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Abstract Extreme learning machine (ELM) and evolu-
tionary ELM (E-ELM) were proposed as a new class of
learning algorithm for single-hidden layer feedforward neu-
ral network (SLFN). In order to achieve good generalization
performance, E-ELM calculates the error on a subset of test-
ing data for parameter optimization. Since E-ELM employs
extra data for validation to avoid the overfitting problem,
more samples are needed for model training. In this paper,
the cross-validation strategy is proposed to be embedded into
the training phase so as to solve the overtraining problem.
Based on this new learning structure, two extensions of E-
ELM are introduced. Experimental results demonstrate that
the proposed algorithms are efficient for image analysis.

Keywords Extreme learning machine · Differential
evolution · Image analysis · Face recognition

1 Introduction

With rapid advancement of computer and database tech-
nologies, understanding and mining useful information
from huge amount of data attract numerous efforts from
the areas of databases, machine learning, and statistics [12].
Pattern recognition is the study of how computers sense
the environment, learn from stored patterns of interest,

N. Liu (�)
Department of Emergency Medicine, Singapore General Hospital,
Outram Road, Singapore 169608, Singapore
e-mail: nliu@pmail.ntu.edu.sg

H. Wang
School of Electrical and Electronic Engineering,
Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798, Singapore
e-mail: hw@ntu.edu.sg

and make decisions to categorize unseen data. Recogniz-
ing patterns is an easy task to human, whereas it is difficult
for machines to accomplish. Nevertheless, since comput-
ers have several advantages on processing speed and data
storage compared with human, many pattern recognition
techniques have been proposed and applied to a variety
of scientific disciplines including computer vision, image
understanding, speech recognition, computational biology
and so on. Image analysis [16] is one of the most studied
problems in pattern recognition, which has been widely used
in many applications such as face detection and recognition.

To accomplish the task of recognition, choosing a suit-
able classifier plays an important role in both the training
and testing phases. During the learning stage, the classifi-
cation rule is formed by collecting knowledge from training
samples, then the well established classifier is applied to
categorize unseen testing data. In supervised learning, clas-
sifiers always suffer from overtraining which may degrade
the generalization performance. In other words, although
small training errors are obtained in the training phase, the
testing result might be unsatisfactory. It is observed that the
sets of patterns misclassified by different classifiers would
not necessarily overlap which suggests that combining the
outputs of various classifiers has potential to offer better
prediction results. Therefore, the ensemble-based decision
making strategy [18] is possible to be adopted for con-
structing reliable image analysis systems. Moreover, several
techniques have recently been proposed to improve the gen-
eralization performance of the learning system by either
maximizing the uncertainty [23, 26] or combining multiple
reducts of rough sets [24].

Extreme learning machine (ELM) was proposed recently
as an efficient learning algorithm for single-hidden layer
feedforward neural network (SLFN) [10, 11]. It increases
the learning speed by randomly generating weights and
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biases for hidden nodes rather than iteratively adjusting
network parameters that is commonly adopted by gradient-
based neural networks (NN). Although ELM is fast and
presents good generalization performance, there are still
a lot of room for further improvements. Zhu et al. [28]
claimed that random assignment of parameters will intro-
duce un-optimal input weights and hidden biases. Conse-
quently, evolutionary extreme learning machine (E-ELM)
was proposed by taking advantages of both ELM and
differential evolution (DE) [22] to remove redundancy
among hidden nodes and achieve satisfactory performance
with more compact networks. Furthermore, pruned-ELM
(P-ELM) was presented by Rong et al. [19]. Their idea is to
initialize a large network and prune it during learning. Apart
from numerous improvements [8, 9], ELM was also imple-
mented in microarray data classification [27] and showed its
superiority to support vector machines.

In this paper, we propose using the cross-validation strat-
egy for E-ELM training to solve the classification problem.
Classifiers usually suffer from overtraining in supervised
learning, which might degrade the generalization perfor-
mance. During the training phase, training samples are
categorized into several classes by classifier and the learn-
ing error is used to evaluate the efficiency of training. In
general, minimum training error is expected, but it can-
not guarantee good recognition results on unseen data. The
main mechanism behind our proposal is partitioning the
original training set using cross-validation scheme into R
subsets and then R pairs of training and validation sets are
obtained so that each training set consists of (R − 1) sub-
sets. In the new training procedure, each of the R learners
is constructed using (R − 1) subsets and validated with
the remaining single subset. The cross-validation process
is then repeated R times, with each of the R subset used
exactly once for validation. Subsequently, in the extensions
of E-ELM, the averaged classification accuracy (CA) across
all R trials is employed as the fitness function for selecting
the most fitting network parameters for testing. The above
mentioned learning procedure is reasonable to avoid over-
fitting because the validation set (N/R training samples) is
used to replace the entire training set to evaluate the learning
error in each one of the R classifiers. As a result, cross-
validation based E-ELM (E-ELMcv) and cross-validation
based improved E-ELM (IE-ELMcv) are proposed.

