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Abstract A new method for biometric identification of
human irises is proposed in this paper. The method is based
on morphological image processing for the identification of
unique skeletons of iris structures, which are then used for
feature extraction. In this approach, local iris features are
represented by the most stable nodes, branches and end-
points extracted from the identified skeletons. Assessment
of the proposed method was done using subsets of images
from the University of Bath Iris Image Database (1000
images) and the CASIA Iris Image Database (500 images).
Compelling experimental results demonstrate the viabil-
ity of using the proposed morphological approach for iris
recognition when compared to a state-of-the-art algorithm
that uses a global feature extraction approach.
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1 Introduction

Biometric identification is currently being used in several
security applications due to increasing concerns on access
control, authentication and fraud prevention. Research
efforts are constantly made in order to obtain biomet-
ric recognition systems that are more efficient, secure
and reliable. Besides hand geometry, fingerprint and face
recognition, iris recognition in particular has been largely
considered as an important field of research in biometrics.

The human iris consists of a pigmented fibrovascular
tissue, formed by many minute local features – crypts, freck-
les, furrows and corona – which yield an arrangement rich
in details. These features are unique for each individual and
result from a random process in the development of anatom-
ical structures during the embryonic stage. The iris is an
externally visible organ that is stable to ageing and can be
used for non-invasive biometric authentication [17, 20, 28].

Due to the great amount of local information at different
scales, the use of mathematical morphology operators is a
potential solution for the extraction of human iris features.
Mathematical morphology is a branch of non-linear image
processing that aims at extracting image information by
describing its geometrical structures in a formal way. One
of its main advantages is the ability to selectively preserve
structural information when carrying out tasks of interest on
the image.

In mathematical morphology, the information relative to
the topology and geometry of an unknown set – for instance,
an image – is extracted using another completely defined set
called structuring element (SE) [21], which has a particu-
lar geometrical shape. The basic idea behind morphological
operators is to probe the image locally in order to extract
shape and size information from the way the SE geometri-
cally fits. More complex operators (lattice operators) can be
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Figure 1 Typical iris recognition system. The process begins with the
image acquisition of the eye, followed by an optional pre-processing
stage to improve the quality of the acquired image. Next, the seg-
mentation stage localises the inner and outer iris borders, which
is followed by an optional normalisation process to compensate

variations in capture distance, rotation and pupil size. The set of
features known as biometric signature (iris representation) is then
obtained by the feature extraction stage. In the final matching stage,
iris signatures are compared and submitted to a similarity threshold in
order to generate a decision.

obtained from basic operators and used to accomplish more
specific tasks, such as detection of protrusions and gaps,
extraction of valleys and crest-lines, feature extraction based
on shape and size, among others.

This paper presents an approach based on morphological
operators that is able to identify relevant local patterns in
the iris for feature extraction and later classification. After
feature extraction, the most stable local iris features among
several image samples are selected for representation, and
intra and interclass similarity distributions are established.
Classification is then carried out based on these similar-
ity distributions, aiming at obtaining an optimal decision
threshold that minimises classification error rates.

Figure 1 shows the stages involved in a typical iris recog-
nition system.

In the image acquisition stage, one of the main challenges
is to set up an image acquisition hardware that is able to
capture good quality images without causing discomfort to
the subject under analysis. Depending on parameters such
as the distance to the subject, illumination conditions and
framing, a pre-processing stage may be necessary in order
to improve overall image quality, highlighting iris structures
and reducing reflection artifacts, for example.

In order to minimise the image area to be processed, it is
necessary to determine the region of interest (ROI) between
the sclera and the pupil, which comprises the iris under anal-
ysis. Automatic and robust ROI identification is not a trivial
task due to factors such as low contrast between eye regions,
eyelid skin pigmentation, partial eyelid occlusion and the
presence of eyelashes.

After establishing the ROI, the next step concerns fea-
ture extraction. The iris is composed of many different local
features, which are unique to each individual. These pat-
terns might be represented using different methods, which

are usually based on global information obtained from the
Laplacian pyramid [28], multi-scale quadrature wavelets [5,
12] or zero-crossing of some wavelet transform [1, 15].
The feature representation of the iris under analysis is then
finally compared to patterns stored in a database via suitable
classification algorithms.

Related research explores a variety of ways to extract
global iris features, taking into account the discriminative
power that can be obtained, as well as the different stages
that may be used in the process [1, 4, 5, 11, 13, 17, 19]. The
novel approach presented here takes advantage of the abil-
ity of morphological operators to extract local information,
from which the most stable features can be selected in order
to represent the iris.

