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Abstract Linear regression for Hidden Markov Model
(HMM) parameters is widely used for the adaptive training
of time series pattern analysis especially for speech process-
ing. The regression parameters are usually shared among
sets of Gaussians in HMMs where the Gaussian clusters are
represented by a tree. This paper realizes a fully Bayesian
treatment of linear regression for HMMs considering this
regression tree structure by using variational techniques.
This paper analytically derives the variational lower bound
of the marginalized log-likelihood of the linear regression.
By using the variational lower bound as an objective func-
tion, we can algorithmically optimize the tree structure and
hyper-parameters of the linear regression rather than heuris-
tically tweaking them as tuning parameters. Experiments on
large vocabulary continuous speech recognition confirm the
generalizability of the proposed approach, especially when
the amount of adaptation data is limited.
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1 Introduction

Hidden Markov Models (HMM) have been widely used
for time series analysis (e.g., speech, text, and image pro-
cessing). HMM parameters can be estimated by statistical
methods, effectiveness of which depends on the quality
and quantity of available data that should distribute accord-
ing to the statistical feature of intended signal space or
conditions. As there is no sure way of collecting suf-
ficient data to cover all conditions, adaptive training of
HMM parameters from a set of previously obtained param-
eters to a new set that befits a specific environment with
a small amount of new data is an important research
issue.

In speech recognition, one approach is to view the adap-
tation of model parameters to new data as a transformation
problem; that is, the new set of model parameters is a trans-
formed version of the old set: λn+1 = f (λn, {x}n), where
{x}n denotes the new set of data available at moment n

for the existing model parameters λn to adapt to. Most fre-
quently and practically, the function f is chosen to be of
an affine transformation type [1, 2]: λn+1 = Aλn + b,
when various parts of the model parameters, e.g., the mean
vectors or the variances, are envisaged in a vector space. The
adaptation algorithm therefore involves deriving the affine
map components, A and b, from the adaptation data {x}n. A
number of algorithms have been proposed for this purpose.
(See [3, 4] for detail. There are many variants of trans-
formation types for HMMs, e.g., [5–9]). Some techniques
bear the name ”linear regression”, and our paper also uses
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this name by convention. There are many other applications
of the adaptive training of HMMs than speech recognition
(e.g., speech synthesis [10], speaker recognition [11], face
recognition [12] and activity recognition [13]).

For automatic speech recognition, the number of the
Gaussian distributions or simply Gaussians, which are used
as component distributions in forming state-dependent mix-
ture distributions, is typically in the thousands or more. If
each mean vector in the set of Gaussians is to be modified by
a unique transformation matrix, the number of “adaptation
parameters” can therefore be quite large. The main prob-
lem of this method is thus how to improve “generalization
capability” by avoiding the over-training problem when the
amount of adaptation data is small. To solve the problem,
there are mainly two approaches: 1) model selection and 2)
prior knowledge utilization.

The model selection approach is originally proposed
within the estimation of linear transformation parameters
by using the maximum likelihood EM algorithm (called
Maximum Likelihood Linear Regression (MLLR)). MLLR
proposes to share one linear transformation in a cluster of
many Gaussians in the HMM set, thereby effectively reduc-
ing the number of free parameters that can then be trained
with a small amount of adaptation data. The Gaussian clus-
ters are usually constructed as a tree structure, as shown
in Fig. 1, which is pre-determined and fixed throughout
adaptation. This tree (called regression tree) is constructed
based on a centroid splitting algorithm, described in [14].
This algorithm first makes two centroid vectors from a ran-
dom perturbation of the global mean vector computed from
Gaussians assigned to a target leaf node. Then, it splits a
set of these Gaussians according to the Euclidean distance
between Gaussian mean vectors and two centroid vec-
tors. Obtained two sets of Gaussians are assigned to child
nodes, and this procedure is continued to finally build a
tree.

Coarse

Fine

Figure 1 Gaussian tree representation of liner regression parameters.

The utility of the tree structure is commensurate with
the amount of adaptation data; namely, if we have a small
amount of data, it uses only coarse clusters (e.g., the root
node of a tree in the top layer of Fig. 1) where the num-
ber of free parameters in the linear transformation matrices
is small. On the other hand, if we have a sufficiently large
amount of data, it can use fine clusters where the number
of free parameters in the linear transformation matrices is
large, potentially improving the precision of the estimated
parameters. This framework needs to select appropriate
Gaussian clusters according to the amount of data, i.e., it
needs an appropriate model selection function. Usually, the
model selection is performed by setting a threshold value
manually (e.g., the total number of speech frames assigned
to a set of Gaussians in a node).

While the regression tree in MLLR can be considered
one form of prior knowledge, i.e., how various Gaussian
distributions are related, another approach is to explicitly
construct and use prior knowledge of regression parame-
ters in an approximated Bayesian paradigm. For example,
Maximum A Posteriori Linear Regression (MAPLR) [15]
and quasi-Bayes linear regression [16] replace the ML
criterion with the MAP and quasi-Bayes criteria, respec-
tively, in the estimation of regression parameters. With the
explicit prior knowledge acting as a regularization term,
MAPLR appears to be less susceptible to the problem
of over-fitting. The MAPLR is extended to the structural
MAP (SMAP) [17] and the structural MAPLR (SMAPLR)
[18], both of which fully utilize the Gaussian tree struc-
ture used in the model selection approach to efficiently
set the hyper-parameters in prior distributions. In SMAP
and SMAPLR, the hyper-parameters in the prior distri-
bution in a target node are obtained by the statistics in
its parent node. Since the total number of speech frames
assigned to a set of Gaussians in the parent node is always
larger than that in the target node, the obtained statis-
tics in the parent node is more reliable than that in the
target node, and these can be good prior knowledge for
transformation parameter estimation in the target node.
Another extension of MAPLR is to replace MAP approx-
imation to a fully Bayesian treatment of latent models,
called variational Bayes (VB). VB has been developed in
the machine learning field based on a variational tech-
nique [19–23], and has been successfully applied to HMM
training in speech recognition [24–31]. VB is also applied
to the estimation of the linear transformation parame-
ters of HMMs [32, 33] to achieve further generalization
capabilities.

This paper also employs VB for the linear regres-
sion problem, but we focus on the model selection and
efficient prior utilization at the same time, in addition to
the estimation of the linear transformation parameters of
HMMs proposed in previous work [32, 33]. In particu-
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lar, we consistently use the variational lower bound as the
optimization criterion for the model structure and hyper-
parameters, in addition to the posterior distributions of
the transformation parameters and the latent variables.1

Since this optimization leads the approximated variational
posterior distributions to the true posterior distributions
theoretically in the sense of minimizing Kullback Leibler
divergence between them, the above consistent approach
yields to improve the generalization capability [20, 22,
23]. To do this, this paper provides an analytical solu-
tion to the variational lower bound by marginalizing all
possible transformation parameters and latent variables
introduced in the linear regression problem. The solu-
tion is based on a variance-normalized representation of
Gaussian mean vectors to simplify the solution as nor-
malized domain MLLR. As a result of variational cal-
culation, we can marginalize the transformation param-
eters in all nodes used in the structural prior setting.
This is a part of the solution of the variational mes-
sage passing algorithm [34], which is a general frame-
work of variational inference in a graphical model. Fur-
thermore, the optimization of the model topology and
hyper-parameters in the proposed approach yields an addi-
tional benefit to the improvement of the generalization
capability. For example, the proposed approach infers the
linear regression without controlling the Gaussian cluster
topology and hyper-parameters as the tuning parameters.
Thus linear regression for HMM parameters is accom-
plished without excessive parameterization in a Bayesian
sense.