2 Preliminaries

2.1 Extreme Learning Machine

As one of learning algorithms for SLFN, ELM randomly
selects weights and biases for hidden nodes, and analyti-
cally determines the output weights by finding least square

solution. Given a training set consisting of N samples L =
{(xj , tj )|xj ∈ Rn, tj ∈ Rm, j = 1, 2, ..., N}, where xj is
an n × 1 input vector and tj is an m × 1 target vector, an
SLFN with Ñ hidden nodes is formulated as

f
Ñ

(xj ) =
Ñ∑

i=1

β ig(wi ·xj +bi) = tj , j = 1, 2, ..., N (1)

where additive hidden node is employed. wi is n-
dimensional weight vector connecting ith hidden node and
input neurons. In approximating N samples using Ñ hid-
den nodes, βi , wi , and bi are supposed to exist if zero error
is obtained. Consequently, Eq. 1 can be written in a more
compact format as Hβ̂ = T where H(w1, ..., w

Ñ
, b1, ...,

b
Ñ

, x1, ..., xN ) is hidden layer output matrix of the network,
hji = g(wi · xj + bi) is the output of ith hidden neuron
with respect to xj , i = 1, 2, ..., Ñ and j = 1, 2, ..., N ;
β̂ = [β1, ..., βÑ

]T and T = [t1, ..., tN ]T are the output
weight matrix and the target matrix, respectively.
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Ñ

· xN + b
Ñ

)

⎤

⎥⎦

N×Ñ
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βT
Ñ
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⎡
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1
...

tT
N

⎤

⎥⎦

N×m

(3)

Huang et al. [11] pointed out that in real applications
training error cannot be made exactly zero as the number
of hidden nodes Ñ will always be less than the number of
training samples N. To obtain small non-zero training error,
Huang et al. [11] proposed randomly assigning values for
parameters wi and bi , and thus the system becomes linear
so that the output weights can be estimated as β = H†T,
where H† is the Moore–Penrose generalized inverse [21] of
the hidden layer output matrix H. Given a training set Ltrn,
activation function g(x), and hidden node number Ñ , the
ELM algorithm can be summarized as follows.

1. Generate parameters wi and bi for i = 1, ..., Ñ ,
2. Calculate the hidden layer output matrix H,
3. Calculate the output weight using β = H†T.

2.2 Evolutionary Extreme Learning Machine

To eliminate possible non-optimum within hidden nodes
and create more compact networks, an evolutionary extreme
learning machine algorithm was introduced [28]. E-ELM
deploys DE to select optimal weights and biases. At the
beginning, E-ELM initializes a population of Np parame-
ter vectors {zp,G|p = 1, 2, ..., Np}, and then chooses the
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best individual in terms of fitness to form a new generation
in which the selection pool contains candidates from Gth
generation and their variants after operations of mutation
and crossover.

E =

√√√√
∑N

j=1 ‖∑Ñ
1 β ig(wi · xj + bj ) − tj‖2

m × N
(4)

In E-ELM, the fitness of each individual is defined as root
mean squared error (RMSE) shown as Eq. 4 on validation
set instead of whole training set [28]. In addition, the norm
of output weights ‖β‖ is considered as another criterion to
improve the generalization performance.

3 Proposed Methods

E-ELM [28] is one of the successful improvements on ELM.
In this section, we propose two E-ELM based extensions to
enhance the ability of classification.

3.1 Cross-validation Based Evolutionary Extreme Learning
Machine (E-ELMcv)

E-ELM was proposed by employing both RMSE and β on
the validation set for candidate selection to achieve better
classification accuracy with more compact networks. Since
the original testing set needs to be evenly separated into test-
ing set and validation set, E-ELM uses extra data for training
which might not be suitable for applications in which testing
samples are limited. Therefore, the validation set is crucial
to E-ELM learning. Alternatively, samples from training set
can be used to form the validation set, but the number of
training samples decreases and that could affect the gen-
eralization performance. Hence, we propose the E-ELMcv
algorithm to avoid using an extra validation set for training.