2 Morphology-based Iris Recognition

The human iris is composed by a variety of features that
produce a structure rich in details. The basic idea of the
proposed method is to apply morphological operators [21]
in order to identify and highlight existing patterns in the
iris, obtaining structures from which local features will
be extracted and selected to build a representation. Due
to diversity and quantity of spatial features of the iris,
the choice of representation directly affects the amount of
information to be stored.

Figure 2 presents a block diagram of the iris recognition
system used in this work, which is an enhanced version of
the one initially proposed in [16]. Morphological operators
are used in the segmentation, morphological processing,
removal of redundant pixels and feature extraction stages.
Enhanced feature extraction, representation and matching
stages use a new concept of stable local iris features within
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Figure 2 Enhanced morphology-based iris recognition system from
previous work [16]. After image acquisition and pre-processing, a
morphological iris segmentation is performed. Morphological image

processing is then used in order to obtain a representation of the iris
that will finally be matched to other iris representations stored in a
database.

different image samples from the same subjects for the con-
struction of corresponding reference feature vectors. The
following subsections describe each stage of the system in
detail.

2.1 Segmentation

After the eye image is acquired in gray-scale (8-bit resolu-
tion) and submitted to a pre-processing stage for contrast
enhancement using histogram equalisation [8], it is neces-
sary to segment the ROI containing the iris to be analysed.
In order to extract the ROI – i.e. to identify the inner and
outer borders of the iris – a sequence of operators is applied
as follows.

To obtain the pupil region, which corresponds to the
inner border of the iris, we first take the complement of the
equalised input image. The resulting complemented image
is then thresholded using a threshold value t1 close to white
(255), because after being complemented the pupil region
tends to white. Some small structures and holes (noise)
remaining in the resulting binary image (IBi1) are elimi-
nated by applying an area opening operator [26] followed
by a closing operator.

The area opening operator γ a
λ removes any connected

components with less area than λ in a binary image F [22,
25, 27]:

γ a
λ (F ) =

⋃

B∈Aλ

γB(F ), (1)

where γB denotes opening by structuring element B and
Aλ denotes the class of subsets of a connected compact set,
whose areas are greater than or equal to λ.

With the purpose to remove small structures still in the
pupil region, the area opening operator defined in Eq. 1 is
applied to image IBi1 using a cross SE (BC):

I 1
Bi1 = γ a

λ1
(IBi1) =

⋃

BC∈Aλ1

γBC (IBi1). (2)

In order to close holes in the pupil region, the resulting
binary image I 1

Bi1 is submitted to the closing operator φBB

[21, 22] using a box SE (BB):

I 2
Bi1 = φBB

(
I 1
Bi1

)
= εBB

[
δBB

(
I 1
Bi1

)]
, (3)

where εBB and δBB denote erosion and dilatation by struc-
turing element BB , respectively.
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Figure 3 Iris segmentation [16]. The inner border (pupil) is identified
by a dotted white ellipse, while the outer border (sclera) is identified
by a solid white circle.

Figure 4 Morphological processing of the segmented ROI [16]. a
segmented iris image I ; b image I1 with iris structures highlighted;
c image I2 with the most salient patterns emphasised; d image I3

with small structures removed; e thresholded image I4 with the most
relevant structures; f final image I5 with skeletonised iris structures.

To detect the outer border, the previously complemented
input image is thresholded considering a lower threshold
value t2 that segments the region corresponding to the iris
and pupil, considering the fact that pixels of the iris region
tend to appear in the middle of the gray scale. The gaps and
undesired structures present in the resulting binary image
(IBi2) are discarded by applying a closing operation with
a box SE, followed by an area opening with a cross SE,
respectively.

Figure 3 shows the result of the segmentation process
just described. With information of the inner and outer iris

borders, the image pixels out of the ROI can be discarded,
resulting in the segmented iris image I (Fig. 4a).

2.2 Feature Extraction

After pre-processing and segmentation, a sequence of mor-
phological operators is applied to the ROI in order to
identify and enhance meaningful iris patterns to be used
in further recognition or classification tasks. We conducted
an investigation of the behaviour of several morphological
operators when applied to existing iris patterns and their
structures, in such a way to determine which operators to
use and their sequence of application. Figure 4 summarises
the morphological processing of the segmented ROI.

