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Abstract Wavelet transform has contributed significantly
in multiple areas such as image processing, compression,
signal analysis, and medical imaging. Discrete wavelet
transform (DWT) requires very large memory requirement
and is computationally intensive, especially for 2-D trans-
form that has a quadratic computational complexity. In this
paper, we propose a dedicated processor for 2-D DWT com-
putation. The DWT system architecture is parameterizable,
where its performance can be scaled by increasing or reduc-
ing the DWT engines, according to different application
needs. This architecture requires significantly less com-
putational resources and internal memory. The proposed
architecture can achieve a theoretical throughput of 138
frames per second for a 2048 × 1536 video processing. The
DWT system has been designed for scalability to support up
to 8 parallel DWT engines.

Keywords 2-D discrete wavelet transform · Fast lifting ·
FPGA · Parallel architecture

1 Introduction

There are several DWT VLSI implementations, with the
simplest is the one-dimensional DWT filter bank [11]. The
filter bank is typically implemented using systolic architec-
ture or parallel architecture, where the input data are fed
through a chain of filters that perform wavelet transform. A
two-dimensional DWT (2-D DWT) can be implemented by

B. H. Ang · U. U. Sheikh · M. N. Marsono (�)
Faculty of Electrical Engineering, Universiti Teknologi Malaysia,
81310 Johor Bahru, Malaysia
e-mail: nadzir@fke.utm.my

cascading systolic 1-D filters in a parallel array. The 1-D and
2-D DWT implemented in hardware filters such as [3, 11]
are the direct form of DWT, i.e., convolution based wavelet
transform. These architectures require a large number of
multipliers and adders, resulting in large chip area. Other
architectures such as [6, 9] are based on FPGA-DSP sys-
tems. Although reprogrammable, the system board area is
larger due to use of multiple components.

Another way to reduce DWT computation complex-
ity is the Fast Lifting Discrete Wavelet Transform (FL-
DWT) [8]. The FL-DWT factors the original DWT into
smaller and simpler filtering steps. The number of multi-
plications has been reduced significantly. Additionally, the
coefficients used in FL-DWT can be integers instead of
floating points, without experiencing precision loss. In this
paper, we propose a dedicated processor for 2-D DWT
to achieve improvements on throughput, scalability and
flexibility compared to prior architectures, particularly the
FL-DWT. The proposed architecture can achieve theoretical
throughput of 138 frame per second (FPS) for a 2048×1536
(QXGA) video processing. The DWT system can support
up to 8 parallel DWT engines, with each DWT engine
capable to work independently.

2 The Fast Lifting Discrete Wavelet Transform

The main criteria aimed for the 2-D DWT architectures are
chip area and speed performance. The chip area is typically
determined by the computational block such as multiply-
and-accumulate (MAC), memory bits and registers, and
chip area for wire routing. The speed is affected by the
input/output rate (number of bits processed per cycle) and
the clock rate (cycles per second). The product of these two
parameters is the throughput. DWT architectures feed the
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input data through a chain of filters that perform DWT. Most
are the direct form of DWT, i.e., convolution based, which
are inefficient – requiring many adders and multipliers, and
large memory storage. A good design should balance the
external memory access bandwidth and internal buffer size.

Sweldens introduced the FL-DWT in 1996 [10], which
is a fast and low computation form of the pyramid algo-
rithm [7]. The lifting algorithm has three important steps:
split, predict and update. In the split step, the input samples
are divided into two separate set of samples, odd samples
and even samples. In the predict step, even samples are used
to forecast the odd samples based on the relationship that
exists in the signal. The differences between the odd sam-
ples and the estimated values are calculated and labelled
as high-pass or detailed coefficients. In the (update) step,
the low-pass coefficients are computed by updating the
even samples with high-pass coefficients. The lifting based
DWT is shown in Fig. 1.