In order to inherit the merit of E-ELM, the proposed
algorithm also deploys differential evolution (DE) as a tool
to select optimal weights and biases for hidden nodes. At
first, a set of parameter vectors {zp,G|p = 1, 2, ..., Np}
is initialized, in which components of zp,G have bound
as [−1, 1].

zp,G = [w11, ..., w1Ñ
, ..., wn1, ..., wnÑ

, b1, ..., bÑ
] (5)

where G denotes Gth generation, and the input weights wi

and hidden node biases bi form the candidate vector. The
size of vector depends on the number of hidden nodes Ñ and
feature dimension n. DE updates the population under the
driven of fitness function. Before creating a new generation,
mutation, crossover, and selection operations are applied. In

details, for each vector zp,G, a mutant vector is generated
according to

ẑp,G+1 = zr1,G + F · (zr2,G − zr3,G) (6)

where r1, r2, r3 ∈ {1, 2, ..., Np} are the random indices
and F is a positive real number not larger than 2, which
is a factor to control amplification of differential variation
(zr2,G−zr3,G). Subsequently the crossover operator is intro-
duced to increase diversity among population. As a result,
the D-dimensional vector is constructed as

z̃p,G+1 = (z̃1p,G+1, z̃2p,G+1, ..., z̃Dp,G+1) (7)

where D = Ñ(n + 1), and we have

z̃qp,G+1 =

⎧
⎪⎪⎨

⎪⎪⎩

ẑqp,G+1 randb(q) ≤ CR
or q = rnbr(p)

zqp,G randb(q) > CR
and q �= rnbr(p)

(8)

In Eq. 8, q ∈ {1, 2, ..., D}, and the qth evaluation of a uni-
form random number generator with outcome in [0, 1] is
determined by randb(q). CR is a user-defined constant in
[0, 1]. A random index rnbr(p) is used to ensure that at least
one parameter from ẑp,G+1 is obtained by z̃p,G+1.

Prior to selection, fitness values are calculated for all
zp,G and z̃p,G+1 where p = 1, 2, ..., Np. The fitness func-
tion plays a key role in candidate selection. We apply
classification accuracy (CA) as the sole component in the
fitness compared to the combinatorial usage of RMSE and
‖β‖ in E-ELM. We choose a new fitness function primarily
due to two reasons: First, the aim of the proposed method
is for the purpose of classification rather than regression,
therefore a fitness function based on prediction accuracy
is more straightforward than a fitness function based on
RMSE; Second, the introduction of cross-validation strat-
egy in E-ELMcv makes it difficult to implement ‖β‖ based
selection as we have multiple values of ‖β‖. Then, by par-
titioning the training set L into R pairs of data sets using
the cross-validation strategy, the fitness value of zp,G can be
evaluated as

CAp,G = 1

R

R∑

r=1

CAp,G
r (9)

and the fitness value for z̃p,G+1 is calculated as

CAp,G+1 = 1

R

R∑

r=1

CAp,G+1
r (10)

If z̃p,G+1, the evolved candidate, appears fitter than the orig-
inal parameter vector, i.e., CAp,G+1 > CAp,G, z̃p,G+1 will
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Figure 1 The architecture of
the proposed E-ELMcv
algorithm.

be selected into the next generation instead of zp,G; other-
wise, zp,G is considered as the elite candidate and continues
to survive in (G + 1)th generation as zp,G+1. After a num-
ber of iterations, the best candidate vector zbest in terms of
achieving highest prediction accuracy is obtained for test-
ing. Given new patterns, predictions are carried out using
wi and bi in zbest. Figure 1 illustrates the architecture of the
proposed E-ELMcv algorithm.

3.2 Cross-validation Based Improved Evolutionary
Extreme Learning Machine (IE-ELMcv)

It is not surprising that only partial hidden nodes contribute
to classification positively. In other words, redundancy
exists in hidden layer which may weaken the generalization
performance. Rong et al. [19] proposed P-ELM algorithm to
initialize a large network and prune it by removing irrelevant
hidden nodes during training.