First, the segmented iris image I (Fig. 4a) is submit-
ted to a close-by-reconstruction top-hat operator φrec th [22,
26] in order to highlight every existing structure. This oper-
ator creates an output image by subtracting the image I

from its closing by reconstruction φrec
Bdil ,Bcon

, defined by two
structuring elements – one for dilation (Bdil) and other for
connectivity (Bcon). In this case a box SE was used for Bdil

and a cross SE was used for Bcon:

I1 = φrec th(I ) = φrec
BB,BC

(I ) − I. (4)
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Figure 5 Detail from the
skeleton of an iris structure [16].
Redundant pixels are indicated
by solid black squares, end-
points are indicated by dark gray
squares with a central white dot,
and nodes are indicated by white
squares with a surrounding black
line and a central black dot.

Figure 4b shows the resulting image I1 from applying
Eq. 4, where one can see that all existing iris structures are
highlighted.

Next, in order to emphasise the most salient patterns in
the iris, image I1 is submitted to an opening operator γB

using a cross SE:

I2 = γBC (I1) = δBC

[
εBC (I1)

]
. (5)

The result from applying Eq. 5 is image I2 (Fig. 4c),
where the most salient patterns (pixel arrangements of larger
size) become even more evident.

In order to remove the remaining small structures of the
iris, an area opening operator is then applied to image I2.
As the input image is in gray-scale, the binary version of the
area opening operator is applied successively to the image
layers [22, 25, 27]:

I3 = γ a
λ2

(I2) =
⋃

BC∈Aλ2

γBC (I2), (6)

using a cross SE to remove the small structures of the iris.
Figure 4d shows the resulting image I3 from applying

Eq. 6, where one can notice that small iris structures were
removed.

The gray-scale image I3 is then thresholded to segment
relevant structures, yielding image I4 (Fig. 4e). Since rele-
vant structures appear in the dark side of the gray scale, a
threshold t3 close to black (0) is used to keep them. How-
ever, the remaining structures after thresholding still must
go through a thinning process [21, 22] in order to obtain

an appropriate iris representation, as these structures present
themselves as agglomerates of pixels. Thinning is related to
the hit-or-miss transform (HMT), which is expressed by:

HMTB(F ) = εB1(F ) ∩ εB2(F
C), (7)

where B1 is the subset of B associated to the foreground, B2

is the subset of B associated to the background and F C is
the complement of F .

In the thinning operation (THIN), each iteration is per-
formed by subtracting points that are detected by eight
hit-or-miss operators rotated by 45◦ from each other [8] in
image I4, as expressed by:

I5 = THINB(I4) = I4 − HMTB(I4). (8)

The final result of the thinning operation can be seen
in Fig. 4f, which contains the skeleton of each relevant
iris structure. However, some redundant pixels still remain
in the skeletonised structures after thinning, hindering the
identification of end-points and nodes, which are essential
for the iris representation adopted in this work. Figure 5
shows a detail from the skeleton of an iris structure, where
redundant pixels, end-points and nodes can be observed.

As can be seen in Fig. 5, there are many small details
embedded in the skeleton of an iris structure that may not
be significant for efficient classification. Therefore, in the
method proposed here, a selection of the most stable local
iris features among different image samples of the same iris
is conducted in order to build a definitive reference feature
vector, as detailed in Section 2.5.

Figure 6 Results of
conventional skeletonisation
algorithms. a input image
containing redundant pixels in
the structure; b output image
with undesired gaps (highlighted
with circles) after
skeletonisation.
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Figure 7 Structuring elements used for redundant pixel removal. a
SE-1; b SE-1r; c SE-2; d SE-2r.
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Figure 8 Neighbourhood notation that was used. a diagonal neigh-
bourhood; b 4-neighbourhood; c 8-neighbourhood.

2.3 Redundant Pixel Removal

An algorithm based on the single path concept was designed
to eliminate redundant pixels from the skeleton that is
obtained, resulting in a single path connecting adjacent pix-
els [16]. Elimination of redundant pixels must not cause
any gap in the structure pattern so that local features (end-
points and nodes) are preserved. Since conventional skele-
tonisation algorithms often result in undesired gaps in the
structure, as shown in Fig. 6, a method that verifies the
neighbourhood of the pixel under analysis was designed to
ensure that existing connections are preserved.

