtain a more accurate selection
and further reduce the number of extracted features, a

new two-step feature selection process, which consists
of filtering and a wrapper phase, is proposed. In the
first step, some of the feature-types are removed using
a simple filtering algorithm and then in the second
step the minimal-redundancy and maximal-relevance
(mRMR) algorithm which is a wrapper based feature
selector, is applied.

2 Proposed Approach

The proposed iris recognition method includes five major
phases: a) iris preprocessing and segmentation, b) feature
extraction, c) feature transformation and normalization, d)
feature selection, and e) classification.

2.1 Iris Preprocessing and Segmentation

For the purpose of iris recognition, some parts of eye
image such as eyelid, sclera, eyelash and pupil should
be removed. In addition, even for iris of the same eye,
the size may vary depending on camera-to-eye distance
as well as light brightness. Therefore, the original eye
image needs to be preprocessed to reduce the influence
of the mentioned occlusions.

2.1.1 Localization

As shown in Fig. 1, to locate the inner (iris/pupil) and outer
(iris/sclera) boundaries in an eye image, the following steps
are performed: 1) reflection removal. 2) pupillary boundary
detection. 3) limbic boundary detection.

Reflection Removal Specular reflections (light spots in the
eye image) can cause some problems in the localization
process. As shown in Fig. 2(a–f), to localize the light
source reflections, firstly the eye image is binarized

Inpainted Image

Reflection 

Original Image

Pupil boundary 

detection

Limbic boundary 

detection

Localized iris image

Figure 1 Block diagram of iris
localization steps.
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using a thresholding technique (in the experiments, the
threshold=190 was used). The binarized eye image is
then dilated, to consider all possible affected regions.
Next, to fill the segmented reflection, the resulted mask

(c) is complemented (d) and applied to the eye image
for marking the reflections spots. Finally, the detected
specular reflections are “inpainted” using the 8 sur-
rounding neighbors (all steps are detailed in Algorithm 1).

Pupillary Boundary Detection To detect the pupillary bound-
ary, the inpainted eye image is first binarized (Fig. 3(b)) using
a threshold value, M+25 [27] where M is a minimum fixed

value of the inpainted image. In addition to the pupil, other
dark regions of the eye image such as eyelashes fall below this
threshold value. In order to eliminate the regions

(a) (b) (c)

(d) (e) (f)

Figure 2 Reflection removal
steps. (a) the original eye image.
(b) binarized eye image after
applying the threshold. (c) dilated
binarized eye image resulted from
(b). (d) complement of image (c).
(e) mask image. (f) inpainted
image.
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corresponding to the eyelashes a 2-D median filter with a 10×
10-convolution mask is applied to the binary image. This
reduces the number of candidate regions detected as a conse-
quence of thresholding [27] (Fig. 3(c)). The remaining regions
in the median-filtered binary image are labeled and the region
with the largest area and the smallest eccentricity is deter-
mined as pupil region. Finally, the pupil radius and centroid
are calculated as follows:

pupilRadius ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� A=π

p� �.
2 ð1Þ

Cx;Cy

� � ¼ Z
xdA

.
A;

Z
ydA

.
A

� �
ð2Þ

(a) (b)

(c) (d)

Figure 3 Pupil boundary
detection steps. (a) inpainted
image. (b) binarized inpainted
image. (c) smoothed image. (d)
detected pupillary boundary.

where (Cx, Cy) denote the center coordinates of the pupil and
A is the area of the pupil. All steps are detailed in Algorithm 2.
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Limbic Boundary Detection As shown in Algorithm 3,
before locating the outer boundary, a gamma threshold
[28] is adjusted to the iris edge map (extracted by a
Canny edge detector) to enhance the iris contrast. Then,
the weak edge pixels are set to zero using non-maxima
suppression; thus only the dominant edges are extracted.
Finally, a hysteresis threshold is applied to the image.
Having the pupil center coordinates, the radius and
center coordinates of the iris boundary can be deduced
using the circular Hough transform (Fig. 4).

2.1.2 Selecting Region of Interest

As depicted in Fig. 5, to disregard the iris regions
occluded by the eyelid and eyelashes and to avoid loss
of discriminative features, we adopt the method de-
scribed in our previous work [26], in which four re-
gions of interest (ROI) are selected:

& Right side of the iris circle, a sector between angles -π/4
and π/4 with a radius equal to iris radius (Fig. 5(a)).