This paper is organized as follows. It first introduces
the conventional MLLR framework in Section 2. Then,
we provide a formulation of the Bayesian linear regression
framework in Section 3. Based on the formulation, Section 4
introduces a practical model selection and hyper-parameter
optimization scheme in terms of optimizing the variational
lower bound. Section 5 reports unsupervised speaker adap-
tation experiments for a large vocabulary continuous speech
recognition task, and confirms the effectiveness of the pro-
posed approach. The mathematical notations used in this
paper are summarized in Table 1.

1Strictly speaking, since transformation parameters are not observ-
ables and are marginalized in this paper, these can be regarded as latent
variables in a broad sense, similar to HMM states and mixture com-
ponents of Gaussian Mixture Models (GMMs). However, these have
different properties, e.g., transformation parameters can be integrated
out in the VB-M step, while HMM states and mixture components
are computed in the VB-E step, as discussed in Section 3. There-
fore, to distinguish transformation parameters from HMM states and
mixture components clearly, this paper only treats HMM states and
mixture components as latent variables, which follows the terminology
in variational Bayes framework [22]

2 Linear Regression for Hidden Markov Models Based
on Variance Normalized Representation

This section briefly explains a solution for the linear regres-
sion parameters for HMMs within a maximum likelihood
EM algorithm framework. This paper uses a solution based
on a variance normalized representation of Gaussian mean
vectors to simplify the solution.2 In this paper, we only
focus on the transformation of Gaussian mean vectors in
HMMs.

2.1 Maximum Likelihood Solution Based on EM
Algorithm and Variance Normalized representation

First, we explain the basic EM algorithm of the conventional
HMM parameter estimation to set the notational convention
and to align with the subsequent development of the pro-
posed approach. Let O � {ot ∈ R

D|t = 1, · · · , T } be
a sequence of D dimensional feature vectors for T speech
frames. The latent variables in a continuous density HMM
are composed of HMM states and mixture components of
GMMs. A sequence of HMM states is represented by S �
{st |t = 1, · · · , T }, where the value of st denotes an HMM
state index at frame t . Similarly, a sequence of mixture com-
ponents is represented by Z � {zt |t = 1, · · · , T }, where the
value of zt denotes a mixture component index at frame t .
The EM algorithm deals with the following auxiliary func-
tion as an optimization function instead of directly using the
model likelihood:

Q(�; �̂) � 〈log p(O, S, Z|�)〉
p(S,Z|O;�̂)

, (1)

where � is a set of HMM parameters. The brackets 〈〉
denote the expectation i.e. 〈g(y)〉p(y) ≡ ∫

g(y)p(y)dy

for a continuous random variable y and 〈g(n)〉p(n) ≡∑
n g(n)p(n) for a discrete random variable n.

p(O, S, Z|�) is a complete data likelihood given �.
p(S, Z|O; �̂) is the posterior distribution of the latent vari-
ables given the previously estimated HMM parameters �̂.
Equation 1 is an expected value, and is efficiently computed
by using the forward-backward algorithm as the E-step of
the EM algorithm.

The M-step of the EM algorithm estimates HMM param-
eters, as follows:

�̄ = argmax
�

Q(�; �̂). (2)

The E-step and the M-step are performed iteratively until
convergence, and finally we obtain the HMM parameters as
a close approximate of the stationary point solution.

2This is first described in [35] as normalized domain MLLR. The
structural Bayes approach [17] for bias vector estimation in HMM
adaptation also uses this normalized representation.
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Table 1 Notation list.
t : Speech frame index

T : The number of speech frames

ot ∈ R
D : D dimensional feature vector at t

O = {ot |t = 1, · · · , T } : Sequence of feature vectors for T frames

S = {st |t = 1, · · · , T } : Sequence of HMM states for T frames

Z = {zt |t = 1, · · · , T } : Sequence of mixture components in a GMM for T frames

V = {{st , zt }|t = 1, · · · , T } : Joint event sequence of s and v

Q(·; ·) : Auxiliary function used in the EM algorithm

� : Set of HMM parameters

m : Model structure index of a pruned Gaussian tree

Jm : Set of leaf nodes with m

j : leaf node index

Wj ∈ R
D×(D+1) : Regression matrix at j

�Jm = {Wj |j = 1, · · · , |Jm|} : Subset of regression matrices for leaf nodes with m

i : node index

Im : Set of nodes with m

�Im = {Wi |i = 1, · · · , |Im|} : Subset of regression matrices for nodes with m

p(i) : Parent node of i

l(i) : Left child node of i

r(i) : Right child node of i

k : mixture component index for all Gaussians

ζk,t ∈ [0, 1] : Posterior probability of mixture component k at t

μk ∈ R
D : Gaussian mean vector at k

�k ∈ R
D×D : Gaussian covariance matrix at k

N (·|μ, �) : Gaussian distribution with μ and �

μad
k : Transformed mean vector

Ck ∈ R
D×D : Cholesky decomposition matrix of �k

ξ k ∈ R
D+1 : Augmented normalized vector at k

Ki : Set of Gaussians in node i

�j ∈ R
(D+1)×(D+1) : 0th order sufficient statistics for Wj

Zj ∈ R
D×D : 1st order sufficient statistics for Wj

ζk ∈ R>0 : 0th order sufficient statistics for kth Gaussian

νk ∈ R
D : 1st order sufficient statistics for kth Gaussian

Sk ∈ R
D×D : 2nd order sufficient statistics for kth Gaussian

� : Set of hyper-parameters

F(m, �) : Variational lower bound given � and m

q(·) : Variational posterior distribution

Mj ∈ R
D×(D+1) : location matrix of matrix variate normal distribution at j

	j ∈ R
(D+1)×(D+1) : scale matrix of matrix variate normal distribution at j


j ∈ R
D×D : scale matrix of matrix variate normal distribution at j

ID : D × D identity matrix

ρj ∈ R>0 : precision parameter at j

g(·) : normalization factor of Gaussian distribution

h(·) : normalization factor of matrix variate normal distribution

Now we focus on the linear transformation parame-
ters within the EM algorithm. We prepare a transformation
parameter matrix Wj for each leaf node j in a Gaussian
tree. Here, we assume that the Gaussian tree is pruned by

a model selection approach as a model structure m, and the
set of leaf nodes in the pruned tree is represented as Jm.
Hereinafter, we use V to denote a joint event of S and Z
(i.e., V � {S, Z}). This will much simplify the following
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development pertaining to the adaptation of the mean and
the covariance parameters. Similar to Eq. 1, the auxiliary
function with respect to a set of transformation parame-
ters �Jm

= {Wj |j = 1, · · · , |Jm|} can be represented as
follows:

Q(�Jm
; �̂Jm

) = 〈
log p(O, V|�Jm

; �)
〉
p(V|O;�,�̂Jm)

=
K∑

k=1

T∑

t=1

ζk,t logN (ot |μad
k , �k),

(3)

k denotes a unique mixture component index of all Gaus-
sians in the target HMMs (for all phoneme HMMs in a
speech recognition case), and K is the total number of
Gaussians. ζk,t � p(vt = k|O; �, �̂Jm

) is the posterior
probability of mixture component k at t , derived from the
previously estimated transformation parameters �̂Jm

.3 μad
k

is a transformed mean vector with �Jm
, and the concrete

form of this vector is discussed in the next paragraph. In the
Q function, we disregard the parameters of the state transi-
tion probabilities and the mixture weights since they do not
depend on the optimization with respect to �Jm

. N (·|μ, �)

denotes a Gaussian distribution with mean parameter μ and
covariance matrix parameter �, and is defined as follows:

N (ot |μad
k , �k)

� g(�k) exp

(

−1

2
tr
[
(�k)

−1(ot − μad
k )(ot − μad

k )′
])

,

(4)

where tr[·] and ′ mean the trace and transposition operations
of a matrix, respectively. g(�k) is a normalization factor,
and is defined as follows:

g(�k) � (2π)−
D
2 |�k|− 1

2 . (5)

In the following paragraphs, we derive Eq. 3 as a function
of �Jm

to optimize �Jm
, similar to Eq. 2.