To eliminate redundant pixels, two types of 5 × 5 struc-
turing elements are used: SE-1 and SE-2, shown in Fig. 7a
and c, and their 90◦ clockwise rotated versions SE-1r and
SE-2r, shown in Fig. 7b and d, respectively.

The redundant pixel removal algorithm that was devel-
oped is based on the hit-or-miss transformation, which is
computed by translating the origin of the SE to each pos-
sible pixel position in the image, and comparing it to the
underlying image pixels at each position. If there is a match
between the SE and the underlying image pixels, the image
pixel corresponding to centre of the SE is modified (in Fig. 7
these pixels are emphasised). The SE shapes were designed
to verify pixels in specific neighbourhoods.

The procedure begins with a search for pixels that are
set to 1 in the image. When a pixel (p) is found in this

condition, the verification of its neighbourhood begins (the
neighbourhood notation that was used is shown in Fig. 8).
The neighbourhood verification sequence, which is related
to the structuring elements used (red mask in Figs. 9 and 10),
is the following:

Step 1 The centre of SE-1 (blue) is positioned over
pixel N4 in the image (Fig. 9a). If the pixels of
SE-1 match the underlying pixels of the image,
then pixel N4 is set to 0 (Fig. 9b).

Step 2 The same procedure described in Step 1 is
performed substituting SE-1 for SE-2.

Step 3 The centre of SE-1r (blue) is positioned over
pixel N2 in the image (Fig. 10a). If the pix-
els of SE-1r match the underlying pixels of the
image, then pixel N2 is set to 0 (Fig. 10b).

Step 4 The same procedure described in Step 3 is
performed substituting SE-1r for SE-2r.

Steps 5 to 8 The same neighbourhood verification seq-
uence described in Steps 1 to 4 is repeated, but
now positioning the centre of the structuring
elements over pixel N3. In all cases (Steps 5
to 8), pixel N3 will be modified if there is a
match.

When the neighbourhood verification sequence (Steps 1
to 8) is finished, pixels that had their value set to 0 dur-
ing the processing steps are finally modified in the output
image and the image scan continues. In Figs. 9 and 10, posi-
tioning of the SE appears highlighted in red; pixels in bold
correspond to positions where the SE pixels must match the
underlying image pixels.

After the redundant pixel removal process, an image that
is suitable for feature extraction is obtained. The result of the
algorithm can be seen in the Fig. 11, where it can be noticed
that redundant pixels were eliminated without causing any
breaks in connection (gaps) in the structure, unlike what is
observed in Fig. 6b.

2.4 Geometric Normalisation

To compensate misalignments caused by translation, rota-
tion and scaling of the iris under analysis when compared
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Figure 9 Step 1 of the
neighbourhood verification
sequence. a The centre of SE-1
is positioned over pixel N4; b
pixel N4 is set to 0 if the pixels
of SE-1 match the underlying
pixels of the image.
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Figure 10 Step 3 of the
neighbourhood verification
sequence. a The centre of SE-1r
is positioned over pixel N2; b
pixel N2 is set to 0 if the pixels
of SE-1r match the underlying
pixels of the image.
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to the images stored in the database, the binary image I4

containing the relevant structures (Fig. 4e) is submitted to
a normalisation procedure that adjusts it for the match-
ing stage. The compensation of geometric transformation
effects is done by an algorithm based on the affine motion
transform [2, 23].

This procedure takes an image containing pseudo-struc-
tures as reference. Pseudo-structures are generated from the
iris representation from the database, which contains the
location of end-points and nodes, as shown in Fig. 12a.
The binary image created from the information stored in
the database is dilated twice using a box SE, in order to
ensure the connectivity of each pseudo-structure, as shown
in Fig. 12b, which will be used for the alignment of image I4

(Fig. 4e) of the iris under analysis by the recognition system.
The comparison between image I4 and the image con-

taining pseudo-structures generated from the iris representa-
tion stored in the database allows the estimation of the error
between original and actual position of features, based on
the minimum absolute difference [2]. Therefore, the binary
feature images can have their structures aligned for the
matching procedure.

2.5 Feature Representation

The iris representation approach used in this paper is based
on information about nodes (points where ramifications of
the structure start), end-points (structure terminations) and
branches of the structure, which can be seen in Fig. 5. After
removing redundant pixels from the skeletons of the struc-
tures, the next stage consists in identifying end-points and
nodes.