(a) (b) (c)

(d) (e) (f)

Figure 4 Illustration of limbic boundary detection steps. (a) inpainted
image. (b) result of applying Canny edge detector. (c) result of applying
gamma adjustment. (d) result of applying non-maxima suppression. (e)

result of applying hysteresis thresholding. (f) result of applying circular
Hough transform on (e) and detected limbic boundary.
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& Left side of the iris circle, a sector between angles
4π/5 and 4π/3 with a radius equal to iris radius
(Fig. 5(a)).

& Bottom side of the iris circle, a sector between
angles 4π/3 and –π/4 with a radius of 1/2 of the
iris radius (Fig. 5(b)).

& A disk around the pupil with a radius of 1/3 of the iris
radius to cover the collarette area (Fig. 5(c)).

2.1.3 Normalization and Enhancement

To compensate several external factors such as illumination
variations and imaging distance, the partial iris images are
normalized using “Daugman Rubber Sheet” model [3].

Since the original iris image has low contrast and
may have non uniform illumination caused by the posi-
tion of the light sources, some enhancements need to be
applied. The histogram equalization is used to enhance
the normalized iris images. The enhancement involves
tessellating the normalized iris into 32×32 tiles
(Fig. 6(a)) and subjecting each tile to histogram equal-
ization. Then the Wiener noise-removal filter is applied
to the output of equalized histogram (Fig. 6(b)).

2.2 Feature Extraction

A reliable iris recognition system should extract features
that are invariant to scaling, shift and rotation. As we
described in [26], the scale invariance is obtained by
unwrapping the selected iris regions into four fixed size
rectangles. To achieve shift invariance, the enhanced
images are transformed into the frequency domain using
the NSCT which is a shift-invariant transform and can
capture the geometry of the iris texture. Finally, the
GLCM is calculated on both spatial image and NSCT

frequency subbands, which yields rotation invariance.
The method is detailed in the following paragraphs.

2.2.1 Nonsubsampled Contourlet Transform

In contourlet transform, the Laplacian Pyramid (LP) is first
used to capture point discontinuities, and then followed by a
Directional Filter Bank (DFB) to link point discontinuities
into linear structures [29]. The overall result is an image
expansion using basic elements like contour segments, and
thus called contourlet transform, which is implemented by a
Pyramidal Directional Filter Bank (PDFB) [30]. The LP de-
composition at each level generates a downsampled lowpass
version of the original image, and a difference between the
original image and the prediction results in a bandpass image.
As stated in [24] “due to downsamplers and upsamplers
present in both LP and DFB, contourlet transform is not
shift-invariant”. To achieve the shift-invariance property,
NSCTwas proposed.

The NSCT is built upon nonsubsampled laplacian
pyramids (NSLP) and nonsubsampled directional filter
bank (NSDFB); thus, it is a fully shift-invariant,
multiscale, and multidirection image decomposition that
has a fast implementation.

2.2.2 Primary Features

The enhanced iris image is decomposed into 6 directions
using NSDFB at 2 different scales. Next, some textural fea-
tures are extracted from the spatial iris image and all the
resultant NSCT frequency subbands. Textural features f1-f22
mentioned in Table 2 are computed on the basis of statistical
distribution of pixels’ intensity at a given position relative to
others in a matrix of pixels called GLCM [25]. Since the
GLCM is computed for different orientations, the rotation of
the iris can be captured by one of the matrices. Feature

(a) (b) (c)

4π/3 -π/4

4π/5 π/4

4π/3 -π/4 Collarette area

Figure 5 Selected areas for
normalization.

(a) (b)

Figure 6 Illustration of iris
enhancement step. (a) tiled
normalized image. (b) enhanced
iris image resulted from
histogram equalization and
Wiener filtering.
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extraction based on GLCM is a second-order statistic that can
be employed to analyze an image as a texture. Although
GLCM captures properties of a texture, it cannot be directly
used for further analysis, such as the comparison of two
textures; thus numeric features f1-f22 which contain significant
information about the textural characteristics are obtained
from the GLCM in different directions [31], [25] and [33].

Moreover, numerical features f23-f26 are calculated directly on
NSCT frequency subbands and spatial iris image.

2.3 Feature Transformation and Normalization

The extracted features are transformed and normalized in
order to reduce the influence of extreme values. The

Table 2 Textural features.