Both IE-ELMcv and E-ELMcv share the same architec-
ture described in Fig. 1 except for several minor changes as
the improvement. In IE-ELMcv algorithm, instead of delet-
ing hidden nodes adaptively, we propose assigning constant
values to some hidden nodes’ wi and bi during training
phase to control the contributions of certain nodes, i.e., the
parameters of selected nodes are pre-defined “invariant”
values but not randomly generated measures. The selec-
tion of Nu “invariant” nodes are determined by a random

number in parameter vector in DE. Then the parameter
vector becomes

zi,G = [w11, ..., w1Ñ
, ..., wn1, ..., wnÑ

, b1, ..., bÑ
, u] (11)

where u is the factor from which the number of “invari-
ant” hidden nodes are computed. The number Nu is
estimated as

Nu =
⌈

(u2 + e1)Ñ

e2

⌉
, u ∈ [−1, 1] (12)

where �·� is a ceiling operator, and e1 and e2 are con-
stants for limiting the ranges of Nu. For instance, if e1

and e2 are set to 0.1 and 5, Nu will be bounded between
�0.02 × Ñ� and �0.22 × Ñ�. Subsequently, Nu hidden
nodes are randomly selected and the corresponding wi

and bi are set to a constant value (it is set to 0.1 in this
paper) such that non-optimum within input weights and
hidden biases might be removed and the generalization
performance could be improved. Though the network archi-
tecture keeps unchanged, the complexity of hidden layer has
been reduced as the number of tunable variables (wi and bi)
is decreased.

4 Performance Evaluation

Evaluations are carried out on four face databases with
ELM, E-ELM, and our proposed algorithms for image
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Table 1 Data sets used in the experiments.

Data set Training Testing Dimension Class

Combo 555 575 81 75

FERET 1280 1433 81 320

GTFD 400 350 81 50

ORL 200 200 81 40

analysis. All of the computerized simulations are run in
MATLAB 7 environment under workstation equipped with
Intel Pentium 4 3.2GHz CPU and 1G RAM. The learning
and testing processes are repeated 50 times with sigmoid
function g(x) = 1/(1 + e−λx) as the activation func-
tion. In this paper, 10-fold cross-validation is applied for
training. In E-ELM and its variants, Np, F, and CR are
50, 1, and 0.8, respectively. Furthermore, 0.1 and 5 are
chosen as the values for e1 and e2. The number of gen-
erations is heuristically determined as 20. The data sets
used in the experiments are summarized in the follow-
ing section. Except for E-ELM, all approaches are trained
with the entire training set. E-ELM divides testing data
into two groups equally, and chooses one group as the
validation set to avoid overtraining.

4.1 Databases

In assessing the performance, four sets of face images are
employed (Table 1). They are FERET face database [17],
ORL database [20], a combo face database (ORL, UMIST
[6], and Yale [1]), and Georgia Tech face database (GTFD)
[2]. Since the combo data set encompasses ORL, UMIST,
and Yale database, there are five stand-alone image sets. The
FERET database is a standard testing set for performance
evaluation, including 14126 images from 1199 individuals
with views ranging from frontal to left and right profiles.
We adopt a pre-processed subset composed of 2713 face
images from 320 subjects with each subject having at least
six images with at most 45◦ of pose variation, which was
used in Lu et al. [13]. Face images from the subset of the
FERET database are manually aligned, cropped, and nor-
malized to 32 × 32 pixels, with 256 gray levels per pixel.
The ORL database contains 400 images of 40 individuals
and half of these images are used for training and the rest
for testing. The combo set consists of 555 training samples
and 575 testing images in total, and all images belong to 75
different classes with large variations of illumination, poses,
and facial expressions. In the Georgia Tech face database,
each of 50 subjects has 15 images. All the color images

Figure 2 Examples of five
stand-alone face databases used
in the experiments: a GTFD,
b ORL, c UMIST, d Yale and
e FERET.
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Table 2 The experimental results on four face databases where hidden
nodes are set as 100 for all algorithms.

Data Classification Training Testing

set algorithm time (s) accuracy (%)