The identification process begins with by verifying the
8-neighbourhood of every pixel p. Since an end-point is a
pixel located at the extremity of a branch, if only one neigh-
bour of p is set to 1, then p is an end-point. Figure 13a
shows examples of end-points identified in a structure.
However, if three or more pixels in the 8-neighbourhood of
p are set to 1, then p is considered a node. Figure 13b shows
examples of nodes found in a structure. In some cases, it
is necessary to eliminate redundant nodes that may appear
close to each other. This redundant node removal can be per-
formed using the following criterion: if there is more than
one node within a distance of three pixels, then their aver-
age coordinates are taken as the location of the definitive
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Figure 11 Result of the redundant pixel removal algorithm [16].
No gaps are present in the resulting structure skeleton (compare to
Fig. 6b).

Figure 12 Reconstructed
feature image [16]. a end-points
and nodes; b resulting
pseudo-structures.

node. Figure 13c exemplifies the result of this redundant
node removal criterion.

The coordinates of end-points and nodes, as well as their
respective number of branches, are used to build the feature
vector for iris representation. In order to obtain the number
of branches for some specific node, its ramifications must
be evaluated based on corresponding end-points. For each
node, coordinates and number of branches are concatenated
to form the corresponding feature vector.

The definitive reference feature vectors for matching are
generated from the most stable local iris features present
in different iris image samples per subject, in order to
increase the robustness of the representation. Experiments
with increasing numbers of different image samples from
the same subject have shown that five feature vectors cor-
responding to each image sample are enough to select the
most stable features in order to generate definitive refer-
ence feature vectors for each individual iris (more details are
given in Section 4.2).

For the selection of the most stable local features, each
of the five base feature vectors containing the coordinates of
nodes is matched against all the other base feature vectors
and only the nodes that are present in at least four of the five

base feature vectors – the most stable ones – are selected
to be included in the definitive reference feature vector. The
same three pixel tolerance criterion used before for redun-
dant node removal is used to compute average coordinates
for matching stable nodes. The selection of the most stable
local features for representation results in great improve-
ment in the overall iris classification performance, as shown
later in Section 4.

2.6 Matching and Classification

After mapping the coordinates of end-points and nodes, the
feature comparison procedure is based on a one to one cor-
respondence. Initially, in order to identify matching nodes,
coordinates in the iris feature vector under analysis are com-
pared to those in the reference feature vector obtained from
five image samples, as described before. Then, in order to
obtain the corresponding number of branches for matching
nodes, the ramifications of each node are verified.

A score S is used as base parameter for the classification
process and assumes normalised values in the interval [0, 1],
which is computed as follows:

S = M

N
, (9)

where M denotes the number of matching nodes and N

denotes the number of stable nodes in the reference feature
vector.

The classification strategy adopted is based on similar-
ity measures between classes (intra and interclass). This
approach yields an optimal decision threshold T that tends
to minimise the equal error rate (EER). A binary classi-
fier for authentic and impostor identities can be established
based on this optimal decision threshold. The decision (D)
reached by the classifier is defined as follows:

D =
{

authentic, if S ≥ T

impostor, if S < T
. (10)
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Figure 13 Feature identification example [16]. a identification of
end-points (dark gray); b identification of nodes (black); c removal of
redundant nodes.

3 Experimental Setup

A subset of 1000 images from the University of Bath Iris
Image Database [24], comprising 20 images of each eye
from 25 subjects, was used in order to assess the proposed
iris classification method. The University of Bath Iris Image
Database is composed of images of 1280 × 960 pixels in
size, which were acquired in gray-scale using infra-red illu-
mination, and was used in a number of previous studies
available in the literature [9, 10, 18, 29–31].

Additionally, a subset of 500 images from the CASIA
Iris Image Database V3-Interval [3], containing 10 images
of each eye from 25 subjects, was also used for further
assessment of the proposed method. The CASIA Iris Image
Database is composed of images of 320×280 pixels in size,
acquired in gray-scale under near infrared illumination.

In this work, five images from each subject were used to
build reference feature vectors for each class, as described in
Section 2.5. The remaining images from each subject were
then used to test the proposed iris classification scheme.
Matching between reference and test feature vectors from
the databases allowed the computation of intraclass and
interclass score distribution curves, which in turn were
used to compute the false acceptance rate (FAR) and the
false rejection rate (FRR) of the classifier and to deter-
mine an optimal decision threshold for class separation.
Receiver operating characteristics (ROC) curves [14] and
their respective AUC (area under the curve) and EER (equal
error rate) statistics were also used for performance assess-
ment.