# Feature name Formula # Feature name Formula

f1 Autocorrelation [31] ∑
i
∑
j
ijð Þp i; jð Þ f14 Sum of average [25]

∑
2Ng

i¼2
ipxþy ið Þ

f2 Contrast [25, 31]
∑
n¼0

Ng−1

n2 ∑
i¼1

Ng

∑
j¼1

Ng

p i; jð Þ
( )

; cx ji− jj ¼ n
f15 Sum of variance [25]

∑
2Ng

i¼2
i− f 8ð Þ2pxþy ið Þ

f3 Correlation [32] ∑
i; j

i−μið Þ j−μ jð Þp i; jð Þ
σiσ j

f16 Sum of entropy [25]
− ∑
2Ng

i¼2
pxþy ið Þlog pxþy ið Þ

n o
f4 Correlation [25, 31] ∑i∑ j ijð Þp i; jð Þ−μxμy

σxσy

f17 Difference variance [25] variance of px−y

f5 Cluster Prominence
[31]

∑
i
∑
j

iþ j−μx−μy

n o4
� p i; jð Þ f18 Difference entropy [25]

−∑
i¼0

Ng−1

px−y ið Þlog px−y ið Þ
n o

f6 Cluster Shade [31] ∑
i
∑
j

iþ j−μx−μy

n o3
� p i; jð Þ f19 Information measure of

correlation1 [25]
HXY−HXY1

max HX ;HYf g0

HXY ¼ −∑
i
∑
j
p i; jð Þlog p i; jð Þð Þ

HXY1 ¼ −∑
i
∑
j
p i; jð Þlog px ið Þpy ið Þ

n o
f7 Dissimilarity [31] ∑

i
∑
j
i− jj j:p i; jð Þ f20 Information measure of

correlation2 [25]
1−exp −2:0 HXY2−HXYð Þ½ �ð Þ1=2

HXY ¼ −∑
i
∑
j
p i; jð Þlogp i; jð Þ

HXY2 ¼ −∑
i
∑
j
px ið Þpy jð Þlog px ið Þpy jð Þ

n o
f8 Energy [25, 31] ∑

i
∑
j
p i; jð Þ2 f21 Inverse difference normalized

[33] ∑
i; j¼1

G
Cij

1þ i− jj j2=G2

f9 Entropy [31] −∑
i
∑
j
p i; jð Þlog p i; jð Þð Þ f22 Inverse difference moment

normalized [33] ∑
i; j¼1

G
Cij

1þ i− jð Þ2

f10 Homogeneity [32] ∑
i; j

p i; jð Þ
1þji− jj

f23 Standard Deviation
1

n−1 ∑
i¼1

n
xi−xð Þ2

� �1
2

x¼ 1
n ∑
i¼1

n
xi

f11 Homogeneity [31] ∑
i
∑
j

1
1þ i− jð Þ2 p i; jð Þ f24 Mean

∑
i¼1

Ng

∑
j¼1

Ng

p i; jð Þ
 !

=M

iþ j ¼ n

f12 Maximum
probability [31]

MAX p(i,j) f25 Variance ∑
i
∑
j
i−μð Þ2p i; jð Þ

f13 Sum of squares
Variance [25]

∑
i
∑
j
i−μð Þ2p i; jð Þ f26 Energy of Fast

FourierTransform
Energy FFTð Þ ¼ ∑

i; j
p i; jð Þ2

p(i,j): (i,j)th entry in a normalized gray-tone spatial dependence matrix, px(i): ith entry in the marginal-probability matrix obtained by summing the rows

of p i; jð Þ ¼ ∑
j¼1

Ng

p i; jð Þ , Ng: Number of distinct gray levels in the quantized image, py jð Þ ¼ ∑
i¼1

Ng

p i; jð Þ , pxþy kð Þ ¼ ∑
i¼1

Ng

∑
j¼1

Ng

p i; jð Þwherek ¼ 2; 3;…; 2Ng

and iþ j ¼ k , px−y kð Þ ¼ ∑
i¼1

Ng

∑
j¼1

Ng

p i; jð Þwherek ¼ 0; 1;…;Ng−1and i− jj j ¼ k [25], the mean and standard deviation for the rows and columns of the

matrix are: μx ¼ ∑
i
∑
j
i:p i; jð Þ , μy ¼ ∑

i
∑
j
j:p i; jð Þ , σx ¼ ∑

i
∑
j
i−μxð Þ2p i; jð Þ , σy ¼ ∑

i
∑
j

j−μy

� �2
p i; jð Þ [31]
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transformation methods applied to each feature are described
in [34]. After a thorough experimental evaluation of each
transform operator over extracted features, it was empir-
ically verified that the best classification results were
attained by applying xij ¼ 1=