We consider the concrete form of the transformed mean
vector (μad

k ) based on the variance normalized representa-
tion. We first define Cholesky decomposition matrix Ck as
follows:

�k � Ck(Ck)
′. (6)

Ck is a D×D triangular matrix. If the Gaussian k is included
in a set of Gaussians Kj in leaf node j (i.e., k ∈ Kj ), the

3 k denotes a combination of all possible HMM states and mix-
ture components. In the common HMM representation, k can be
represented by these two indexes.

affine transformation of a Gaussian mean vector in a covari-
ance normalized space (Ck)

−1μad
k is represented as follows:

(Ck)
−1μad

k = Wj

(
1

(Ck)
−1μini

k

)

.

⇒ μad
k = CkWj

(
1

(Ck)
−1μini

k

)

� CkWj ξ k.

(7)

ξ k is an augmented normalized vector of an initial (non-
adapted) Gaussian mean vector μini

k . Wj is a D × (D +
1) affine transformation matrix. j is a leaf node index that
holds a set of Gaussians. Namely, transformation parameter
Wj is shared among a set of Gaussians Kj . The clustered
structure of the Gaussians is usually represented as a binary
tree where a set of Gaussians belongs to each node.

The Q function of �Jm
is represented by substituting

Eqs. 7 and 4 into Eq. 3 as follows:

Q(�Jm; �̂Jm)=
∑

j∈Jm

∑

k∈Kj

T∑

t=1

ζk,t logN (ot |CkWj ξ k,�k)

=
∑

j∈Jm

⎛

⎝
∑

k∈Kj

ζk log g(�k)

−1

2
tr

[

W′
j Wj�j −2W′

j Zj +
∑

k∈Kj

�−1
k Sk

]
⎞

⎠ ,

(8)
where �j and Zj are 0th and 1st order statistics of linear
regression parameters defined as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�j �
∑

k∈Kj

ξ k(ξ k)
′ζk.

Zj �
∑

k∈Kj

(Ck)
−1νk(ξ k)

′.
(9)

Here Zj is a D×(D+1) matrix and �j is a (D+1)×(D+1)

symmetric matrix. ζk , νk , and Sk are defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζk =
T∑

t=1

ζk,t

νk =
T∑

t=1

ζk,tot

Sk =
T∑

t=1

ζk,toto′
t

(10)

These are the 0th, 1st, and 2nd order sufficient statistics of
Gaussians in HMMs, respectively.

Since Eq. 8 is represented as a quadratic form with
respect to Wj , we can obtain the optimal W̄j , similar to
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Eq. 2. By differentiating the Q function with respect to Wj ,
we can derive the following equation4

∂

∂Wj

Q(�Jm
; �̂Jm

) = 0. ⇒ Zj − W̄j�j = 0. (11)

Thus, we can obtain the following analytical solution:

W̄j = Zj�
−1
j . (12)

Therefore, the optimized mean vector parameter is repre-
sented as:

μad
k = CkZj�

−1
j ξ k. (13)

Therefore, μad
k is analytically obtained by using the statis-

tics (Zj and �j in Eq. 9) and initial HMM parameters
(Ck and ξ k). This solution corresponds to the M-step of the
EM algorithm, and the E-step is performed by the forward-
backward algorithm, similarly to that of HMMs, to compute
these statistics.

3 Bayesian Linear Regression

This section provides an analytical solution for Bayesian
linear regression by using a variational lower bound. The
previous section only considers a regression matrix in leaf
node j ∈ Jm, we also consider a regression matrix in leaf
or non-leaf node i ∈ Im in the Gaussian tree given model
structure m. Then, we focus on a set of regression matrices
in all nodes �Im

= {Wi |i = 1, · · · , |Im|}, instead of �Jm
,

and marginalize �Im
in a Bayesian manner. This extension

involves the structural prior setting as proposed in SMAP
and SMAPLR [17, 18].

In this section, we mainly deal with:

– the prior distribution of model parameters p(�Im
;

m, �)

– the true posterior distribution of model parameters and
latent variables p(�Im

, V|O; m, �)

– the variational posterior distribution of model parame-
ters and latent variables q(�Im

, V|O; m, �)

– the output distribution p(O, V|�Im
; �)

For simplicity, we omit some conditional variables in these
distribution functions, as follows:

p(�Im
; m, �) → p(�Im

)

p(�Im
, V|O; m, �) → p(�Im

, V|O)

q(�Im
, V|O; m, �) → q(�Im

, V)

p(O, V|�Im
; �) → p(O, V|�Im

)

4We use the following matrix formulate for the derivation:

∂

∂X
tr[X′A] = A

∂

∂X
tr[X′XA] = 2XA (A is a symmetric matrix)

3.1 Variational Lower Bound

With regard to the variational Bayesian approaches, we
first focus on the following marginalized log-likelihood
p(O; �, m, �) with a set of HMM parameters �, a set of
hyper-parameters �, and a model structure.5,6

log p(O; �, m, �)

= log

(∫ ∑

V

p(O, V|�Im
; �)p(�Im

; m, �)d�Im

)

.

(14)

where p(O, V|�Im
; �) is the output distribution of the

transformed HMM parameters with transformed mean vec-
tors μad

k . p(�Im
; m, �) is a prior distribution of transfor-

mation matrices �Im
. In the following explanation, we omit

�, m, and � in the prior distribution and output distri-
bution for simplicity, i.e., p(�Im

; m, �) → p(�Im
), and

p(O, V|�Im
; �) → p(O, V|�Im

).
The variational Bayesian approach focuses on the lower

bound of the marginalized log likelihood F(m, �) with a set
of hyper-parameters � and a model structure m, as follows:

log p(O; �, m, �)

= log

(∫ ∑

V

p(O, V|�Im
)p(�Im

)

q(�Im
, V)

q(�Im
, V)d�Im

)

≥
〈

log
p(O, V|�Im

)p(�Im
)

q(�Im
, V)

〉

q(�Im,V)
︸ ︷︷ ︸

�F(m,�)

.

(15)

The inequality in Eq. 15 is supported by the Jensen’s
inequality: log(〈X〉p(X)) ≥ 〈log(X)〉p(X). q(�Im

, V) is an
arbitrary distribution, and is optimized by using a variational
method to be discussed later. For simplicity, we omit m, �,
and O from the distributions. The variational lower bound
is a better approximation of the marginalized log likelihood
than the auxiliary functions of maximum likelihood EM and
maximum a posteriori EM algorithms that point-estimate
model parameters, especially for small amount of training
data [21–23]. Therefore, the variational Bayes can mitigate
the sparse data problem that the conventional approaches
must confront with.

The variational Bayes regards the variational lower
bound F(m, �) as an objective function for the model struc-
ture and hyper-parameter, and an objective functional for the
joint posterior distribution of the transformation parameters

5� and m can also be marginalized by setting their distributions. This
paper point-estimates � and m by a MAP approach.
6We can also marginalize the HMM parameters �. This corresponds
to jointly optimize HMM and linear regression parameters.
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and latent variables [22, 23]. In particular, if we consider
the true posterior distribution p(�Im

, V|O) (we omit con-
ditional variables m and � for simplicity), we obtain the
following relationship:

KL[q(�Im
, V)||p(�Im

, V|O)]
= log p(O; �, m, �) − F(m, �) (16)

This equation means that maximizing the variational lower
bound F(m, �) with respect to q(�Im

, V) corresponds to
minimizing the Kullback-Leibler (KL) divergence between
q(�Im

, V) and p(�Im
, V|O) indirectly. Therefore, this

optimization yields to find q(�Im
, V), which approaches to

the true posterior distribution.7

Thus, in principle, we can straightforwardly obtain the
(sub) optimal model structure, hyper-parameters, and poste-
rior distribution, as follows:

m̃ = argmax
m

F(m, �).