The feature vectors obtained from the images for each
class in the databases were submitted to a matching process
so that intraclass and interclass score distribution curves and
figures of merit could be computed. This procedure was
used in order to perform statistical assessments of the pro-
posed method and to allow comparisons with other methods.
Therefore, all experiments were conducted in two stages, as
shown in Fig. 14.

In the intraclass matching stage, for each subject in the
database, the reference feature vector of each subject was
matched against the test feature vectors of the same subject.
In the interclass matching stage, the reference feature vector
of each subject was matched against the reference feature
vectors of the remaining subjects.

In order to have a baseline for comparison of the results
obtained for the proposed method, the state-of-the-art iris
recognition method proposed by Daugman [5–7] was also
implemented and used following the experimental proce-
dure shown in Fig. 14.

4 Results

Intraclass and interclass score distribution curves and the
ROC curve for matching nodes were computed in order to
assess the performance of the proposed approach for iris
classification. Results obtained for Daugman’s method were
used to compute intraclass and interclass Hamming distance
distribution curves and the corresponding ROC curve.

Figure 15 shows the intraclass and interclass matching
distribution curves obtained for the method proposed in this
work and Daugman’s method using the subset of images
from the University of Bath Iris Image Database.
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Figure 14 Intraclass and interclass statistical assessment scheme. Intraclass matching was conducted among iris samples of the same subject,
while interclass matching was conducted among iris samples of different subjects.

It can be noticed from the curves in Fig. 15 that there
is a clear separation between intra and interclass distribu-
tions for both methods. The distribution curves appear more
widely spread throughout the similarity axis in Fig. 15a, a
characteristic that seems to favour class separation and to
contribute for the achievement of low error rates. In Fig. 15b
the distributions curves for the Hamming distance used in
Daugman’s method are more concentrated in a reduced
range of the dissimilarity axis.

ROC curve analysis was also used in order to compare
performances. The ROC curve plots the false rejection rate
(FRR) as a function of the false acceptance rate (FAR) for
varying threshold values – the FAR indicates the proba-
bility of accepting an impostor and the FRR indicates the
probability of rejecting an authentic subject – obtained from

intraclass and interclass comparisons for each sample in the

database.

4.1 Classification Using All Detected Iris Features

A first experiment to assess classification performance

using all detected iris features to compose reference feature

vectors (V1) was conducted with the subset of images from
the University of Bath Iris Image Database. Figure 16 shows

the resulting ROC curves for both proposed and Daugman’s

methods.

As can be seen in Fig. 16, using all local iris features to

compose reference feature vectors results in worse classifi-

cation performance than the one obtained using Daugman’s

method.
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Figure 15 Intraclass and interclass matching distribution curves
for the subset of images from the University of Bath Iris Image
Database. a matching scores (proposed method); b matching distance
(Daugman’s method). Higher matching scores in the proposed method
represent higher similarity between irises. Daugman’s method uses
the Hamming distance and therefore higher values represent higher
dissimilarity between irises.
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Figure 16 ROC curves obtained for both proposed method - V1
(red line) and Daugman’s method (blue line) using a subset of image
samples from the CASIA Iris Image Database. Composing reference
feature vectors with all detected iris features results in worse overall
performance of the proposed method.
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Figure 17 ROC curves obtained for an increasing number of image
samples for feature vector composition using the most stable fea-
tures among the samples. Selecting stable features from five or more
image samples results in significant improvement in classification
performance.

4.2 Selection of the Most Stable Iris Features

Given the first results obtained, an extra experiment was
conducted in order to determine whether the selection of sta-
ble local iris features would have any positive impact in the
overall classification performance of the proposed method.
For that purpose, only five subjects were randomly chosen
from the subset of images from the University of Bath Iris
Image Database, and an increasing number of image sam-
ples – ranging from two to seven – was used to select stable
features and to assess the corresponding classification per-
formances. Figure 17 shows the ROC curves obtained for
classification using an increasing number of image samples
for feature vector composition using the most stable features
for the same subjects.

It can be noticed in Fig. 17 that significant improve-
ment in classification performance is obtained by using five
or more image samples to select stable features. As the
improvement in performance is not expressive for more than
five image samples, the number of image samples for the
selection of the most stable iris features was set to five.

