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Abstract In this paper, a pipelined architecture using COR-
DIC for realization of transform domain equalizer is pre-
sented. Transform domain equalizer has much faster
convergence than its time domain counterpart for practical
hardware realization having nonzero adaptation delay. Here
running DFT is employed as the transform, and CORDIC is
used for realization of running DFT. Pipelining is applied
throughout the architecture, thus limiting the critical path
delay to the propagation delay of a single 16 bit adder for 16
bit arithmetic. For N tap equalizer, primary clock speed is N
times of the sample clock speed, so that on arrival of each
sample, the computation of whole transform and weight
update is possible. In the proposed architecture, hardware
complexity is reduced by fully utilizing the pipeline without
using parallel structures. The adaptation delay is only 2
sample clock periods resulting in fast convergence. The
proposed architecture is suitable for VLSI implementation
with primary clock speed limited by the binary adder prop-
agation delay which could be as low as 2 ns in the present
state-of-the-art technology.

Keywords CORDIC . Running DFT. Transform domain
equalizer . VLSI architecture

1 Introduction

In a communication system, an adaptive equalizer is
employed to minimize the intersymbol interference by adap-
tively trying to mimic the inverse characteristics of that of
communication channel. Least mean square (LMS) algorithm
has been among the most popular ones to be utilized for the
process of adaptive equalization [1]. The speed of conver-
gence for the LMS algorithm depends on various factors such
as input data statistics (e.g. eigenspread of the covariance) and
stepsize parameter etc. It has been established [2] that, in a
given practical situation, transform domain LMS (TXLMS)
converges faster than the conventional counterpart. Here
delayed LMS algorithm should be used, as delayless LMS
cannot be physically realized due to inherent delay in hard-
ware resources. However, computational cost increases con-
siderably in TXLMS due to its requirement for evaluating
associated transform. Thus it becomes important to realize
efficient architecture that can implement TXLMS based adap-
tive equalizer, which could be used in a functional unit in a
practical communication system.

This paper describes an architecture for TXLMS based
adaptive equalizer where the transform concerned is employed
through running discrete Fourier transform (DFT) [3] which
operates on both real and imaginary data. The proposed archi-
tecture employs Co-ordinate Rotation Digital Computer (COR-
DIC) [4] unit in a pipelined configuration, as the primary
functional block for computing running DFT, thereby saving
the usage of conventional bulky multipliers. However, in the
weight updating section, pipelined multipliers have been
employed. Here running DFTacts as a sliding window, making
it possible to update the weights in the transform domain on
arrival of each input sample. In the proposed architecture,
hardware economy is achieved by exploiting the pipelining
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technique to the maximum extent without using any parallel
structure. Excepting the size of the RAM, hardware require-
ment for the proposed architecture is invariant to the equalizer
tap length.

2 Theoretical Groundwork

For a transmitted signal s(t), in a communication system, the
received signal r(t) is given by

rðtÞ ¼ sðtÞ � hðtÞ ð1Þ
where h(t) is the channel impulse response and ⊗ denotes
the convolution operation. Now, if the received signal is
passed through an equalizer, its output y(t) is given by

yðtÞ ¼ rðtÞ � qðtÞ ð2Þ
where q(t) is the impulse response of the equalizer. The
responsibility of the equalizer is to adopt q(t) in such a
way that the originally transmitted signal s(t) can be recov-
ered from y(t) by a simple decision making process. This is
possible in a digital communication system, since the trans-
mitted signal can have discrete values representing symbols
from a specified constellation having finite number of points
in it. The equalizer output can be quantized to map to the
correct (as transmitted) constellation point provided that the
error is contained such that the decision boundary remains
distinct.

A conventional N-tap time domain equalizer uses N
number of weights to adaptively attain the required impulse
response, as closely as possible, within the scope of the
adaptation algorithm. Let V(n)0[v0(n) v1(n) …….. vN−1(n)]
be the values of the N weights at discrete time index n and R
(n)0[r(n) r(n−1) …….. r(n−(N−1))] be the present and
past received signals appearing at the same time index n,
at the so called tapped delay line which is nothing but a
FIFO like register array.

The output of the time domain equalizer is given by

yðnÞ ¼ V ðnÞRT ðnÞ ð3Þ
The error in estimating the actually transmitted signal s(n)

is given by

eðnÞ ¼ sðnÞ � yðnÞ ð4Þ
In the LMS algorithm, the error e(n) is utilized to update

the weights as per the following expression:

V nþ 1ð Þ ¼ V ðnÞ þ μR�ðnÞeðnÞ ð5Þ
where μ is the stepsize parameter that governs the speed of
convergence and * denotes complex conjugate. Choosing the
value of μ beyond certain limit may lead to instability and
divergence.