ffiffiffiffiffiyijp where yij denotes the

ijth element of a feature matrix Y, and X={xij; i=1,2,…,
N and j=1,2,…,M} (where N and M denote the number
of subjects and features respectively) is the transformed
feature matrix. Thereby this transform was adopted in the
overall iris recognition system. To avoid features in greater
numeric ranges dominating those in smaller numeric ranges,
each feature of the transformed matrix X is independently
normalized to the (0, 1) range by applying

x̄ij ¼ xij= max xj

� �
−min xj

� �� � ð3Þ

where xj is a vector of each independent feature [35].

2.4 Feature Selection

Selection of the features using well known automatic feature
selectors is not accurate enough to get the best results; most of
these feature selectors, select feature elements from all the
feature-types which yield inaccurate selection. In order to ob-
tain a more accurate selection and further reduce the number of

extracted features, a new two-step feature selection process,
which consists of filtering and a wrapper phases, is proposed.
Filter based methods are in general faster than wrapper
strategies. On the other hand, wrapper strategies are
found to be more accurate [36]. In first step (as detailed
in Algorithm 4), several feature-types (each feature-type
consists of some feature elements) with the minimum
redundancy are selected between the entire feature-types
of Table 2. As shown in Table 3, in this step two
prominent groups of features are selected: 1) Group I com-
posed by features f10, f11, f12, f13, f14 and f15; and 2) Group II
consists of features f21, f22, f23, f24, f25 and f26 (see Table 2). As
second step of feature selector, the minimal-redundancy and
maximal-relevance (mRMR) [37] is used to select the most
discriminative feature elements from these two groups of
feature-types. Moreover, in the second step of feature selector,
we compared the result of mRMR with sequential forward
selection (SFS) [38], sequential backward selection
(SBS) [38], sequential floating forward selection
(SFFS) [39], sequential floating backward selection
(SFBS) [39] and differential evolution based feature
selection (DEFS) [36].

Minimal-Redundancy and Maximal-Relevance The mRMR
method uses the mutual information between a feature and a

J Sign Process Syst (2015) 81:111–128 119
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class to infer its relevance for the class. The mutual informa-
tion of two random variables measures the mutual dependence
between them. Maximal Relevance is to search a feature set S
satisfying [37]:

maxD S; cð Þ D ¼ 1

Sj j
X
xi∈S

I xi; cð Þ ð4Þ

where I(xi;c) means the mutual information between feature xi
and class c. mRMR also uses the mutual information between
features as redundancy of each feature. The minimal redun-
dancy feature set R can be determined under condition

minR Sð Þ; R ¼ 1			S			2
X
xi;x j∈S

I xi; x j
� � ð5Þ

where I(xi,xj) indicates the mutual information between fea-
tures xi and xj. The “minimal-Redundancy and Maximal-
Relevance” (mRMR) criterion combines measures (4) and
(5) as follows:

maxΦ D;Rð Þ; Φ ¼ D−R ð6Þ

Sequential Floating Feature-Selection Approaches Sequential
forward selection (SFS), which is the simplest from the
sequential strategies, is a greedy search algorithm that
determines iteratively an optimal subset of features by
adding one feature per iteration, if the value of a chosen
objective function is increased. Sequential backward selec-
tion (SBS) is similar to SFS but works in the opposite
direction, i.e., it starts with the superset of all features and

(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

π/6

-π/6 1/2

Figure 7 Illustration of some randomly selected iris segmentation results
for CASIAVer.4-lamp. (a), (b), and (c) have some artifacts; moreover, (c)
shows robustness of segmentation method to left rotation. (d) and (e)
suffer from occlusion. (f) shows robustness to right rotation and suffers

from makeup. The pupils in (g) and (h) are bigger and smaller than the
normal size, respectively. (i) example of high amounts of blur and shows
robustness to scaling.
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sequentially removes one features, if the value of the ob-
jective function increases.