A systolic-parallel approach was proposed by
Vishwanath et al. based on recursive pyramid algo-
rithm [11]. The algorithm schedules each output at the
earliest possible instance. The i-th level decomposition pre-
cedes the (i+ 1)-th level decomposition while guaranteeing
that all data needed for the next level decomposition is
available at the right time. The systolic architecture where
a low-pass filter and a high-pass filter produce an output
at every cycle [2]. Each filter unit consists of L MAC units
(where L is number of filter coefficients), and the latency
for each cycle is LTm where Tm is the delay of each MAC.
The systolic-parallel architecture requires huge amount of
computation elements. It requires 2L MAC units, 2L multi-
pliers and 2(L− 1) adders. The latency of is relatively high
and the throughput of 1 output per cycle. Another downside
is that is applies direct form of convolution based DWT
requiring floating point computation units.

The direct form of convolution based DWT requires a
memory storage, S required for the holding cells, is given
in Eq. 1:

S = LN

(
1 + 1

2
+ 1

4
+ ... + 1

2J−1

)
= LN

J∑
j=1

1

2j−1 (1)

where L is the filter length and N is the longest dimension
of the 2-D data, and J is the decomposition levels. The

Figure 1 Lifting-based forward DWT [8].

maximum number of holding cells is 2LN , which translates
to 2 × 9 × 1024 = 18k words for 9/7-F filter, which is
tremendously large for ASIC implementation.

Chakrabarti et al. presented a parallel filter architec-
ture [4], which is based on recursive pyramid algorithm
consisting of two parallel filter arrays and a storage unit [2].
Each array consists of L2 multipliers and L2 − 1 adders.
This architecture is able to operate at very high through-
put, where L2 outputs are produced each cycle, however
at the expense of resource utilization, as it requires huge
amount of computation elements. For a 9/7-F filter imple-
mentation, it requires 2L2 = 2 × 92 = 162 multipliers and
2(L2 − 1) = 2(92 − 1) = 160 adders. The storage size is
2LN or 18 k words for a 1024 × 1024 image using 9/7-F
filter.

There are various memory based DWT architectures that
are structurally similar and are mostly lifting based DWT.
First, the 1-D DWT computes the transform along the
rows and then computes the transform along the columns.
Mansouri in 2009 [8] proposed a memory-based 2-D DWT
architecture which was developed based on the architec-
ture in [1]. The intermediate coefficients generated by the
row processor are stored in internal buffers, before being
processed by the column processor. The LL sub-band coef-
ficients generated by the column processor are stored in
an intermediate FIFO prior to the next level of decomposi-
tion. The internal buffer and FIFO are needed to minimize
external memory cycles. However, the internal buffer would
require significant amount of chip area and is a critical issue
in 2-D DWT implementations.

There are other memory based architectures e.g., [5,
12] that can be categorized to three categories: level-
by-level, block-based and line-based. A typical level-by-
level architecture uses single DWT engine that processes
the rows and followed by the columns. The intermediate
results are stored in internal buffers and thus, the memory
usage is huge. In the block-based architecture, the image
is divided into smaller blocks that can be squeezed in
smaller internal memory. A typical block based architecture
reads the external memory block-by-block and computes
the DWT coefficients in a block-by-block manner. Line-
based architectures are more memory-efficient as it only
stores several lines of an image and the memory require-
ment is a function of the image width or height. The
architecture proposed by Mansouri [8] also employs the
line-based architecture. For a 1024 × 1024 image, the pro-
posed architecture only needs 8 adders, 4 multipliers and
2N = 2 × 1024 = 2k words of internal buffer for
9/7-F filter implementation. It has clear advantage over
other architectures due to lower resource utilization, mem-
ory usage and no floating point units. This paper is aimed
to improve the throughput and scalability using parallel
processing.
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3 Proposed 2-D DWT Architecture

The 9/7-F lossy JPEG image compression for forward and
inverse integer wavelet filters are first modelled in C++.
This is to understand performance related issues for the pro-
posed 2-D DWT architecture and the required resources for
processing elements.