Combo ELM 0.0672 81.82 ± 1.35

E-ELM 88.641 81.90 ± 1.23

E-ELMcv 160.59 84.02 ± 1.19

IE-ELMcv 152.22 85.36 ± 1.28

BP 570.35 78.85 ± 1.63

FERET ELM 0.1069 41.65 ± 0.98

E-ELM 152.02 41.91 ± 1.52

E-ELMcv 308.49 43.72 ± 0.80

IE-ELMcv 300.48 44.78 ± 0.87

BP 1361.5 36.92 ± 1.93

GTFD ELM 0.0555 54.31 ± 1.88

E-ELM 81.141 57.17 ± 2.82

E-ELMcv 125.58 60.29 ± 2.32

IE-ELMcv 128.35 61.03 ± 2.28

BP 516.21 46.67 ± 3.06

ORL ELM 0.0391 78.45 ± 2.72

E-ELM 62.813 80.70 ± 3.48

E-ELMcv 93.588 82.67 ± 1.76

IE-ELMcv 90.122 83.25 ± 2.15

BP 357.79 71.05 ± 3.52

with cluttered background are taken at resolution 640 × 480
pixels where frontal and/or tilted faces with different facial
expressions, lighting conditions and scale are presented. In
the experiments, a pre-processed set of images with the
background removed is adopted, and for each subject, eight
samples are randomly selected for training and the rest
of seven images are used for testing. Before the exper-
imental evaluation, images in Yale and GTFD databases
are manually cropped and resized to 112 × 92 to make
their dimensions identical to those of samples in ORL and
UMIST. Figure 2 presents examples after pre-processing
from the above mentioned face databases. Furthermore, we
apply the discrete cosine transform (DCT) [3, 7] to con-

vert 2D face images to low-dimensional vectors of DCT
coefficients so as to alleviate the computational burden
for classification.

4.2 Experimental Results

The experimental results are presented in Table 2. It is
shown that ELM is the fastest learner but receives poor
performance in classification. Our proposed E-ELMcv and
IE-ELMcv outperform ELM, E-ELM, and the backprop-
agation (BP) neural network [5] in terms of achieving
higher testing accuracies on all data sets. In summary,
the proposed methods are stable and efficient as they can
provide good generalization performance. Before record-
ing results for the extensions of E-ELM, several trials
have been done and the testing outcomes indicate that
E-ELMcv and IE-ELMcv need more training time than
E-ELM. We reduce the population size Np and the num-
ber of generations to half of their values, and discover that
the learning time decreases dramatically. The results using
the above new parameters for E-ELMcv and IE-ELMcv in
Table 2 show that although the population size is shrunk
and the evolving procedure is shortened, the proposed
E-ELM based extensions can still achieve higher testing
accuracies than E-ELM in comparable learning time. More-
over, it is observed that conventional gradient-based BP
costs much longer time for training while its classification
results are far from satisfactory.

To compare with state-of-the-art face recognition tech-
niques such as Bayes method [15], linear discriminant
analysis (LDA) [1], uncorrelated LDA (ULDA) [25], reg-
ularized version of revised direct LDA (R-JD-LDA) [14],
we conducted several experiments on the FERET database
and showed the comparison results in Table 3. There were
three subsets of FERET face database used in the experi-
ments, namely C160, C240 and C320 where the number of
subjects were 160, 240 and 320, respectively. The original
E-ELMcv and IE-ELMcv methods performed much better
than LDA and ULDA on databases that contain more sub-
jects. In general, E-ELMcv and IE-ELMcv cannot outper-
form Bayes and R-JD-LDA methods. However, it is worth
noting that our proposed methods are focused on the aspect

Table 3 The comparison results between the proposed methods and four classical face recognition techniques on the FERET database.

C Bayes LDA ULDA R-JD-LDA E-ELMcv E-ELMcva IE-ELMcv IE-ELMcva

160 59.7 ± 1.7 51.0 ± 1.8 40.2 ± 1.3 70.5 ± 1.6 48.8 ± 1.3 59.9 ± 1.1 50.3 ± 1.5 60.8 ± 1.5

240 54.2 ± 1.1 41.8 ± 1.4 10.8 ± 0.8 68.7 ± 1.0 46.2 ± 1.3 57.6 ± 0.9 47.0 ± 1.3 60.1 ± 1.3

320 52.4 ± 1.0 29.1 ± 1.1 20.9 ± 0.9 66.4 ± 1.1 43.7 ± 0.8 57.3 ± 0.9 44.8 ± 0.8 59.7 ± 0.8

aLDA is used for dimensionality reduction prior to classification
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Table 4 The p-values and h-values of Wilcoxon test based on ORL face database.