The main drawback of these sequential approaches is
that they gravitate toward local minima due to the inability
to reevaluate the usefulness of features that were previously
added or discarded, i.e., once a feature is added to or
removed from the final set of features, it cannot be
changed. Therefore, two expansions for SFS and SBS
algorithms were proposed [39]. The sequential forward
floating selection (SFFS) finds an optimum subset by
insertions (i.e., by appending a new feature to the subset
of previously selected features) and deletions (i.e., by

discarding a feature from the subset of already selected
features) of selected features by the SFS algorithm. The
sequential backward floating selection (SBFS) is similar
to SFFS but works in the opposite direction; it finds an
optimum subset of features by insertions (i.e., by
appending an already deleted feature to the subset of
selected features) and deletions (i.e., by discarding a fea-
ture from the subset of already selected features) in the
SBS algorithm [39].

Differential Evolution Feature Selection (DEFS) DEFS ap-
proach uses a combination of differential evolution (DE)
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Figure 9 Comparison between
the AUC curves of the proposed
method with NSCT, contourlet,
and wavelet transforms on
CASIAV.4-lamp.
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in the localization process over
the CASIAVer.4-lamp. The
parameters of method I are
Θ=(0,2π), r=IrisR, method II
Θ=(0,2π), r=1/3×IrisR and
method III are ΘLeft=(3π/4, 5π/
4), ΘRight=(−π/4, π/4), r=IrisR

122 J Sign Process Syst (2015) 81:111–128



optimization method and a repair mechanism based on
feature distribution measures. This method, utilizes the
DE float number optimizer in the combinatorial optimiza-
tion problem of feature selection. In order to make the
solutions generated by the float optimizer suitable for fea-
ture selection, a roulette wheel structure is constructed and
supplied with the probabilities of features distribution. The-
se probabilities are constructed during iterations by identi-
fying the features that contribute to the most promising
solutions [36].

2.5 Classification

For the classification stage we used SVM [40]. Further-
more, k-nearest neighbor (KNN), naïve bayes (NB), and
artificial neural network (ANN) are used to compare
efficiency of the system.

3 Performance Assessment

To assess the performance of the proposed algorithm, several
experiments were conducted using different publicly available
datasets. All of the experiments were carried out in identifica-
tion mode. The features of a test iris image were compared
with the features of whole dataset. Left eye images of the
CASIA dataset Ver.1 and Ver.4-lamp were used, which are
popular iris datasets and widely adopted to evaluate the iris
recognition system [16]. CASIAVer.1 contains a total of 756
iris images from 108 subjects, in which the images were
captured in two sessions, with at least one month interval.
CASIAVer.4-lamp was collected in one session using a hand-
held iris sensor; a lamp was turned on/off close to the subject
to make different illumination conditions. It contains 16213
iris images from 411 subjects. As stated in a note of CASIA
Ver.4-lamp [16] “Elastic deformation of iris texture due to
pupil expansion and contraction under different illumination
conditions is one of the most common and challenging issues
in the iris recognition”. CASIAVer.4-lamp offers eye images
in nonideal conditions, providing suitable data to assess
the effects of iris image normalization and robust iris
feature representation.

In our experiments, a two-level NSCT decomposi-
tion was adopted with 2 and 4 directions for each

pyramidal level, respectively. Three GLCMs were cal-
culated on all NSCT frequency subbands and the spa-
tial image both in 0°, 90° and 135°. The normalized
iris images were decomposed by the NSPDFB. We
have selected “pyrexc” and “pkva” as NSLP and
NSDFB filter in PDFB decomposition [24] given their
superior performance assessed empirically. SVM-KM
[41] toolbox with Gaussian kernel was used in the
classification phase. The Gaussian degree and C pa-
rameters were set to 6 and 100 respectively as they
produced the best empirical results. Experiments were
carried out over 2000 images of 200 randomly selected
classes, with 10 images per class and 756 images of
108 classes for CASIA Ver.4 and Ver.1, respectively. In
order to verify reliability of the results, all the
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Figure 10 Two-step feature selector: step1: selection of two prominent
groups of features; step2: selection of feature element.

Table 4 Comparison of feature extraction method on using different time-frequency transforms.

Feature Extraction Methods Number of
Features

Mean
Accuracy

Mean
Sensitivity

Mean
Specificity

Mean Equal
Error Rate

Mean
F-Measure

Max
Accuracy

NSCT 224 0.9996 0.9605 0.9998 1.98 96.05 0.9999

Contourlet 250 0.9995 0.9590 0.9998 2.06 95.90 0.9999

Wavelet 200 0.9990 0.9090 0.9995 4.57 90.90 0.9998
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assessments were determined by leave-one-out cross-
validation (LOOCV). Moreover, to characterize the per-
formance of the proposed method some well-known
measures such as accuracy, area under curve (AUC),
the equal-error rate (EER), sensitivity, specificity and
F-measure were used. In particular, F-measure or bal-
anced F-score is a weighted average of precision and
recall where precision is the fraction of retrieved

instances that are relevant and recall is the fraction of
relevant instances that are retrieved.

