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Abstract In this paper we have designed a Split-radix type
FFT unit without using multipliers. All the complex mul-
tiplications required for this type of FFT are implemented
using Distributed Arithmetic (DA) technique. A method
is incorporated to overcome the result overflow problem
introduced by DA method. Proposed FFT architecture is
implemented in 180 nm CMOS technology at a supply
voltage of 1.8 V.

Keywords Fast fourier transforms (FFT) · Split radix FFT
(SRFFT) · Distributed arithmetic (DA) · ASIC
implementation

1 Introduction

Fast Fourier Transform (FFT) is a very common operation
used for various signal processing units. It finds applica-
tions in a wide range of communications, radar, image,
speech processing and analysis. It is important to have
architectures which perform FFT quickly and consume less
power especially for wireless standards used in handheld
devices. Since, twiddle factors in FFT/IFFT are orthogo-
nal to each other, they are used at receiver/transmitter in
an OFDM implementation. According to the European dig-
ital video/audio broadcasting (DVB-T/DAB) standards, an
OFDM system may require FFT lengths ranging from 256
to 8192 point. Wireless local area network (WLAN) and

S. P. Joshi · R. Paily (�)
EEE Department, IIT Guwahati,
Guwahati, Assam, India
e-mail: roypaily@iitg.ernet.in

S. P. Joshi
e-mail: sunil.josh88@gmail.com

HIPERLAN/2 systems require high-speed and low-power
FFT/IFFT design [20, 25]. The fourth-generation cellu-
lar phone and the forthcoming new WLAN systems may
also incorporate OFDM system to deliver higher bandwidth
[16]. Hence, it is important to design high-performance but
low-power FFT for these applications.

In 1964, Cooley-Tukey [6] used a divide and conquer
approach to reduce the computational complexity of FFT
from N2 to Nlog2N . This method is considered as a break-
through in the development of high speed and low complex-
ity FFT algorithm. Good’s mapping [9] is used to divide
transforms into two different lengths FFT’s N1 and N2, such
that N = N1.N2, where both N1 and N2 are co-primes.
Subsequent to this mapping, fast convolution schemes were
used by Winograd in 1974 [27], to solve nesting of the vari-
ous multiplications. This algorithm was known as Winograd
Fourier Transform Algorithm (WFTA). It requires less num-
ber of multiplication but its structure is complicated and
hence takes more time for execution [15, 19]. In Prime Fac-
tor Algorithm (PFA) [13], after dividing transform into two
different prime length transform, multi dimensional DFT’s
are calculated by row-column method. This requires more
multiplication operations but with fewer additions and has
a simpler structure compared to WFTA. High radix algo-
rithms are also developed for efficient calculation of FFT.
These algorithms reduces overall arithmetic operations in
FFT, but increases the number of operations and complex-
ity of each butterfly. Various implementations are reported
with high radix algorithm in [2, 4, 14, 23, 28]. Among them,
radix-4 algorithm is very popular due to its lesser complex-
ity. In 1984, P. Duhamel and H. Hollmann [8], presented the
split-radix FFT (SRFFT) algorithm. It calculates the even
parts using the radix-2 algorithm and the odd parts using
the radix-4 algorithm. This mixed-radix approach helped to
achieve lower number of multiplications and additions. The
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resulting butterfly has simple structure and the details will
be presented in subsequent sections. Radix 2/4/8 algorithm
has less complexity than SRFFT, but it cannot be used for
calculating FFT for all powers of 2n.