Method 10 times 20 times 30 times

p-value h-value p-value h-value p-value h-value

ELM vs. E-ELMcv <0.001 1 <0.001 1 <0.001 1

ELM vs. IE-ELMcv <0.001 1 <0.001 1 <0.001 1

of learning/classification rather than dimension reduction
while most face recognition techniques are approaches for
feature extraction by reducing feature dimension, thus a
direct comparison between classical face recognition meth-
ods and ELM based methods may not provide meaning-
ful information. We therefore further investigated the use
of dimension reduction + proposed methods (E-ELMcva

and IE-ELMcva) and found that these new learning tech-
niques achieved higher classification accuracy than Bayes,
LDA and ULDA methods. Better classification performance
can be expected by replacing LDA with more sophisti-
cated dimension reduction methods prior to applying ELM
based classifiers.

4.3 Statistical Analysis on Stability

We have conducted statistical analysis following the work
suggested in Zhai et al. [26] to analyze stabilities of our
proposed methods. Wilcoxon test and paired t-test [4] were
used and the ORL face database was adopted for the anal-
ysis. By running ELM, E-ELMcv and IE-ELMcv for 10,
20 and 30 times, we obtained nine statistics denoted as
M1

i , M2
i and M3

i (i = 1, 2, 3), which are corresponding
to ELM, E-ELMcv and IE-ELMcv. Parameter i represents
the number of runs, e.g. M1

1 is the statistics obtained
by running ELM for 10 times. We aim to compare the
performance between ELM and our proposed methods,
therefore we compute two sets of results for ELM vs.
E-ELMcv and ELM vs. IE-ELMcv as shown in Tables 4
and 5. As suggested in Zhai et al. [26], we used MATLAB
functions ranksum and ttest2 for calculating Wilcoxon
test and t-test statistics, respectively. The small p-values
(< 0.001) for both tests further demonstrated the effective-
ness of our proposed methods. Furthermore, we analyzed
the stability of our methods with coefficient of variation

Table 5 The p-values of t-test based on ORL face database.

Method 10 times 20 times 30 times

ELM vs. E-ELMcv <0.001 <0.001 <0.001

ELM vs. IE-ELMcv <0.001 <0.001 <0.001

(CV) of testing accuracy. The coefficient of variation is
calculated as follows

CV = σ/μ (13)

where σ is the standard deviation of the testing accuracy
across 20 runs and μ is the mean testing accuracy. We evalu-
ate our methods with four different hidden node number and
the results are shown in Table 6. It is observed from the com-
parison results that the proposed E-ELMcv and IE-ELMcv
are more stable than ELM in terms of achieving smaller
CV values.

4.4 The Effects of Parameter Selection

The effects of parameters on generalization performances in
E-ELMcv are depicted in Fig. 3. It can be observed from
Fig. 3a that if five or more folds are applied, the classifica-
tion accuracies will be larger than that of ELM and increase
steadily. A small fold number results in poor generalization
performance because less training samples involve in the
learning process. Figure 3b shows that a large number of
hidden nodes might give higher accuracies in testing. How-
ever, a complex network could also overfit the training data.
For example, when the number of hidden nodes is larger
than 80, the generalization performance decreases a lot.

In the IE-ELMcv algorithm, e2 serves as a major fac-
tor to control the ranges of Nu. In the experiments, e2 is
set to 5 by default. When the value of e2 is reduced to
2, the corresponding result on ORL database is 84.95 ±
1.49 in percentage. Obviously, a small e2 (more “invariant”
hidden nodes) can lead to more satisfactory performances
in classification, possibly because the network complex-
ity is simplified. In other words, redundancy among the

Table 6 Comparison of stability between the proposed methods and
ELM.

Nodes ELM E-ELMcv IE-ELMcv

25 0.0626 0.0401 0.0616

50 0.0362 0.0290 0.0312

75 0.0294 0.0214 0.0209

100 0.0347 0.0213 0.0258
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Figure 3 Results on ORL database using E-ELMcv method:
a Classification results with different number of folds for cross-
validation where Ñ is 100; b classification results with different
number of hidden nodes where R is 10.

input weights and hidden node biases are removed by
assigning constant values to the parameters of the selected
hidden nodes.

5 Conclusion

In this paper, the cross-validation strategy is introduced
into the training process of E-ELM algorithm to avoid the
overfitting problem and increase the generalization perfor-
mance. As a result, E-ELMcv and IE-ELMcv are proposed
and validated for image analysis. The experimental results
demonstrate that our proposals outperform the conven-
tional E-ELM algorithm in terms of classification accuracy.

Although the proposed methods need more training time
than ELM does, they are still effective when compared with
E-ELM and traditional gradient-based learning algorithm.
In addition, it is also possible to alleviate the computational
burden by selecting proper network parameters.
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