3.1 Evaluation of the Proposed Scheme for Iris Localization
and Region of Interest Selection

To validate the performance of the proposed scheme for
localization, we applied the method to the eye images with
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Figure 11 Performance of different feature selection methods. Dark
blue: selected features, light blue: total features. Homom: Homogeneity:
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Sum of squares Variance, Savg: Sum of average, Svar: Sum of variance,
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Figure 12 Accuracy of the iris
recognition, corresponding to 6
feature selectors (DEFS, SFS,
SBS, SFBS, SFFS and mRMR,)
and 4 classifiers (KNN, NB,ANN
and SVM).
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different occlusions and artifacts such as eyelids, eyelashes
obstruction, specular reflections, contrast changes, non-
uniform illumination, rotation and scale. As illustrated in
Fig. 7(a–i), the proposed method performs well despite of
the artifacts, and it can localize the inner and the outer bound-
aries accurately. However, we observed that, it does not prop-
erly localize the outer boundaries due to the low contrast
between the iris and sclera (see Fig. 7(h)). To alleviate the
loss of significant data, four iris ROIs were selected in
our segmentation method. The detection error trade-off
(DET) curves in Fig. 8 show the comparison of differ-
ent iris localization approaches on the CASIA Ver.4-
lamp. Each curve is denoted by symbols r, Θ which
represent normalized polar coordinates. Four cases are
considered: 1) Θ = (0,2π), r=IrisR that corresponds to a
disk around the iris with iris radius, which covers the

whole iris region; 2) Θ=(0,2π), r=1/3×IrisR that corre-
sponds to a disk around the iris with 1/3 iris radius,
similar to Fig. 5(c); 3) ΘLeft=(3π/4, 5π/4), ΘRight=(-π/4,
π/4), r=IrisR that refers to a state similar to Fig. 5(a); and 4)
our proposed method detailed in Section 2.1.2. The results
shown in Fig. 8 illustrate the superior performance of the
proposed method over the other mentioned approaches.

3.2 Performance Assessment of Using Different
Time-Frequency Transforms

This section is devoted to the analysis of the impact of differ-
ent time-frequency transforms (wavelet, contourlet and
NSCT), applied in feature extraction, in the overall iris recog-
nition performance. According to the AUC curves of Fig. 9, F-
measure and average accuracy values shown in Table 4,
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Figure 13 F-measure of the iris
recognition method,
corresponding to 6 feature
selectors (DEFS, SFS, SBS,
SFBS, SFFS and mRMR,) and 4
classifiers (KNN, NB, ANN and
SVM).

Table 5 Comparison with other
methods for CASIAVer.1, Ver.3-
lamp and Ver.4-lamp (the results
are taken from the published
works).

Method Accuracy (%)

CASIAVer.1 CASIAVer.3-lamp CASIAVer.4-lamp

Daugman [3], [42] 100 96 –

Masek [28] – 79.02 –

Basit [43] 98.94 – –

Chen et al.[19] 99.35 – –

Jan et al.[2] 100 98 –

Ibrahim et al.[44] 99.90 98.28 –

Khalighi et al.[26] 98.29 – 96.55

Proposed method by LOOCV (mean accuracy) 99.97 – 99.96

Proposed method Maximum LOOCV 100 – 99.99
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NSCT provided the best results, whichmay be correlated to its
redundant structure. It gives the highest matching perfor-
mance (0.9801) with the lowest number of features (224).
However, for wavelet transforms the best AUC value of
0.9543 was obtained with 200 features; this AUC is lower
than in the case of using NSCT. For the contourlet transform,
the best average AUC of 0.9794 was attained with 250 fea-
tures, which in comparison with NSCT-based feature extrac-
tion has a higher number of features and lower accuracy and
F-measure values.