Every butterfly has two main operations i.e., complex
multiplication and addition. Complex multiplication decides
the speed, hardware cost and power consumption. Usually
there are three conventional ways to tackle the complex mul-
tiplication [17]: Booth-Wallace multiplier, CORDIC multi-
plier, and CSD multiplier. CORDIC multiplier and Booth
multiplier usually have large area cost. Canonical Signed
Digit (CSD) multiplier is used by Maharatna and Jagdhold
[14]. They have used a shuffled-CSD based structures by
putting together all the constants required for multipli-
ers. It is not easy to handle the constant twiddle factors
in CSD arithmetic and it results in large area cost. Dis-
tributed Arithmetic (DA), along with Modulo Arithmetic,
are computation algorithms that perform multiplication with
look-up table based schemes. The commonly encountered
form of computation in digital signal processing is a sum
of products and it can be executed most efficiently by DA.
It was invented by S. Zohar in 1968 [32, 33]. In 1974,
Abraham Peled and Bede Liu [21], presented the detailed
explanation of DA method for IIR digital filter realization.
DA is basically a bit-serial computational operation that
forms an inner (dot) product of a pair of vectors in a sin-
gle direct step. The advantage of DA is its efficiency of
mechanization [26]. Since twiddle factors in any FFT algo-
rithm are fixed for specific N-point FFT, DA can be used to
replace complex multiplication in FFT.

Various DA based multipliers are reported in literature
[1–3, 18, 23]. In [11], multiplier is implemented with DA
using a guard bit for overflow control. CORDIC based mul-
tiplier reported in [28] has achieved overflow control by
shifting input data to the right by 2 bits thereby scaling
data by 4. In this paper a new methodology is presented
for controlling the overflow. The advantage of the proposed
method is that it does not require the pre-scaling of input
data. This method eliminates the extra shifting operation
and associated hardware compared to [28]. Since the data
stored in ROM is pre-scaled by 2, an additional one bit shift
is required after finishing multiplication in order to get back
the original result as in [28]. To achieve better precision, we
have incorporated same word length for both operands of
multiplier.

Apart from the overflow consideration of DA based
multipliers, another contribution of this paper is the imple-
mentation of a 256-point Split-Radix FFT (SRFFT) using
these multipliers. A DA based SRFFT implementation has
not been reported in the literature so far. Combining the
advantages of SRFFT algorithm and DA based multiplica-
tion, the resulting architecture is expected to be efficient in
terms of area, power and speed. There have been reports on

various DA based FFT architectures in literature. DA has
been used to reduce the complexity and to improve the per-
formance of basic radix-2 FFT structures [14, 23, 28]. In
[22] and [24], prime factor fourier transform algorithm was
implemented. In [22], basic arithmetic operation in PFFT
butterfly is replaced with DA. In [24], the matrix equation
of the DFT is reordered using DA. In [12] and [17], radix-8
FFT butterfly is used to implement 8K and 64 point FFT. In
[17], a DA based twiddle multiplier is implemented for but-
terfly operation. However the issues related to the overflow
of result was not addressed. In [12], DA is used to imple-
ment the CORDIC-based complex multipliers for 8-point
FFTs. In [23], radix-2 FFT butterfly is implemented using
DA based complex multiplication.

As a summary, this paper addresses the implementation
aspects DA based multiplier and 256-point SRFFT. This
paper is further arranged as follows. Section 2 explains
the split radix algorithm and the corresponding butterfly
diagram briefly. Section 3 presents how a complex multi-
plication can be substituted with DA operations. Sections 4
and 5 gives detailed architectures for DA based complex
multiplier and pipelined SRFFT. Results are compared with
other architectures in Section 6 and finally, the paper is
concluded.

2 Split-Radix FFT Algorithm

This section presents briefly the SRFFT algorithm and
its butterfly structure. General equation of discrete fourier
transform is given as

X(k) =
N−1∑

n=1

xnWnk
N (1)

where Wnk
N = ej2πnk/N Radix-2 algorithm calculates odd

and even components of X(k) using decimation in fre-
quency. Corresponding equations for even and odd compo-
nents are given by the equations

X2k =
(N/2)−1∑

n=1

(
xn + xn+(N/2)

)
Wnk

N/2 (2)

X2k+1 =
(N/2)−1∑

n=1

(
xn − xn+(N/2)

)
Wn

N.W
nk
N/2 (3)

Split-radix algorithm given in [8] further decomposes odd
ones and calculates X4k+1 and X4k+3. Corresponding equa-
tions for even and odd parts for an SRFFT are given in (4)
to (6).