�̃ = argmax
�

F(m, �).

q̃(�Im
, V) = argmax

q(�Im,V)

F(m, �).

(17)

This optimization steps are performed alternately, and
finally lead to local optimum solutions, similar to the EM
algorithm. However it is difficult to deal with the joint distri-
bution q(�Im

, V) directly, and we propose to factorize them
by utilizing a Gaussian tree structure. In addition, we also
set a conjugate form of the prior distribution p(�Im

). This
procedure is a typical recipe of VB to make a solution math-
ematically tractable similar to that of the classical Bayesian
adaptation approach.

3.2 Structural Prior Distribution Setting in a Binary Tree

We utilize a Gaussian tree structure to factorize the prior
distribution p(�Im

). We consider a binary tree structure,
but the formulation is applicable to a general non-binary
tree. We define the parent node of i as p(i), the left child
node of i as l(i), and the right child node of i as r(i), as
shown in Fig. 2, where a transformation matrix is prepared
for each corresponding node i. If we define W1 as the trans-

7The following sections assume factorization forms of q(�Im, V) to
make solutions mathematical tractable. However, this factorization
assumption weakens the relationship between the KL divergence and
the variational lower bound. For example, if we assume q(�Im, V) =
q(�Im)q(V), and focus on the KL divergence between q(�Im) and
p(�Im |O), we obtain the following inequality:

KL[q(�Im)||p(�Im |O)] ≤ log p(O;�, m, �) − F(m, �).

Compared with Eq. 16, the relationship between the KL divergence
and the variational lower bound are less direct due to the inequality
relationship. In general, the factorization assumption distances optimal
variational posteriors from the true posterior within the VB framework.

Figure 2 Binary tree structure with transformation matrices. If we
focus on node i, the transformation matrices in the parent node, left
child node, and right child node are represented as Wp(i), Wl(i), and
Wr(i), respectively.

formation matrix in the root node, we assume the following
factorization for the prior distribution p(�Im

),

p(�Im
) = p(W1, · · · , W|Im|)
= p(W1)p(Wl(1)|W1)p(Wr(1)|W1)

p(Wl(l(1))|Wl(1))p(Wr(l(1))|Wl(1))

p(Wl(r(1))|Wr(1))p(Wr(r(1))|Wr(1)) · · ·
=

∏

i∈Im

p(Wi |Wp(i)).

(18)

To make the prior distribution a product form in the last
line of Eq. 18, we define p(W1) � p(W1|Wp(1)). As
seen, the effect of the transformation matrix in a target node
propagates to its child nodes.

This prior setting is based on an intuitive assumption that
the statistics in a target node is highly correlated with the
statistics in its parent node. In addition, since the total num-
ber of speech frames assigned to a set of Gaussians in the
parent node is always larger than that in the target node,
the obtained statistics in the parent node is more reliable
than that in the target node, and these can be good prior
knowledge for the transformation parameter estimation in
the target node.

With a Bayesian approach, we need to set a practical
form of the above prior distributions. A conjugate distribu-
tion is preferable as far as obtaining an analytical solution
is concerned, and we set a matrix variate normal distribu-
tion similar to Maximum A Posteriori Linear Regression
(MAPLR [15]). A matrix variate normal distribution is
defined as follows:

p(Wi ) = N (Wi |Mi ,
i ,	i )

�
exp

(
− 1

2 tr
[
(Wi−Mi )

′
−1
i (Wi−Mi )	

−1
i

])

(2π)D(D+1)/2|	i |D/2|
i |(D+1)/2
, (19)
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where Mi is a D × (D + 1) location matrix, 	i is a
(D+1)×(D+1) symmetric scale matrix, and 
i is a D×D

symmetric scale matrix. 	i represents correlation of column
vectors, and 
i represents correlation of raw vectors. These
are hyper-parameters of the matrix variate normal distribu-
tion. There are many hyper-parameters to be set, and this
makes the implementation complicated. In this paper, we
try to find another conjugate distribution with fewer hyper-
parameters than Eq. 19. To obtain a simple solution for the
final analytical results, we use a spherical Gaussian dis-
tribution that has the following constraints on 	i and 
i :


i ≈ ID,

	i ≈ ρ−1
i ID+1,

(20)

where ID is the D × D identity matrix. ρi indicates a preci-
sion parameter. Then, Eq. 19 can be rewritten as follows:

N (Wi |Mi , ID, ρ−1
i ID+1)

= h(ρ−1
i ID+1) exp

(

−1

2
tr[ρi(Wi − Mi )

′(Wi − Mi )]
)

,
(21)

where h(ρ−1
i ID+1) is a normalization factor, and defined as

h(ρ−1
i ID+1) �

( ρi

2π

)D(D+1)
2

. (22)

This approximation means that matrix elements do not
have any correlation each other. This can produce simple
solutions for Bayesian linear regression.8

Based on the spherical matrix variate normal distribution,
the conditional prior distribution p(Wi |Wp(i)) in Eq. 18
is obtaining by setting the location matrix as the transfor-
mation matrix Wp(i) in the parent node with the precision
parameter ρi as follows:

p(Wi |Wp(i)) = N (Wi |Wp(i), ID, ρ−1
i ID+1) (23)

Note that in the following sections Wi and Wp(i) are
marginalized. In addition, we set the location matrix in the
root node as the deterministic value of Wp(1) = [0, ID].
Since μad

k = CkWp(1)ξ k = μini
k from Eq. 7, this hyper-

parameter setting means that the initial mean vectors are not
changed if we only use the prior knowledge. This makes

8Matrix variate normal distribution in Eq. 19 is also represented by the
following multivariate normal distribution [36]:

N (Wi |Mi , 
i , 	i )

∝ exp

(

−1

2
vec(Wi − Mi )

′(	i ⊗ 
i )
−1 vec(Wi − Mi )

−1
)

,

where vec(Wi − Mi ) is a vector formed by the concatenation of the
columns of (Wi − Mi ), and ⊗ denotes the Kronecker product. Based
on this form, a VB solution in this paper could be extended without
considering the variance normalized representation used in this paper
according to [16].

sense in the case of small amount of data by fixing the
HMM parameters as their initial values; this in a sense also
inherits the philosophical background of Bayesian adapta-
tion, although the objective function has been changed from
a posteriori probability to a lower bound of the marginalized
likelihood. Therefore, we just have {ρi |i = 1, · · · , |Im|} as
a set of hyper-parameters �, which will be also optimized
in our framework.

3.3 Variational Calculus

In VB, we also assume the following factorization form to
the posterior distribution q(V, �Im

):

q(V, �Im
) = q(V)q(�Im

) = q(V)
∏

i∈Im

q(Wi ) (24)

Then, from the variational calculation for F(m, �) with
respect to q(Wi ), we obtain the following (sub) optimal
solution for q(Wi ):

log q̃(Wi )

∝
〈〈

log p(O, V|�Im
)
〉
q(V)

p(�Im
)
〉
∏

i′∈Im\i
q(Wi′)

∝
∑

i′∈Im

〈
log p(Wi′ |Wp(i′))

〉
∏

i′∈Im\i
q(Wi′)

+
〈〈

log p(O, V|�Im
)
〉
q(V)

〉
∏

i′∈Im\i
q(Wi′)

,

(25)

where we use Eqs. 18 and 24 to rewrite the equation. Oper-
ation ∝ denotes the proportional relationship between the
left and the right hand sides of the probabilistic distribution
functions. It is a useful expression since we do not have to
write normalization factors explicitly, which are disregarded
in the following calculations. In Eq. 25, ∝ is also used in
the logarithmic domain where normalization factors can be
represented as constant terms.