3.1 9/7-F Forward and Inverse Filter

The 9/7-F filter lifting steps can be described by Eqs. (2)
to (5) with an assumption of scaling factor K = 1. The
values of lifting coefficients are a = −203/128, b =
−217/4096, c = 113/128 and d = 1817/4096.

y ′[2n + 1] = x[2n + 1] + a(x[2n] + x[2n + 2]) (2)

y ′[2n] = x[2n] + b(y ′[2n + 1] + y ′[2n − 1]) (3)

y[2n + 1] = y ′[2n + 1] + c(y ′[2n] + y ′[2n + 2]) (4)

y[2n] = y ′[2n] + d(y[2n + 1] + y[2n − 1]) (5)

To completely eliminate the need of floating point mul-
tiplication and integer division, which typically takes more
cycles to compute, we approximate the floating point coef-
ficients with rational numbers. The rational number consists
of an integer numerator and an integer denominator which
can be written as 2n, where n is an integer, in which divi-
sion can be done by arithmetic shift right operation. From
the software model, it is very clear that a total of 8 additions,
4 multiplications and 4 right shifts are needed for every
output computation. This is consistent with the architecture
proposed by Mansouri [8].

The 9/7-F inverse filter is an opposite form of forward
DWT. The inverse DWT can be obtained by alternating the
signal flow to the opposite direction and inverting the filter
coefficients. The inverse transform also requires the same
number of adders and multipliers.

3.2 Architecture Specification

The 2-D DWT processor is designed to process N ×M pix-
els images, running at F frames per second (FPS), and with
J decomposition levels. The image is compressed by 4× for
each decomposition level. The system throughput require-
ment in filtering operation per second (FOPS) is given as
8
3FNM(1 − 1

4J
) and its upper limit for very large J to be

≈ 8
3FNM .
We propose a 2-D DWT architecture to process 1024 ×

768 images at 30 FPS. The processor needs to support
62,915,000 FOPS. It translates to 62.9 MHz clock rate if
the filtering operation is done in a cycle. It is impracti-
cal to design a DWT processor that performs all filtering
operations within a single clock cycle as it will incur very

high resource overhead. From the software modelling, 8
additions, 4 multiplications and 4 shifts are needed for the
9/7-F filter. Assuming that the datapath is pipelined prop-
erly and 8 cycles are required to complete each filtering
operation by using MACs, it translates to 62.9 × 8 =
503.2 MHz clock rate. Hence, to support a 2-D DWT pro-
cessor to process 1024 × 768 images at 30 FPS, we need
to design a processor that runs at 503.2 MHz. The typical
design guard-band across all process variation, voltage and
temperature (PVT) is 30 %, thus the desired operating fre-
quency is 654.2 MHz. However, this frequency is deemed
to be very high and the power consumption is signifi-
cantly higher too. We can resolve this frequency concern by
employing parallel processing technique, where the desired
frequency is divided by four if we are using four parallel
wavelet engines. Assuming we are designing a DWT pro-
cessor with four wavelet engines, thus the desired frequency
is just about 150 MHz. In order to reserve additional head-
room for overheads, we decided to set the target frequency
at 200 MHz.

3.3 High Level Architecture Overview

The proposed DWT system architecture is leveraged from
the architecture presented by Mansouri in 2009 [8]. The
key distinguishing feature is the parallel processing and the
elimination of LL FIFO. This allows scalability of up to
eight parallel wavelet engines that are able to process 1-D
transform concurrently.