X2k =
(N/2)−1∑

n=1

(
xn + xn+(N/2)

)
Wnk

N/2 (4)
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Figure 1 a SRFFT butterfly, b
SRFFT butterfly with permuted
outputs.

−j

W
3k

W
k

X0

X1

X2

X3

X0

X1

+

+ X3

X2

[(X0−X2)−j(X1− X3)]

[(X0−X2)+j(X1− X3)]

W

W3k

k

N

N

(a) (b)

X4k+1 =
(N/4)−1∑

n=0

(
xn − j.xn+(N/4) − xn+(N/2)

+j.xn+(3N/4)
)
Wn

N.W
nk
N/4 (5)

X4k+3 =
(N/4)−1∑

n=0

(
xn + j.xn+(N/4) − xn+(N/2)

−j.xn+(3N/4) )W
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Calculation of X(k) from above equations leads to two
different types of butterfly diagrams as shown in Fig. 1
[7].

The difference between part (a) and (b) is in the number
of stages required to finish the butterfly operation. Com-
pared to part (a), part (b) completes the operation in a single
step and is also a symmetrical structure from a hardware
point of view. Complete signal flow graph (SFG) for an 8
point FFT is shown in Fig. 2. The number of stages required
for N-point FFT is log2N . Each processing element (PE)
shown in Fig. 2 has four complex inputs and generates four
complex outputs. The detailed diagram of a PE is shown in
Fig. 3. It consists of 3 complex adders and 3 subtractors.
Similar SFG is used for implementing the proposed 256-
point FFT.

3 Distributed Arithmetic Method for Complex
Multiplication

In this section, complex multiplication operation using DA
is explained. DA can be used to implement multiplication
operation if either the multiplicand or the multiplier value is
fixed. It stores the possible combinations of fixed operand
in ROM and suitable combination is added and shifted with
respect to bits of other operand. The method for DA based
complex multiplication can be summarized as

ZR + jZI = (BR + jBI ) ∗ (TR + jTI ) (7)

ZR = BRTR − BITI (8)

ZI = BRTI + BITR (9)

(6) and (9) show that 4 real multiplications and 2 real addi-
tions are required to compute ZR and ZI . But these equa-
tions can be considered as one ‘multiply and accumulate’
operation as explained in [1].

y =
K∑

k=1

Ckxk (10)

Let, Ck are fixed coefficients and xk are the input words. If
xk is M-bit fractional number in 2’s complement form then

Figure 2 Signal flow graph of
8-point SRFFT. X(5)
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Figure 3 Processing element for butterfly.

it can be expressed in following form

xk = −bk0 +
M−1∑

m=1

bkm2−m (11)

where bkm are binary bits which are either 0 or 1. Combining
(10) and (11),

y =
K∑

k=1

(
−bk0 +

M−1∑

m=1

bkm2−m

)
Ck (12)

it can be rearranged as

y = −
K∑

k=1

bk0Ck +
M−1∑

m=1

[
K∑

k=1

Ckbkm2−m

]
(13)

In (13), the part

K∑

k=1

Ckbkm (14)
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is very important. Depending on binary bits bkm of K input
words, the fixed coefficients Ck are added together. The two
twiddle factors TR and TI of (8) and (9) are constant and
BR and BI are two incoming words. Depending on the bits
of BR and BI , twiddle factors are added. There can be only
four combination of bits and the precalculated values for
these combinations can be stored in ROM for both ZR and
ZI . These incoming binary bits can be used to address ROM
locations and ROM output is fed to adder.