In this expectation, we can consider the following two
cases of variational posterior distributions:

1) Leaf Node

We first focus on the prior term of Eq. 25. If i is a leaf
node, we can disregard the expectation with respect to∏

i′∈Im\i q(Wi′) in the other nodes than the parent node p(i)
of the target leaf node. Thus, we obtain the following simple
solution:

log q̃(Wi ) ∝ 〈
log p(Wi |Wp(i))

〉
q(Wp(i))

+
〈〈

log p(O, V|�Im
)
〉
q(V)

〉
∏

i′∈Im\i
q(Wi′)

(26)
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2) Non-Leaf Node (with child nodes)

Similarly, if i is a non-leaf node, in addition to the par-
ent node p(i) of the target node, we also have to consider
the child nodes l(i) and r(i) of the target node for the
expectation, as follows:

log q̃(Wi ) ∝ 〈
log p(Wi |Wp(i))

〉
q(Wp(i))

(27-1)

+ 〈
log p(Wl(i)|Wi )

〉
q(Wl(i))

(27-2)

+ 〈
log p(Wr(i)|Wi )

〉
q(Wr(i))

(27-3)

+
〈〈

log p(O, V|�Im
)
〉
q(V)

〉
∏

i′∈Im\i
q(Wi′)

(27-4)

In both cases, the posterior distribution of the transforma-
tion matrix in the target node depends on those in the parent
and child nodes. Therefore, the posterior distributions are
iteratively calculated. This inference is known as a vari-
ational message passing algorithm [34], and Eqs. 26 and
27 are specific solutions of the variational message passing
algorithm to a binary tree structure. The next section pro-
vides a concrete form of the posterior distribution of the
transformation matrix.

3.4 Posterior Distribution of Transformation Matrix

We first focus on Eq. 27, which is a general equation of
Eq. 26 that has additional terms based on child nodes to
Eq. 26. Equation 27-4 is based on the expectation with
respect to

∏
i′∈Im\i q(Wi′) and q(V). The term with q(V) is

represented as the following expression similar to Eq. 8:

〈
log p(O, V|�Im

)
〉
q(V)

=
∑

i∈Im

(∑

k∈Ki

ζk log g(�k)

− 1

2
tr
[
W′

iWi�i − 2W′
iZi +

∑

k∈Ki

�−1
k Sk

])

.

(28)

Here sufficient statistics (ζk , Sk , �i , and Zi in Eqs. 9 and
10) are computed by the VB-E step (e.g., ζk,t = q(vt =
k)), which is described in the next section. This equation
form means that the term can be factorized by node i. This
factorization property is important for the following ana-
lytic solutions and algorithm. Actually, by considering the

expectation with respect to
∏

i′∈Im\i q(Wi′), we can inte-
grate out the terms that do not depend on Wi , as follows:
〈〈

log p(O, V|�Im
)
〉
q(V)

〉
∏

i′∈Im\i
q(Wi′)

∝ −1

2
tr
[
W′

iWi�i − 2W′
iZi

]
.

(29)

Next, we consider Eq. 27-1. Since we use a conju-
gate prior distribution, q(Wp(i)) is also represented by the
following matrix variate normal distribution as the same
distribution family with the prior distribution.

q(Wp(i)) = N (Wp(i)|Mp(i), ID, 	p(i)) (30)

Note that the posterior distribution has a unique form that
the first covariance matrix is an identity matrix while the
second one is a symmetric matrix. We discuss about this
form with the analytical solution, later.

By substituting Eqs. 21 and 30 into Eq. 27-1, Eq. 27-1 is
represented as follows:
〈
log p(Wi |Wp(i))

〉
q(Wp(i))

=
∫ (

logN (Wi |Wp(i), ID, ρ−1
i ID+1)

)

N (Wp(i)|Mp(i), ID, 	p(i))dWp(i)

(31)

To solve the integral, we use the following matrix distribu-
tion formula:

∫
N (Wp(i)|Mp(i), ID, 	p(i))dWp(i) = 1

∫
Wp(i)N (Wp(i)|Mp(i), ID, 	p(i))dWp(i) = Mp(i)

(32)

Then, by disregarding the terms that do not depend on
Wi , Eq. 31 can be solved as the logarithmic function of
the matrix variate normal distribution that has the posterior
distribution parameter Mp(i) as a hyper-parameter.
〈
log p(Wi |Wp(i))

〉
q(Wp(i))

∝ ρi

∫
tr[W′

iWp(i)]N (Wp(i)|Mp(i), ID, 	p(i))dWp(i)

− ρi

2

∫
tr[W′

iWi]N (Wp(i)|Mp(i), ID, 	p(i))dWp(i)

∝ ρi tr[W′
iMp(i)] − ρi

2
tr[W′

iWi]
∝ logN (Wi |Mp(i), ID, ρ−1

i ID+1)

(33)

Similarly, Eqs. 27-2 and 27-3 are solved as follows:
〈
log p(Wl(i)|Wi )

〉
q(Wl(i))

∝ logN (Wi |Ml(i), ID, ρ−1
l(i)ID+1)

〈
log p(Wr(i)|Wi )

〉
q(Wr(i))

∝ logN (Wi |Mr(i), ID, ρ−1
r(i)ID+1)

(34)
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Thus, the expected value terms of the three prior distri-
butions in Eq. 27 are represented as the following matrix
variate normal distribution:
〈
log p(Wi |Wp(i))

〉
q(Wp(i))

+ 〈
log p(Wl(i)|Wi )

〉
q(Wl(i))

+ 〈
log p(Wr(i)|Wi )

〉
q(Wr(i))

∝ logN (Wi |Mp(i), ID, ρ−1
i ID+1)

+ logN (Wi |Ml(i), ID, ρ−1
l(i)ID+1)

+ logN (Wi |Mr(i), ID, ρ−1
r(i)ID+1)

∝ logN
(

Wi

∣
∣
∣
∣
ρiMp(i) + ρl(i)Ml(i) + ρr(i)Mr(i)

ρi + ρl(i) + ρr(i)
,

ID, (ρi + ρl(i) + ρr(i))
−1ID+1

)

(35)

It is an intuitive solution, since the location parameter of Wi

is represented as a linear interpolation of the location values
of the posterior distributions in the parent and child nodes.
The precision parameters control the linear interpolation
ratio.

Similarly, we can also obtain the expected value term of
the prior term in Eq. 26, and we summarize the prior terms
of the non-leaf and leaf node cases as follows:

q̂(Wi ) = N (Wi |M̂i , ID, ρ̂−1
i ID+1) (36)

where

M̂i =
{

ρiMp(i)+ρl(i)Ml(i)+ρr(i)Mr(i)

ρi+ρl(i)+ρr(i)
Non-leaf node

Mp(i) Leaf node

ρ̂i =
{

ρi + ρl(i) + ρr(i) Non-leaf node

ρi Leaf node

(37)

Thus, the effect of prior distributions becomes different
depending on whether the target node is a non-leaf node
or leaf node. The solution is different from our previous
solution [37] since the previous solution does not marginal-
ize the transformation parameters in non-leaf nodes. In the
Bayesian sense, this solution is stricter than the previous
solution.