The proposed architecture shown in Fig. 2 comprises of
a main controller, a transpose engine, a central bus and up
to eight DWT engines. The main controller contains a state
machine and a register block. The system host needs to con-
figure the registers to setup the filtering operation details
like the memory base address to retrieve the image and
later, store the image once the filtering operation has been
completed. Once the setup has been completed, the state
machine will instruct the DWT engine to start the filtering
operation. At the same time, it will kick-off the transpose
operation in the transpose engine. The DWT engine will
fetch the image from the memory, perform the 1-D DWT
operation and write the output low coefficients into the
line buffer in the transpose engine. The transpose engine
will read from all line buffers, perform row-column swap-
ping, and write the results back to the main memory. Since
the DWT engines and the transpose engine need to access
the main memory simultaneously, a central bus with round
robin arbiter is needed.

As compared with the original architecture proposed by
Mansouri [8], the address generator in the new design is
integrated in each 1-D DWT wavelet engine. The address
generator is responsible to generate memory addresses to
the external memory. The LL FIFO is also removed, which
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Figure 2 High level conceptual
architecture block diagram.

Register
Block

…
. . . …
. . .

Central Bus
& Arbiter

Image
(Memory)

Transpose
Engine

Main Controller

DWT Engine

DWT Engine FIFO

FIFO

reduces the internal memory usage significantly, but at the
expense of memory access bandwidth.

3.4 DWT Engine Design

The DWT engine consists of a FIFO, a memory fetch
sequencer, an execution sequencer and a computational
block is shown in Fig. 3. The memory fetch sequencer unit
is responsible to request central bus to obtain bus owner-
ship for memory read operation. Once the memory read is
granted by the arbiter, the memory request is terminated and
the current memory address location is incremented. It will
fetch image data in 256-bit a chunk from main memory and
store it in the FIFO. The execution sequencer will retrieve
the data from the FIFO and serialize it to become two sets
of 16-bit pixel samples. The two sets of samples (odd and
even) are then fed to the DWT computational block. The

execution sequencer can provide symmetrical image sam-
ples to the computational block to avoid image distortion at
the image boundary. Since the pipeline is a 13-stage, a con-
trol signal will be generated 13 cycles after the reading of
the sample to load the low coefficients into the line buffer
in the transpose engine.

The computational block is a fully pipelined design to
achieve maximum throughput. The output from the com-
putational block are the low coefficients, which will be
stored in line buffers in the transpose engine. It comprises of
four lifting calculators (LCs) and a scaling calculator (SC)
as shown in Fig. 4. There are pipeline registers placed in
between to reduce critical path delay (cpd) and to improve
throughput. The even sample is multiplied with a lifting fac-
tor (coefficient) and registered first to mitigate the speed
path. The rest of the registers are inserted for delay purpose.
There is a 16 × 16 multiplier and a 3-input 16-bit adder in

Figure 3 DWT engine
architecture block diagram.
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Figure 4 Computational block pipeline design.

the LC. The SC is a 16×16 multiplier. There are 13 pipeline
stages in this computational block, thus the latency is 13
cycles.

4 Results and Discussion

The proof-of-concept in this project is done in FPGA,
coded in Verilog HDL, and synthesized in Altera Quartus II
targeting the Stratix III FPGA family.

4.1 Performance Metrics

The performance metrics for each DWT engine are shown
in Table 1. Our architecture needs 10.28 kb memory for
512 × 512 image processing. A total of 8 kb of buffer is
used for intermediate result storage in the transpose engine,
while another 0.28 kb of buffer is used to buffer the image
from the main memory due to memory access latency. Our

Table 1 Performance metrics of DWT engine.

Parameter Result

Resource Utilization

LC Combinationals 233

LC Registers 459

Memory Block Bits 18,720

Timing

Critical Path Delay (cpd) 2.964 ns

Maximum Frequency (Fmax) 338 MHz

Latency 13 cycles

Throughput 338 Mega results/s

Power 226.5 mW

architecture does not need LL FIFO compared to Man-
souri [8] resulting in 512 kb internal memory saving. The
critical path delay is the 3-input 16-bit adder, which has the
total of 2.964 ns path delay.