In the transform domain equalizer [5] of length N, as
shown in Fig. 1, a suitable orthogonal transformation is
applied to the input vector R(n) made up of a block of N
input samples such that the transformed output vector (having
N elements) U(n) is given by

UðnÞ ¼ RðnÞFðnÞ ð6Þ

where F(n) is a unitary matrix of dimensionN×N representing
the chosen transform.

The transformed output will now be combined by a set of
N weights, say W(n)0[w0(n) w1(n) …….. wN−1(n)] to form
the final output as follows:

yðnÞ ¼ W ðnÞUT ðnÞ ð7Þ

The error in estimating the transmitted signal s(n), in this
case also, is given by Eq. 4. The weights are updated by
following an approach similar to Eq. 5:

W nþ 1ð Þ ¼ W ðnÞ þ μ0U �ðnÞeðnÞ ð8Þ

where μ′ is the stepsize parameter for transform domain
LMS algorithm.

In a practical hardware realization of the equalizer,
while resorting to pipelined architecture for supporting
high data rate, a delay is inadvertently introduced in
updating the weights with respect to the input signal.
Under such cases, to incorporate the effect of this delay
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Figure 1 Transform domain equalizer block diagram.
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D, the governing equations are getting slightly modified
[6] as follows:

y n� Dð Þ ¼ V n� Dð ÞRT n� Dð Þ
e n� Dð Þ ¼ s n� Dð Þ � y n� Dð Þ
V nþ 1ð Þ ¼ V ðnÞ þ μR� n� Dð Þe n� Dð Þ

ð9Þ

This delay causes an offset between the calculated
weights and the samples on which the weights act to pro-
duce the output, thereby resulting in slow convergence
compared to the case where there is no computational delay.
However, this does not pose a serious problem in achieving
the final objective of equalizing the channel, provided that
the signal statistics do not change by a large extent within
the time span of such weight updating delay.

In this circumstance, transform domain equalization
helps in accelerating the convergence process. After accom-
modating the delay, the set of governing equations for
transform domain equalization becomes:

y n� Dð Þ ¼ W n� Dð ÞUT n� Dð Þ ð10aÞ

e n� Dð Þ ¼ s n� Dð Þ � y n� Dð Þ ð10bÞ

W nþ 1ð Þ ¼ W ðnÞ þ μ0U � n� Dð Þe n� Dð Þ ð10cÞ
Running DFT is chosen for our implementation of the

transform domain equalizer and the former is computed with
the help of CORDIC arithmetic module.
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Figure 2 Transform domain equalizer architecture.
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In the running DFT for N point transform length, Ui(k),
the k-th frequency component at i-th time instant, can be
updated as follows:

Uiþ1ðkÞ ¼ UiðkÞ � R i� N þ 1ð Þ þ R iþ 1ð Þ½ �e2pjk=N ð11Þ

where R(i+1) is the (i+1)-th data sample. Multiplication by
the factor e2πjk/N, i.e., complex rotation is carried out by
CORDIC operation.

In the CORDIC technique, the plane rotation through
target angle α is done by decomposing it into several ele-
mentary angles and rotating through each of these angles as
follows:

a ¼
XM�1

i¼0

σiθi where θi ¼ tan�1 2�i
� � ð12Þ

withM being the wordlength and σi 0 +1 or −1, deciding the
direction of rotation. Plane rotation is achieved by pipelined
operations as follows:

X iþ1 ¼ X i � σiY i2
�i

Y iþ1 ¼ σiX i2
�i þ Y i

Ziþ1 ¼ Zi � σiθi with Z0 ¼ a;σi ¼ Sign Zið Þ
ð13Þ

If operations in M number of pipelined stages are carried
out as in Eq. 13, then the end results are scaled version of
actual results (Xact, Yact) as follows:

XM ¼ KMX act

YM ¼ KMYact where KM ¼ 1=
QM�1

i¼1
cos θi

ð14Þ

3 Architecture Design

The proposed architecture for the transform domain equal-
izer is shown in Fig. 2. Here tap length N equals 32 and 16
bit internal arithmetic (M) is chosen. On arrival of each
complex input (Rn), the running DFT block computes N
frequency components as outputs. The N complex outputs
of the running DFT block are fed successively to one input
of complex pipelined multiplier, the other input is coming
from the weight block. In the complex multiplier, N com-
plex weight values are multiplied with corresponding trans-
formed values from running DFT block. The N complex
outputs from multiplier are accumulated to generate output
as in Eq. 10a.
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Figure 3 Running DFT architecture.
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Figure 4 Pipelined CORDIC architecture.
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The output is then subtracted from the desired response to
generate the error signal as in Eq. 10b. The weight block is a
dual port RAM along with two address generators, where
initially first set of weight values is written. When weight
from a particular location, say (n− i) location, is read out for
multiplication to generate y(n), at the same time weight
updating operation is going on at first by reading weight
from (n− i−k) location, keeping an offset from the other
read operation, and updated weight after operation as per
Eq. 10c is written back to the same (n− i−k) location. Thus
two weights are simultaneously accessed from two different
address locations, with a fixed offset between them. The
error signal is fed to another pipelined multiplier where
complex conjugate operation is done. The other input to
the pipelined multiplier is running DFT output after passing
through a proper synchronization delay. The output of the
conjugate multiplier is multiplied by stepsize μ′ through a
variable right shifter as μ′ can be expressed here in the form
2−i. Then it is added with previous weight, thus performing
operation as per Eq. 10c to generate updated weight. The

decision block is generating final output by taking decision
as per structure of constellation points. Here the primary
clock speed is fmax01/Tdelay(adder) and the operations such as
pipelined multiplications, accumulation operations to get y
(n), weight updating, running DFT internal operations are by
primary clock and for N transform length the maximum
sampling clock speed is fmax/N. The adaptation delay corre-
sponds here to a maximum of two sampling clocks.

The main processing unit in this architecture is the run-
ning DFT block of transform length N that equals 32. Here
the updating operation for a particular frequency compo-
nent, as shown in Eq. 11, can be achieved through only an
addition, a subtraction and a complex rotation amounting to
2πk/N for the k-th frequency component. Now the complex
rotation is performed with the help of pipelined CORDIC
module whose functionality is described in Section 3.A. The
architecture of running DFT, shown in Fig. 3, processes real
and imaginary data in two similar sections each comprising
of two RAM blocks, adders, subtractors, scale blocks, two
data registers, and pipelined CORDIC block, which is
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Figure 5 Scale block architecture.
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common for both the sections. Here the primary clock speed
is N times the sample clock speed so that on arrival of each
sample, all N frequency components can be computed. The
input RAM blocks (1RX and 1RY) are single port RAM,
which can store N words of 16-bit length. The data is written
in the input RAM and initially all the flip-flops and counters
are cleared to zero. The general scheme for subtraction of (i–
N)-th data from i-th data is as follows. Since the RAM can
store N data, so the address of writing i-th data is the same
where previously (i–N)-th data is written. For a given ad-
dress, first the previously stored data is latched in data
register (1DX(Y)) then the new data is written in the same
location in the RAM. The latched data is subtracted from
the new data by subtractor to obtain (R(i+1)−R(i–N+1)). For
each input arrived at sample clock rate (fixed i), N different
rotation angles (different k values) are fed to the CORDIC

block successively at primary clock rate so that rotation
corresponding to all N angles is achieved and N updated
frequency components (real and imaginary) are available
at the output in successive clock cycles after the latency
period of the CORDIC processor. After the rotation opera-
tion, CORDIC outputs (real & imaginary) are fed to the
scale blocks (X and Y) for multiplying it by a factor
Q15

i¼0
Cos θi ¼ 0:607252935 , to get the actual value of the

Figure 7 Complex multiplier architecture. Figure 8 MSE convergence rate for different types of equalizer.
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rotated output. After the scaling operation is done, the out-
puts are written in the dual port RAM blocks (2RX and
2RY). The data written corresponding to a particular fre-
quency is to be read out again after the arrival of the next
input data during the computation of the corresponding
frequency component. This is done by keeping an offset
between read and write addresses of the dual port RAM to
cover the latency of the scale and CORDIC block. RAM
block outputs are fed to adder, the other input of which is the
new subtracted data (R(i+1) – R(i–N+1)). This subtracted
data remaining same as one of the input of the adder,
whereas the other inputs are the N frequency components
corresponding to the previous input. The outputs of adder
are fed back to the CORDIC block for the next set of
rotation operations. The clock in the input RAM is the
sample clock, which is obtained by a division of N of the
primary clock, which is used in the other portion of the
running DFT block.

3.1 Pipelined CORDIC Architecture

The CORDIC operation is done here through a pipelined
structure, as shown in Fig. 4. There are three inputs at a
time, real data (X), imaginary data (Y) and target angle (α).
The total rotation is achieved here by decomposing the
target angle α in elementary angles tan−1(2−i), i starting from
0 to 15, and also in clockwise or anticlockwise direction for
a particular i, as required. But as per normalized angle
representation scheme [7], value of tan−1(2−13) is equal to
weight of LSB only, so rotation angle is decomposed up to
this value. For rotation of each of these 14 angles, we have
to perform three addition/subtraction operations along with
right shifting (in two cases) as per Eq. 13. Since the amount
of shift is fixed for a particular stage, it can be realized by
bus cross connection only, without deploying additional
hardware. The operation proceeds through stages in a pipe-
lined structure, each stage performing a defined amount of
rotation by taking data set from its previous stage, and new
data set is entering in very first stage in each clock cycle.
However, at the time of loading the target angle in the very
first stage, the corresponding register copies MSB−1 bit as
the MSB instead of the original value of MSB which has got
an weightage equals to −π. This is done so as to keep the
target angle α within the range [−π/2, π/2]. If the target