Based on Eqs. 28 and 36, we can finally derive the
quadratic form of Wi as follows:

log(q̃(Wi ))

∝ −1

2
tr
[
ρ̂iW′

iWi + W′
iWi�i − 2ρ̂iW′

iM̂i − 2W′
iZi

]

= −1

2
tr
[
W′

iWi (ρ̂iID+1 + �i ) − 2W′
i (ρ̂iM̂i + Zi )

]
,

(38)

where we disregard the terms that do not depend on Wi .
Thus, by defining the following matrix variables

	̃i = (ρ̂iID+1 + �i )
−1,

=
{

((ρi + ρl(i) + ρr(i))ID+1 + �i )
−1 Non-leaf node

(ρiID+1 + �i )
−1 Leaf node

M̃i = (ρ̂iM̂i + Zi )	̃,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(ρiMp(i) + ρl(i)Ml(i) + ρr(i)Mr(i) + Zi )	̃

Non-leaf node

(ρiMp(i) + Zi )	̃

Leaf node

(39)

we can derive the posterior distribution of Wi analytically.
The analytical solution is expressed as

q̃(Wi ) = N (Wi |M̃i , ID, 	̃i )

= h(	̃i ) exp

(

−1

2
tr
[
(Wi − M̃i )

′(Wi − M̃i )	̃
−1
i

])

,

(40)

where

h(	̃i ) � (2π)−
D(D+1)

2 |	̃i |− D
2 . (41)

The posterior distribution also becomes a matrix variate
normal distribution since we use a conjugate prior distribu-
tion for Wi . From Eq. 39, M̃i are linearly interpolated by
hyper-parameter M̂i and the 1st order statistics of the lin-
ear regression matrix Zi . ρ̂i controls the balance between
the effects of the prior distribution and adaptation data.
This solution is the M-step of the VB EM algorithm and
corresponds to that of the ML EM algorithm in Section 2.1.

Compared with Eq. 21, Eq. 40 keeps the first covariance
matrix as a diagonal matrix, while the second covariance
matrix 	̃ has off diagonal elements. This means that the
posterior distribution only considers the correlation between
column vectors in W. This unique property comes from the
variance normalized representation introduced in Section 2,
which makes multivariate Gaussian distributions in HMMs
uncorrelated, and this relationship is taken over to the VB
solutions.

Although the solution for a non-leaf node would make
the prior distribution robust by taking account of the child
node hyper-parameters, this structure makes the dependency
of the target node with the other linked nodes complex.
Therefore, in the implementation step, we approximate the
hyper-parameters of the posterior distribution for a non-leaf
node to those for a leaf node by M̂i ≈ Mp(i) and ρ̂i ≈ ρi in
the Eq. 37, to make an algorithm simple. We would evaluate
the effect of the non-leaf node solution in future work.

Next section explains the E-step of the VB EM algo-
rithm, which computes sufficient statistics ζk , Sk , �i , and
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Zi in Eqs. 9 and 10. These are obtained by using q̃(Wi ),
of which mode M̃i is used for the Gaussian mean vector
transformation.

3.5 Posterior Distribution of Latent Variables

From the variational calculation of F(m, �) with respect to
q(V), we also obtain the following posterior distribution:

log q̃(V) ∝ 〈
log p(O, V|�Im

)
〉
q(�Im)

. (42)

By using the factorization form of the variational posterior
(Eq. 24), we can disregard the expectation with respect to
the other variational posteriors than that of the target node
i. Therefore, to obtain the above VB posteriors of latent
variables, we have to consider the following integral.
∫

q(Wi ) logN (ot |CkWiξ k, �k)dWi . (43)

Since the Gaussian mean vectors are only updated in the
leaf nodes, node i in this section is regarded as a leaf node.
By substituting Eqs. 40 and 4 into Eq. 43, the equation is
represented as (see Appendix):
∫

q(Wi ) logN (ot |CkWiξ k, �k)dWi

= logN (ot |μ̃k, �k) − 1

2
tr[ξ kξ

′
k	̃i].

(44)

where

μ̃k = CkM̃iξ k (45)

The analytical result is almost equivalent to the E-step of
conventional MLLR, which means that the computation
time is almost the same as that of the conventional MLLR
E-step.

Note that the Gaussian mean vectors are updated in the
leaf nodes in this result, while the posterior distributions of
the transformation parameters are updated for all nodes.

3.6 Variational Lower Bound

By using the factorization form (Eq. 24) of the variational
posterior distribution, the variational lower bound defined
in Eq. 15 is decomposed as follows:

F(m, �)

=
〈

log
p(O, V|�Im

)p(�Im
)

∏
i∈Im

q(Wi )

〉

∏
i∈Im

q(Wi )

q(V)︸ ︷︷ ︸
�L(m,�)

− 〈log q(V)〉q(V) .

(46)

The second term, which consists of q(V), is an entropy
value and is calculated at the E-step in the VB EM algo-
rithm. The first term (L(m, �)) is a logarithmic evidence

term for m and � = {ρi |i = 1, · · · |Im|} and we can
obtain an analytical solution of L(m, �). Because of the
factorization forms in Eqs. 18, 24, and 28, L(m, �) can be
represented as the summation over i, as follows:

L(m, �) =
∑

i∈Im

Li (ρi, ρl(i), ρr(i)), (47)

where

Li (ρi, ρl(i), ρr(i))

�
∑

i∈Im

〈

log
p(O, V|Wi )p(Wi |Wp(i))

q(Wi )

〉

q(Wi )
q(V)

(48)

Note that this factorization form has some dependencies
from parent and child node parameters through Eqs. 37 and
39. To derive an analytical solution, we first consider the
expectation with respect to only q(V) for cluster i. By sub-
stituting Eqs. 8, 21, and 40 into Li (ρi, ρl(i), ρr(i)), and by
using Eq. 39, the expectation can be rewritten, as follows:
〈

log
p(O, V|Wi )p(Wi |Wp(i))

q(Wi )

〉

q(V)

=
∑

k∈Ki

ζk log g(�k) + log
g(ρ̂−1

i ID+1)

g(	̃i )

− 1

2
tr

⎡

⎣ρ̂iM̂′
iM̂i − M̃′

iM̃i	̃
−1
i +

∑

k∈Ki

�−1
k Sk

⎤

⎦ .

(49)

The obtained result does not depend on Wi . Therefore, the
expectation with respect to q(Wi ) can be disregarded in
Li (ρi, ρl(i), ρr(i)). Consequently, we can obtain the follow-
ing analytical result for the lower bound:

Li (ρi, ρl(i), ρr(i))

= −D

2
log(2π)

∑

k∈Ki

ζk − 1

2

∑

k∈Ki

ζk log |�k|

+ D(D + 1)

2
log ρ̂i + D

2
log |	̃i |

− 1

2
tr

⎡

⎣ρ̂iM̂′
iM̂i − M̃′

iM̃i	̃
−1
i +

∑

k∈Ki

�−1
k Sk

⎤

⎦ .

(50)

The first line of the obtained result corresponds to the
likelihood value given the amount of data and the covari-
ance matrices of the Gaussians. The other terms consider
the effect of the prior and posterior distributions of the
model parameters. This is used as an optimization crite-
rion with respect to the model structure m and the hyper-
parameters �.

Note that the objective function can be represented as
a summation over i because of the factorization form of
the prior and posterior distributions. This representation
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property is used for our model structure optimization in
Section 4.2 for a binary tree structure representing a set of
Gaussians used in the conventional MLLR.