4 Proposed Architecture Of DA Based Complex
Multiplier

The detailed architecture for complex multiplier is shown in
Fig. 4. The real and imaginary parts of incoming words, BR

Figure 4 DA based complex
multiplier.
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Figure 6 The block level representation of proposed SRFFT.

and BI are stored in two 16 bits wide parallel in serial out
register. Shifting is carried out starting from LSB to MSB.
Each output bit of these two registers are used as address
lines of the ROMs. The ROM stores precalculated outcomes
for both ZR and ZI as per (8) and (9). The size of each
ROM is 4 × 16. One of the input to the 2:1 MUX is directly
fed from the output of ROM and the other input to MUX
is inverted. Input and output bit width for MUX is also 16
bits. The select line of MUX is ‘cin’ signal and it remains
as ‘0’ till the MSB arrives at output. As explained in (13),
for a 2’s complement fractional number, the MSB is sign bit
and its value is required to perform subtraction at the end.
If select line ‘cin’ of Mux is 1, it selects inverted output
from ROM and it is added to the value stored in the partial
product register (PPR). The PPR is a 16 bit wide ‘parallel
in parallel out’ register which also performs 1-bit right shift
operation. Finally the output is taken from the left shift reg-
ister. Both TR and TI are in 16 bit 2’s complement fractional
number format and the ROM for ZR contains TR +TI . This
addition may cause an overflow and in order to solve this
issue, all twiddle factors are pre-scaled and stored in ROM.
Pre-scaling is achieved by shifting one bit to the right and
thereby the overflow is avoided in all possible cases. Nev-
ertheless, to ensure proper result from complex multiplier,
the result of the final addition should be shifted by one bit

to the left. Since, the combinational delay for multiplier is
given by tmult = tread + tMUX + tadd , the latency of this
multiplier is 17 cycles which is equal to bit width of incom-
ing words and additional shift is required to for up scaling
the final result. Thus total time required for multiplication
is tmax = 17 ∗ tmult .

A frequently stated disadvantage of DA is its apparent
slowness because of the inherent bit-serial nature [26]. The
total number of cycles required to complete the multiplica-
tion is proportional to the input bits. Bit widths also deter-
mine the power consumed in the multiplier, therefore we
have investigated the power consumption for different input
bits. Figure 5 shows that the power consumption increases
almost linearly with approximately 10μW increase in power
per every bit.

5 Proposed SRFFT Architecture

Figure 6 shows architecture of proposed SRFFT unit. Due
to space constraints, an 8-point FFT is shown instead of
256-point. It consists of 3 stages with buffers between the
states. Each stage has PE and DA based complex multi-
pliers. The implemented FFT receives all inputs in serial
fashion and therefore a ‘demux’ is needed before ‘stage1’.

Figure 7 Detailed view of
processing element.
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Table 1 Timing and power comparison of Multiplier with other
implementations.

Parameters Power Area Delay Technology Frequnecy Bit Width

(mW) (mm2) (ns) (μm) (MHz) (Width)

Proposed 0.323 0.0127 8 0.18 125 16 × 16

[18] 70 0.5 4 0.8 250 12 × 16

[1] 66 3.59 16 0.5 40 16 × 10

Since the proposed FFT is of 256 points, a bit width of 16
is used for ROM to achieve more precision and the pro-
posed architecture has 16 × 16 bit width. In the last stage,
a 2 input butterfly unit is needed as in Cooley-Tukey’s FFT
algorithm. It performs complex addition and complex sub-
traction operation of two inputs. Since there are buffers
between stages, the maximum operating frequency of oper-
ation of FFT depends on the speeds of individual stages.
The detailed arrangement of adders in PE is shown in Fig. 7.
Each adder and inverter shown in figure represents opera-
tion for both real and imaginary parts and therefore there are
total 12 adders and 6 inverters. The width of input/output
adders as well as inverters is 16 bits. The total delay of
PE can be given as tPE = 2tinv + 2tadd . Thus total delay
for whole SRFFT can be either td1 = tsetup + tPE or
td2 = tmul + tsetup whichever is greater. Typically setup
delays are negligible compared to multiplier delays and PE
delays and therefore SRFFT can be operated at multiplier
frequency.