3.3 Evaluation of the Features Importance

To account with the high dimensionality problem in iris
recognition, the proposed two-step feature selection
method was used (Fig. 10). As shown in Table 3, after
analysis of different combinations of features, two fea-
tures groups were selected using Algorithm 4: 1) Group
I composed by features f10, f11, f12, f13, f14 and f15 (see
Table 2); 2) Group II composed by features f21, f22, f23,
f24, f25 and f26 (see Table 2). Starting with 2240 ex-
tracted feature element from the four ROIs, a total of
896 elements (features of groups I,II) were selected in
the first step of the feature selector. Next, in the second
step of the feature selection strategy, these two groups
of features were fed into the different feature selectors
mentioned in section 2.4. Figure 11 shows the propor-
tion of the selected features from entire features resulted
from the first step. It is shown that, mRMR was able to
select a subset of 224 features that contained the dis-
criminant information that gave lower EER for recogni-
tion. However, as illustrated in Fig. 11, the highest
average accuracy, performed with a combination of
SBS and SVM, in comparison with mRMR and SVM
has a higher number of features. In fact, SBS selected
448 features, which is twice of selected features by
mRMR.

3.4 Performance Evaluation of the Proposed Scheme

Figures 12 and 13 compares the performance obtained
by the proposed method with different combinations of
mentioned feature selector/classifiers in Sections 2.4 and
2.5. In the experiments, four different types of classi-
fiers were considered: NB, KNN, ANN and SVM. They
are capable of handling large-scale classification prob-
lems. Moreover, six of the best feature selection ap-
proaches were used; DEFS, mRMR, and sequential
methods (SBS, SFBS, SFFS and SFS). The results are
expressed in terms of box-whisker plots showing the
average, median, the first and third quartile values of
the accuracies and F-measures. The horizontal lines
outside each box identify the upper and lower whiskers,

and dot points denote the outliers. According to the
results shown in Figs. 12 and 13, the proposed combi-
nation of mRMR and SVM outperformed the others
(accuracy of 0.9996 with 224 features). Although, the
highest accuracy (0.9997) was attained with a combina-
tion of SBS and SVM it was obtained with the cost of
requiring a higher number of features (mRMR=224,
SBS=448). Moreover, some of the other combinations
(e.g. combination of DEFS and ANN) also attained
acceptable results.

Indeed, as shown in Figs. 12 and 13, SVM classifiers
present the lowest interquartile of accuracies, and F-measure.

3.5 Comparison with State-of-the-art Methods

Table 5 summarizes results of existing state-of-the-art
iris recognition methods, tested at least on one of the
following datasets: CASIA Ver.1, Ver.3-lamp and Ver.4-
lamp. Regarding CASIA Ver.1, some accuracy results on
Table 5 are higher than the average accuracy value of
our method.1 Considering that there are no reported
performance results based on CASIA Ver.4-lamp, and
due to the similarity of Ver.3-lamp and Ver.4-lamp
[16] we compared our results with Ver.3-lamp. The
proposed method attains better results than our previous
work [26] with a lower number of features. Moreover, it
performs at the state-of-the-art as can be observed from
the results in Table 5.

4 Conclusion

In this paper a new iris recognition method based on
NSCT and GLCM, was proposed. This method has
some advantages over other approaches. First the pro-
posed iris localization algorithm performs well under
nonconstrained conditions such as rotation, scale, and
illumination conditions existing in CASIA Ver.4-lamp
(see Fig. 7). Secondly, some of the summarized works
just used the upper and/or lower part of the iris image
to remove the occluded regions by the eyelid and eye-
lashes, which results in loss of significant data. The
proposed method selects four ROIs to make use of the
most significant data in the iris texture. Thirdly, the
extracted features are invariant to scaling, shift and
rotation, which are some of the most important proper-
ties in iris recognition. Fourthly, to reduce the effect of
extreme values in the feature matrix, the extracted fea-
ture set are transformed and normalized which improved

1 Our reported results were obtained using the LOOCV method in the
testing process.
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the recognition rate. A two-step feature selection process
that consists on a filtering and a wrapper phases was proposed.
Moreover, we inferred from the proposed feature selector, that
features homogeneity, inverse difference normalized, inverse
difference moment normalized, sum of variance, sum of
squares variance, sum of average, maximum probability, stan-
dard deviation, energy of fast Fourier transform and their
combinations are the best features for iris recognition prob-
lem. Finally, to estimate the accuracy of the proposed method
LOOCV was used. The obtained average accuracies on
CASIA Ver.4-lamp and Ver.1 were 99.96 %, and 99.97 %
respectively.
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