4 Optimization of Hyper-Parameters and Model
Structure

In this section, we describe how to optimize hyper-
parameters � and model structure m by using the variational
lower bound as an objective function. Once we obtain
the variational lower bound, we can obtain an appropriate
model structure and hyper-parameters at the same time that
maximize the lower bound as follows:

{�̃, m̃} = argmax
m,�

F(m, �) (51)

In this paper, we use two approximations for the variational
lower bound to make the inference algorithm practical.
First, we fix latent variables V during the above optimiza-
tion. Then, 〈log q(V)〉q(V) in Eq. 46 is also fixed for m and
�, and can be disregarded in the objective function. Thus,
we can only focus on L(m, �) in the optimization step,
which reduces computational cost greatly, as follows:

{�̃, m̃} ≈ argmax
m,�

L(m, �) (52)

This approximation is widely used in acoustic model selec-
tion (likelihood criterion [38] and Bayesian criterion [26]).
Second, as we discussed in Section 3.4, the solution for a
non-leaf node (Eq. 36) makes the dependency of the target
node with the other linked nodes complex. Therefore, we
approximate Li (ρi, ρl(i), ρr(i)) ≈ Li (ρi) by ρ̂i ≈ ρi and so
on, where Li (ρi) is defined in the next section. Therefore, in
the implementation step, we approximate the posterior dis-
tribution for a non-leaf node to that for a leaf node to make
an algorithm simple.

4.1 Hyper-Parameter Optimization

Even though we marginalize all transformation matrix (Wi),
we still have to set the precision hyper-parameters ρi for
all nodes. Since we can derive the variational lower bound,
we can optimize the precision hyper-parameter, and can
remove the manual tuning of the hyper-parameters with the
proposed approach. This is an advantage of the proposed
approach with regard to SMAPLR [18], since SMAPLR has
to hand-tune its hyper-parameters corresponding to {ρi}i .

Based on the leaf node approximation for variational pos-
terior distributions, in addition to the fixed latent variable
approximation (F(m, �) ≈ L(m, �)), in this paper the

method we implement approximately optimize the precision
hyper-parameter as follows:

ρ̃i = argmax
ρi

L(m,�)

=

⎧
⎪⎪⎨

⎪⎪⎩

argmaxρi
(Li (ρi, ρl(i), ρr(i)) + Lp(i)(ρp(i), ρi, ρr(p(i))))

i is a left child node of p(i)
argmaxρi

(Li (ρi, ρl(i), ρr(i)) + Lp(i)(ρp(i), ρl(p(i)), ρi))

i is a right child node of p(i)

≈ argmax
ρi

Li (ρi),

(53)

where

Li (ρi) � D(D + 1)

2
log ρi + D

2
log |	̃i |

− 1

2
tr
[
ρiM′

p(i)Mp(i) − M̃′
iM̃i	̃

−1
i

]
.

(54)

This approximation makes the algorithm simple because
we can optimize the precision hyper-parameter within
the target and parent nodes, and do not have to con-
sider the child nodes. Since we only have one scalar
parameter for this optimization step, we simply used
a line search algorithm to obtain the optimal precision
hyper-parameter. If we consider a more complex pre-
cision structure (e.g., a precision matrix instead of a
scalar precision parameter in the prior distribution set-
ting Eq. 20), the line search algorithm may not be ade-
quate. In that case, we need to update hyper-parameters
by using some other optimization technique (e.g., gradient
decent).

4.2 Model Selection

The remaining tuning parameter in the proposed approach
is how many clusters we prepare. This is a model selec-
tion problem, and we can also automatically obtain the
number of clusters by optimizing the variational lower
bound. In the binary tree structure, we focus on a sub-
tree composed of a target non-leaf node i and its child
nodes l(i) and r(i). We compute the following differ-
ence based on Eq. 54 of the parent and that of the child
nodes9

�Li (ρi) � Ll(i)(ρl(i)) + Lr(i)(ρr(i)) − Li (ρi). (55)

9 Since we approximate the posterior distribution for a non-leaf node
to that for a leaf node, the contribution of the variational lower bounds
from the non-leaf nodes to the total lower bounds can be disre-
garded, and Eq. 55 is used as a pruning criterion. If we don’t use
this approximation, we just compare the difference between the values
Li (ρi , ρl(i), ρr(i)) of the leaf and non-leaf node cases in Eq. 50.
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This difference function is used for a stopping crite-
rion in a top-down clustering strategy. Then, if the sign
of �L is negative, the target non-leaf node is regarded
as a new leaf node determined by the model selection
in terms of optimizing the lower bound. Then, we prune
the child nodes l(i) and r(i). By checking the signs of
�Li for all possible nodes, and pruning the child nodes
when �Li have negative signs, we can obtain the pruned
tree structure, which corresponds to maximizing the varia-
tional lower bound locally. This optimization is efficiently
accomplished by using a depth-first search. This approach
is similar to the tree-based triphone clustering based on
VB[26].

Thus, by optimizing the hyper-parameters and model
structure, we can avoid setting any tuning parameters. We
summarize this optimization in Algorithm 1, 2, and 3. Algo-
rithm 1 prepares a large Gaussian tree with a set of nodes
I, prunes a tree based on the model selection (Algorithm
2), and transforms HMMs (Algorithm 3). Algorithm 3 first
optimizes the precision hyper-parameters �, and then the
model structure m. Algorithm 3 transforms Gaussian mean
vectors in HMMs at the new root nodes in the pruned tree
Im obtained by Algorithm 2.

5 Experiments

This section shows the effectiveness of the proposed
approach through experiments with large vocabulary contin-
uous speech recognition. We used a Corpus of Spontaneous
Japanese (CSJ) task [39].

5.1 Experimental Condition

The training data for constructing the initial (non-adapted)
acoustic model consists of 961 talks from the CSJ con-
ference presentations (234 hours of speech data), and the
training data for the language model construction con-
sists of 2,672 talks from the complete CSJ speech data
(6.8M word transcriptions). The test set consists of 10
talks (2.4 hours, 26,798 words). Table 2 provides infor-
mation on acoustic and language models used in the
experiments[40]. We used context-dependent models with
continuous density HMMs. The HMM parameters were
estimated based on a discriminative training (Minimum
Classification Error: MCE) approach [41]. Lexical and
language models were also obtained by employing all
the CSJ speech data. We used a 3-gram model with a
Good-Turing smoothing technique. The OOV rate was

Table 2 Experimental setup for CSJ.

Sampling rate 16 kHz

Feature type MFCC + Energy +� + ��

(39 dim.)

Frame length 25 ms

Frame shift 10 ms

Window type Hamming

# of categories 43 phonemes

Context-dependent 5,000 HMM states

HMM topology (3-state left to right)

32 GMM components

Training method Discriminative training (MCE)

Language model 3-gram (Good-Turing smoothing)

Vocabulary size 100,808

Perplexity 82.4

OOV rate 2.3 %
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2.3 % and the test set perplexity was 82.4. The acous-
tic model construction, LVCSR decoding, and the fol-
lowing acoustic model adaptation procedures were per-
formed with the NTT speech recognition platform SOLON
[42].

5.2 Experimental Result

To check whether the proposed approach steadily increase
the variational lower bound for each optimization in
Section 4, Fig. 3 examines the values of the variational
lower bound for each condition. Namely, we compare
the proposed approach that optimizes both model struc-
ture and hyper-parameters, as discussed in Section 4 with
those did not optimize each or any of them, in terms
of the L(m, �) value. Figure 3 shows that the proposed
approach indeed steadily increases the L(m, �) value.
Therefore, this result indicates that the optimization works
well by obtaining appropriate hyper-parameters and model
structure.