6 Experimental Results

In this section, results of the DA based multiplier are pre-
sented. Subsequently for results for SRFFT using DA based
multiplier are given. DA based multiplier is implemented in
0.18 μm CMOS technology. The functional verification of
HDL coded multiplier is carried out in Xilinx ISE simulator.
The proposed multiplier is coded in Verilog language. Syn-
thesis of multiplier is carried out in design compiler using

Faraday library. The area taken by design is 0.012752 mm2.
The delay of design is found to be 8 ns. Power of multi-
plier is calculated by generating. SAIF (Switching Activity
Interchange Format) in design compiler. This file is used in
VCS, along with main design of multiplier and testbench to
calculate switching at every specified node. Information of
these switching activities are stored in backward ‘saif’ file.
This file is again used in design compiler along with gen-
erated netlist and the power is determined. The clock speed
used for power estimation is 125 MHz and voltage used is
1.8 V. The power estimated for 125 MHz operation is 323
μW. Since the multiplier proposed is basically an extension
of the DA technique, we have compared the results obtained
with other DA based implementations in Table 1. The pro-
posed multiplier has achieved the least power required at
higher bit widths compared to other DA based multipliers
reported in [1] and [18].

The Proposed SRFFT architecture is implemented for
256 point FFT in 0.18 μm CMOS technology operating at
1.8 V. The core area taken by design is 11 mm2. The criti-
cal path delay of SRFFT is found to be 8 ns which is same
as that of the multiplier. When the SRFFT is operated at
a clock speed of 20 MHz, the power consumed is 70 mW.
Seventeen clock cycles are required to complete one multi-
plier operation and there are six stages of multiplication and
therefore it takes 102 cycles. Eight extra cycles are required
to process the data through the 8 buffers. Therefore the pro-
posed architecture calculates 256 pt FFT in 110 cycles and
the total time required for the calculation is 5.5 uS. The sim-
ulation results showed that the power consumed is 21 mW
and 401 mW when the SRFFT is operated at clock speeds
of 5 MHz and 100 MHz respectively. The comparison of
proposed SRFFT unit with other implementations is carried
out in Table 2. The SRFFT operated at 5 MHz clock has
achieved the lowest power consumption even at higher bit
widths when compared to other reported FFTs. Therefore
the proposed design can be used for WLAN applications.
The layout of proposed architecture with Input Output (IO)
pads, power pads and bond pads is given in Fig. 8. Layout is

Table 2 Timing and power comparison of Proposed SRFFT with other implementations.

Parameters FFT Algorithm Power Area Delay Technology Frequency Bit

Size (mW) (mm2) (us) (μm) (MHz) Width

Proposed 256 SRFFT 70 11 5.5 0.18 20 16 × 16

Proposed 256 SRFFT 21 11 22 0.18 5 16 × 16

Proposed 256 SRFFT 401 11 1.1 0.18 100 16 × 16

[30] 64 SRFFT 507 3.45 − 0.35 100 12 × 12

[29] 8K Radix 2/4 190 − 1197 0.25 12 8 × 8

[10] 2K/4K/8K Radix 2/4/8 25.8 2.84 1025 0.18 20 13 × 10

[31] 2K Radix 2/4/8 640 21.45 22.5 0.35 45 12 × 16

[5] 256 Radix 16 162.7 − − 0.18 33 10 × 10



J Sign Process Syst (2014) 75:85–92 91

Figure 8 Layout of DA based SRFFT.

carried out in Cadence using SOC Encounter. The chip area
required for this design is 5 mm × 3 mm.

7 Conclusion

In this paper, a new overflow technique was proposed for
the DA based complex multiplier. The proposed architecture
avoided the pre-scaling of input data; instead, it pre-scaled
the data stored in ROM. Thus additional hardware required
for pre-scaling input data was removed. When compared
with other DA based multipliers, the proposed multiplier
has achieved lower power and area at higher bit widths.
The same multiplier was used to implement a pipelined
architecture for 256 point SRFFT. To the best of our knowl-
edge there are no reports available on DA based SRFFT
implementation. Pipelining technique was applied to main-
tain the speed of individual stages of SRFFT equal to that
of the multiplier. Thereby SRFFT can be operated at the
speed of the multiplier with a latency of 110 cycles. The
SRFFT operated at 5 MHz clock has achieved the lowest
power consumption even at higher bit widths when com-
pared to other reported FFTs. Therefore the proposed design
is highly desirable for WLAN applications.
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