4.3 Classification Using the Most Stable Iris Features

Following the encouraging results obtained in the experi-
ment using the selection of stable local iris features, a sec-
ond experiment to assess classification performance using
the entire subset of images from the University of Bath Iris
Image Database was conducted using this approach (V2).
Figure 18 shows the results obtained, in which one can
notice that the proposed method shows equivalent overall
performance to the one obtained using Daugman’s method
when using the most stable iris features from five image
samples.

Table 1 summarises typical biometric recognition sys-
tem FAR configurations and their corresponding FRR taken
from the ROC curves in Fig. 18. The area under the ROC
curve (AUC), equal error rate (EER) and accuracy of the
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Figure 18 ROC curves obtained for both proposed method - V2 (red
line) and Daugman’s method (blue line), using a subset of image sam-
ples from the University of Bath Iris Image Database. When only the
most stable iris features are used to compose reference feature vectors,
both methods yield equivalent performances.

Table 1 Typical FAR configurations and corresponding FRR obtained
for both methods – subset of image samples from the University of
Bath Iris Image Database.

FAR FRR (Daugman) FRR (Proposed)

0.1 % 0.23 % 0.11 %

0.01 % 0.71 % 0.52 %

0.001 % 1.36 % 1.16 %

0.0001 % 2.02 % 1.97 %

Table 2 Area under the ROC curve (AUC), equal error rate (ERR) and
accuracy obtained for both methods – subset of image samples from
the University of Bath Iris Image Database.

Daugman Proposed

AUC 0.99921 0.99941

EER 0.78 % 0.65 %

Accuracy 99.22 % 99.35 %
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Figure 19 ROC curves obtained for both proposed method - V2 (red
line) and Daugman’s method (blue line), now using a subset of image
samples from the CASIA Iris Image Database. Again, both methods
yield equivalent performances when only the most stable iris features
are used to compose reference feature vectors.

classifier were also used to assess the overall performance
of both methods – results of these assessments are shown
in Table 2 and confirm the equivalent performance yielded
by both methods, indicating the feasibility of iris recog-
nition using a local feature extraction approach based on
mathematical morphology.

Additional experiments using the V2 approach were also
conducted with a subset of image samples from the CASIA
Iris Image Database. The results shown in Fig. 19 confirm
that the proposed method yields equivalent performance to
the one obtained using Daugman’s method.

Tables 3 and 4 summarise the information from the ROC
curves shown in Fig. 19 in terms of FAR and FRR, and also
AUC, EER and classifier accuracy statistics. Slightly worse
overall performances were obtained with the CASIA Iris
Image Database and this fact is attributed to the much lower
image resolution available in this database in comparison to
the image resolution available in the University of Bath Iris
Image Database.

5 Discussion

Daugman’s method was implemented according to informa-
tion available in the literature [5–7]. The mean value of 0.46
obtained for the interclass Hamming distance distribution
(see Fig. 15b) is practically the same reported in the litera-
ture, in spite of the fact that a different iris image database
was used, indicating that the implementation of Daugman’s
method used in this work presents coherent results.

Several iris recognition methods available in the litera-
ture use Daugman’s rubber-sheet homogeneous model [5]
to map the iris to a dimensionless coordinate system in
order to compensate changes in size and pupil dilation. That
model is critically dependent on the accuracy in finding the
inner and outer iris boundaries in the segmentation stage,
and is also affected by non-concentricity and non-circularity
of iris boundaries, which commonly happen in practice but
nevertheless are disregarded by many methods. Occlusion
is another important factor that affects iris boundaries –
the inner boundary can be often occluded by reflections of
the illumination device and the outer boundary by upper
or lower eyelids. In the proposed method these problems
are avoided because no constraint is imposed to boundary
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Table 3 Typical FAR configurations and corresponding FRR obtained
for both methods – subset of image samples from the CASIA Iris
Image Database.

FAR FRR (Daugman) FRR (Proposed)

0.1 % 0.44 % 0.44 %

0.01 % 1.06 % 1.15 %

0.001 % 1.66 % 1.59 %

0.0001 % 2.25 % 2.25 %

Table 4 Area under the ROC curve (AUC), equal error rate (EER) and
accuracy obtained for both methods – subset of image samples from
the CASIA Iris Image Database.

Daugman Proposed

AUC 0.99766 0.99757

EER 1.05 % 1.12 %

Accuracy 98.95 % 98.88 %

shapes by the morphological operators used in the segmen-
tation process, which proved their efficacy to obtain the
ROI.