Next, Fig. 4 compares the proposed approach with
MLLR based on the maximum likelihood estimation, and
SMAPLR based on the approximate Bayesian estimation,
as regards the Word Error Rate (WER) for various amounts
of adaptation data. With a small amount of adaptation
data, the proposed approach outperforms the conventional
approaches by about 1.0 %, while with a large amount of
adaptation data, the accuracies of all approaches are com-
parable. This property is theoretically reasonable since the
variational lower bound would be tighter than the EM-
based objective function for a small amount of data, while
would approach it for a large amount of data asymptoti-
cally. Therefore, we conclude that this improvement comes
from the optimization of the hyper-parameters and the
model structure of the proposed approach, in addition to the
mitigation of sparse data problem based on the Bayesian
approach.
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Figure 3 Variational lower bound for each optimization.
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Figure 4 Word error rates of conventional MLLR, SMAPLR, and the
proposed Bayesian Linear Regression (VBLR) for various amounts
(utterances) of adaptation data. The word error rate of the non-adapted
(speaker independent) model was 17.9 %.

Thus, from the values of the lower bound and the recog-
nition result, we show the effectiveness of the proposed
approach.

6 Summary and Future Work

This paper presents a fully Bayesian treatment of linear
regression for HMMs by using variational techniques. The
derived lower bound of the marginalized log-likelihood can
be used for optimizing the hyper-parameters and model
structure, which was confirmed by speech recognition
experiments. One promising extension is to apply the pro-
posed approach to advanced adaptation techniques. Actu-
ally, [43, 44] provide a fully Bayesian solution for standard
transformation parameters (not variance normalize repre-
sentation in this paper), and apply it to both the feature space
and model parameter transformations. The model struc-
ture and hyper-parameters are also optimized automatically
during adaptation. Thus, feature space normalization and
model space adaptation are consistently performed based
on a variational Bayesian approach without tuning any
parameters.

Another important plan for the future work is joint opti-
mization of HMM parameters and linear regression param-
eters in a Bayesian framework. This paper assumes that the
HMM parameters are fixed during the estimation process
of linear regression parameters. These parameters depend
on each other, and the variational approximation can deal
with the problem (in the sense of local optimum solutions).
However, to consider the model selection in this joint opti-
mization, we have to think of many possible combinations
of HMM and linear regression topologies. One promising
approach to this problem is to consider a non-parametric
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Bayesian approach (e.g., variational inference for Dirichlet
process mixtures [45] in the VB framework), which can effi-
ciently search an appropriate model structure in the many
possible combinations.

Finally, how to integrate Bayesian approaches with dis-
criminative approaches theoretically and practically is also
important future work. One promising approach for this
direction is the marginalization of model parameters and
margin variables to provide Bayesian interpretations with
discriminative methods [46]. However applying [46] to
acoustic models requires some extensions to deal with large-
scale structured data problems [47]. This extension enables
the more robust regularization of discriminative approaches,
and allows structural learning by combining Bayesian and
discriminative criteria.

Appendix: Derivation of Posterior Distribution
of Latent Variables

This section derives the posterior distribution of latent vari-
ables q̃(Vi ), introduced in Section 3.5, based on the VB
framework. To obtain VB posteriors of latent variables, we
consider the following integral (this is the same equation as
Eq. 43).

∫
q̃(Wi ) logN (ot |CkWiξ k, �k)dWi (56)

In this derivation, we omit indexes i, k, and t for simplicity.
By substituting the concrete form (Eq. 4) the multivariate
Gaussian distribution into Eq. 56, the equation is repre-
sented as:

Eq. 56 = −D

2
log(2π |�|)

−1

2

∫
q̃(W) ((o−CWξ)′(�)−1(o−CWξ))

︸ ︷︷ ︸
(∗1)

dW

(57)

where we use
∫

q̃(W)dW = 1. (58)

Now, we focus on the quadratic form (∗1) of the second
line of Eq. 57. By considering � = C(C)′ in Eq. 6, (∗1) is
rewritten as follows:

(∗1) = ((C)−1o − Wξ)′((C)−1o − Wξ)

= tr
[
((C)−1o − Wξ)((C)−1o − Wξ)′

]

= tr
[
�W′W − 2WY′ + U

]
(59)

where we use the cyclic and transpose properties of the
trace, as follows:

tr[A1A2A3] = tr[A2A3A1] (60)

tr[A′] = tr[A] (61)

We also define (D + 1) × (D + 1) matrix �, D × (D + 1)

matrix Y, and D × D matrix U in Eq. 59 as follows:

� � ξξ ′

Y � (C)−1oξ ′

U � (�)−1oo′
(62)

The integral of Eq. 59 over W can be decomposed into
the following three terms:
∫

q̃(W)tr
[
�W′W − 2WY′ + U

]
dW

=
∫

q̃(W)tr[�W′W]dW
︸ ︷︷ ︸

(∗2)

− 2
∫

q̃(W)tr
[
WY′] dW

︸ ︷︷ ︸
(∗3)

+tr [U]

(63)

where we use the following property:

tr[A1 + A2] = tr[A1] + tr[A3] (64)

and use Eq. 58 in the third term of the second line in Eq. 63.
We focus on the integrals (∗2) and (∗3). Since q̃(W) is a

scalar value, (∗3) is rewritten as follows:

(∗3) =
∫

tr[q̃(W)WY′]dW

= tr

[∫
q̃(W)WY′dW

]

.

(65)

Here, we use the following matrix properties:

tr[aA] = a tr[A] (66)
∫

tr[f (A)]dA = tr

[∫
f (A)dA

]

(67)

Thus, the integral is finally solved as

(∗3) = tr

[(∫
q̃(W)WdW

)

Y′
]

= tr
[
M̃Y′]

(68)

where we use
∫

q̃(W)WdW = M̃. (69)
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Similarly, we also rewrite (∗2) in Eq. 63 based on Eqs. 66
and 67, as follows:

(∗2) =
∫

tr[q̃(W)�W′W]dW

= tr

[∫
q̃(W)�W′WdW

]

= tr

[

�

∫
q̃(W)W′WdW

]

.

(70)

Thus, the integral is finally solved as

(∗2) = tr[�(	̃ + M̃′M̃)], (71)

where we use
∫

q̃(W)W′WdW = 	̃ + M̃′M̃. (72)

Thus, we solve the all integrals in Eq. 63.
Finally, we substitute the integral results of (∗2) and (∗3)

(i.e., Eqs. 71 and 71) into Eq. 63, and rewrite Eq. 63 based
on the concrete forms of �, Y, and U defined in Eq. 62 as
follows:

Eq. 63

= tr
[
�(	̃ + M̃′M̃) − 2M̃Y′ + U

]

= tr
[
ξξ ′(	̃ + M̃′M̃) − 2M̃ξo′((C)−1)′ + (�)−1oo′]

(73)

Then, by using the cyclic property in Eq. 60 and 	 = C(C)′
in Eq. 6, we can further rewrite Eq. 63 as follows:

Eq. 63

= tr
[
ξξ ′	̃ + (�)−1(�M̃ξξ ′M̃′ − 2CM̃ξo′ + oo′)

]

= tr
[
ξξ ′	̃ + (�)−1(o − CM̃ξ)(o − CM̃ξ)′

]
(74)

Thus, we obtain the quadratic form with respect to o,
which becomes a multivariate Gaussian distribution form.
By recovering the omitted indexes i, k, and t , and substi-
tuting integral result in Eq. 74 into Eq. 57, we finally solve
Eq. 43 as:
∫

q̃(Wi ) logN (ot |CkWiξ k, �k)dWi

= −D

2
log(2π |�k|)

− 1

2
tr
[
ξξ ′	̃ + (�)−1(o − CM̃ξ)(o − CM̃ξ)′

]

= logN (ot |CkM̃iξ k, �k) − 1

2
tr[ξ kξ

′
k	̃i].

(75)

Here, we use the concrete form of the multivariate Gaussian
distribution in Eq. 4.
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