Based on the TimeQuest Timing Analysis tool, the design
can perform up to 338 MHz at slow process corner, 85◦C
of temperature and 1100 mV of operating voltage. The
design has 13 pipeline stages (Fig. 4), thus the latency is 13
cycles without considering initial memory access latency.
After the initial latency, the design is able to produce 338
Mega Results/s consistently. We also measured the power
consumption for the DWT engine by using the PowerPlay
Power Analysis tool. Since the full vector is not available,
the power consumption was estimated by using vector-
less approach, based on assumption of 12.5 % toggle rate.
The power consumption measured for each DWT engine is
226.5 mW.

4.2 Performance Comparison

The 2-D DWT architectures presented earlier (see
Section 2) generally require N2 computation time for N×N

images. We compare the number of multipliers, adders,
internal buffer size, and the total computation time with
other architectures and the comparison result is shown in
Table 2, where m denotes the number of parallel DWT
engines. Our proposed architecture uses the least number of
adders and multipliers while using the same internal buffer
size as Mansouri for the case of m = 2 parallel DWT

engines. The CT of the proposed architecture is 3N2

32 + 3N2

4m ,

where 3N2

32 is the number of cycles required to fetch image
from the main memory, which is constant regardless of par-
allel processing. The number of cycles required for filtering

operation is 3N2

4m , where the computation time can be shorten
by parallel processing.
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Table 2 Performance comparison with other works.

Architecture Adders / Buffer Computation

Multipliers size Time, CT

Conventional 16 / 12 N2 + N2

4
N2

2 + 2
∑

N
2j

Lifting

Andra [1] 8 / 4 4N N2

2 + 2
∑

N
2j

Wu [12] 36 / 36 9N N2

2 + 2N

Hung [5] 12 / 9 14N N2 + 4N

Mansouri [8] 8 / 4 2N N2

2 + N

Proposed 8 / 4 2mN 3N2

32 + 3N2

4m

Our architecture has comparable performance with
Mansouri architecture by using 2 parallel DWT engines and
performs better than Mansouri architecture [8] with 4 or 8
engines as shown in Fig. 5. The performance improvement
from m = 4 to m = 8 is not very significant due to constant
image fetching time from the main memory.

4.3 Peak Signal-to-Noise Ratio (PSNR)

For an 8-bit decompressed image, the PSNR is given as

10 log10

(
2552

MSE

)
, where MSE refers to the Mean Square Error

between the original and the reconstructed image. For our de-
sign using rational number coefficients with denominator
greater than 12-bit will give very good decompressed image
quality with PSNR of 33 dB. The maximum operating fre-
quency remains consistent regardless of coefficient width.

4.4 Throughput

From the TimeQuest result, the design can operate up to
338 MHz, but realistically we chose 250 MHz as our final
operating frequency for a safety margin of 30 %. For an

Figure 5 CT comparison with numbers of DWT engines.

N × N image, the total CT is given in Table 2. Our design
is able to process 1024 × 768 images at 125 FPS with one
DWT engine. With 2 DWT engines, it is able to process
1920 × 1080 Full HD video at 85 FPS. It also can pro-
cess 2048 × 1536 video (QXGA) at 138 FPS by using 8
DWT engines running at 250 MHz. The performance of our
DWT design with 2 engines is comparable with Mansouri
architecture [8], but with less memory storage.

5 Conclusion

This paper has proposed and presented a 2-D DWT sys-
tem architecture for real-time image and video processing
which is capable of achieving a maximum throughput of
138 FPS for a 2048 × 1536 image size. The architecture
is scalable and can support multiple DWT engines and
each DWT engine can operate independently. Hence, the
throughput can be increased by a factor of m, where m is the
number of parallel DWT engines. The architecture also has
advantages of low internal buffer size, low control complex-
ity, fast computational time and low power consumption.
The DWT system is modular and flexible enough, and it
can be used as generic DWT processor in future for any
application that needs wavelet transform. The only change
needed is the computational block design, which can be
made programmable in the future.
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