Besides reflection and eyelid occlusion, the iris image
information can also be degraded by eyelash occlusion. Eye-
lashes present intricate random shapes that are difficult to
be detected by simple shape models and, in terms of con-
trast energy, can appear as the dominant signal in the iris
image. If the eyelash signal is not detected and minimised, it
can possibly degenerate the iris feature vector with spurious
information (noise). As the proposed approach to construct
iris feature vectors is based on information obtained from
local iris structures and not the entire segmented iris region,
eyelash occlusions tend to affect less the feature extrac-
tion process. Generally, the loss of information produced
by typical occlusion caused by eyelids and eyelashes is
not enough to degenerate the performance of the proposed
algorithms. Due to the disposition of the structures in the
iris and how the proposed algorithms process this informa-
tion, the remaining areas of the iris which are free from
occlusions contain enough information (stable structures)
to allow comparisons still with excellent efficacy. Further
studies are currently being conducted to establish the mini-
mum percentage of occlusion-free area that is necessary to
perform comparisons without compromising classification
performance.

In order to compensate translation, rotation and scaling
effects during image acquisition, as well as variations in
pupil size, the segmented iris region is submitted to a nor-
malisation procedure. Several approaches use the normali-
sation method proposed by Daugman [5], but the method
proposed in this paper uses information directly from

existing structures in the iris image to compensate for
variations and misalignments. The normalisation procedure
based on mathematical morphology that is responsible for
alignment of iris structures spends about 80 % of the total
processing time of the proposed iris identification algo-
rithm. Alternatives to reduce the computational cost of this
important processing stage are being currently studied and
so far it was possible to establish that the images in which
more time was spent for alignment also resulted in higher
FRR values. Further analysis of these special cases indicates
that large variations in pupil diameter between reference and
candidate iris images is the most critical aspect to be looked
into.

The proposed representation of iris structures based
on stable nodes showed to be adequate to characterise
the existing patterns in human irises, achieving excellent
identification performance. The resulting representation is
also compact – feature vectors obtained using the pro-
posed method require in average 750 bytes of storage size.
Even though only matching nodes and number of branches
per matching node were used in the experiments reported
here, additional information about end-points can be used,
possibly increasing the reliability and robustness of the
representation.

6 Conclusion

This work presented a biometric iris identification method
in which morphological operators were used to extract
stable local patterns to represent and characterise human
irises. The morphological approach was used successfully
in several processing stages, such as iris localisation, seg-
mentation and local feature extraction.

The fact of using local information to represent irises
makes the proposed method very flexible, in such a way that
different types of features (nodes, branches and end-points)
can be specifically chosen to be used or not. Also, the use
of local information allows the selection of stable features
among a number of different image samples from the same
subject, according to the degree of accuracy desired for
classification.

Results of experiments using subsets of images from
two widely used iris databases – the University of Bath
Iris Image Database and CASIA Iris Image Database –
show that the proposed approach is suitable to be used
in iris recognition systems and is suitable to be used in
images acquired in differing resolutions and under differing
illumination conditions.

Statistical analysis of the experiments was based on
a method that allows determination of the optimal deci-
sion threshold from intraclass and interclass matching
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distribution curves. ROC curve analysis and the AUC were
used in order to compare the proposed method and Daug-
man’s state-of-the-art method, showing that they achieve
equivalent performances despite their rather different pro-
cessing approaches.
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(UTFPR) in 1989 and 1995,
respectively, and his PhD in
Electrical Engineering from
the University of Washington
in 2006. He has been with
the Department of Electronics
at UTFPR (Curitiba) since
1995 and with the Biomedical
Engineering Research Group
at the Graduate School on
Electrical Engineering and

Applied Computer Science (CPGEI) since 2007. His research interests
are in the fields of biomedical signal and image processing, ultra-
sound imaging, bioinstrumentation, and digital systems design based
on high-performance digital signal processors and reconfigurable
devices.

http://www.smartsensors.co.uk/information/bath-iris-image-dat abase/
http://www.smartsensors.co.uk/information/bath-iris-image-dat abase/

	Biometric-oriented Iris Identification Based on Mathematical Morphology
	Abstract
	Introduction
	Morphology-based Iris Recognition
	Segmentation
	Feature Extraction
	Redundant Pixel Removal
	Geometric Normalisation
	Feature Representation
	Matching and Classification

	Experimental Setup
	Results
	Classification Using All Detected Iris Features
	Selection of the Most Stable Iris Features
	Classification Using the Most Stable Iris Features

	Discussion
	Conclusion
	References