angle is beyond that limit, i.e. if it lies either in the second or
in the third quadrant, the sign changing of the output variables
X and Y are to be carried out to incorporate the reflections
about the axes, as described in [7]. The controlled sign change
for the two outputs are done through controlled two’s com-
plementers. The pipe fills in 15 clock cycles, which defines its
latency and then we get one set of outputs (X and Y) in every
clock cycle, which defines its throughput. The maximum
combinatorial delay in this CORDIC block for 16 bit internal
arithmetic is delay of a 16 bit adder, which also defines its
maximum clock speed as fmax01/Tdelay(adder)

3.2 Scale Block Architecture

The scale block is designed for a fixed amount of multipli-
cation of the input and it is also implemented in a pipelined
structure. Let us consider the structure of the scale block,
shown in Fig. 5, which multiplies the input by the factor
0.607252935. So here the relation between the input and the
output is as follows: dout0din×0.6072529350din.(2−1+
2−3−2−6−2−9−2−12+2−14), assuming 16 bit accuracy. Here
the addition/subtraction operation is done in three stages. In
the first stage, input din is right shifted by appropriate
amounts (through RSH blocks by bus cross connection
only), and then necessary additions/subtractions are carried
out in this stage and also in the second and third stage, to get
final output. This scale block is a pipeline structure and the
operation proceeds here stage by stage in successive clock
cycles. So the latency of the scale block is 3 clock cycles
and throughput is one output per clock cycle. The maximum
combinatorial delay in this scale block for 16 bit internal
arithmetic is delay of a 16 bit adder which also defines its
maximum clock speed as fmax01/Tdelay(adder).

Table 1 Hardware utilization of
proposed architecture. N tap equalizer 16 bit adder 16 bit register RAM (16 bit ) No. of blocks

CORDIC 43 43 − 1

Scale 76 78 − 2

Complex multiplier 18 18 − 2

Weight block 1 1 N word 1

Data RAM − − N word 5

Table 2 Comparison between various architectures.

N tap equalizer DFT_DLMS [9] FD LMS [10] Proposed

Adaptation delay (2N+1)Tsample (N−1)Tsample 2Tsample0
2NTprimary

Critical period Tmult Tmult+Tadd Tadd
No. of multipliers 5N−2 16N 8

No. of adders 5N+1 − 58
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3.3 Pipelined Multiplier Architecture

There are two multipliers used in this design, one is complex
and the other is complex conjugate multiplier, each input is
16-bit signed binary. The basic module is 8-bit×8-bit un-
signed binary multiplier, which is shown in Fig. 6. There are
four addition operations done in parallel in level1 (L1) by
taking the AND-ed inputs (aibj) as shown below:

Four 8-bit adders ADDER0 to ADDER3 are used in
level1 pipelining, whose outputs are latched in REGISTER0
to REGISTER3. Here Sij is the j-th sum bit of i-th adder and
Ci is the carry output of i-th adder. In level2 (L2) pipelining,
two parallel addition operations are done by taking required
portions of output from level1 by two 10-bit adders AD-
DER4 and ADDER5 and latched in REGISTER4 and
REGISTER5. In each of ADDER4 and ADDER5, the
output is limited to 10 sum-bit since for one of the
inputs, MSB and MSB−1 are always zero and thus no
final carry bit is generated. In level3 (L3) pipelining,
one addition operation is done by taking required por-
tions of output from level2 by one 12-bit adder, AD-
DER6 and latched in REGISTER6. In ADDER6 also,
output is limited to 12-bit and no final carry is gener-
ated. Final 16-bit output is taken from REGISTER6.
This basic module is used to realize 16×16 bit signed
binary multiplier. In complex multiplier, used in the
equalizer, complex numbers (a+jb) and (c+jd) are mul-
tiplied to generate output (ac−bd)+j(ad+bc) using four
multipliers, one adder and one subtractor as shown in
Fig. 7. In realization of complex conjugate multiplier,
role of adder and subtractor is interchanged. The latency
for this basic module is 3 primary clock cycles and
throughput is one per clock cycle and critical path delay
is limited to the propagation delay of a 16-bit adder/
subtractor.

4 Results and Discussion

The novelty of the proposed architecture lies in utilizing
running DFT for transform domain equalization. The running
DFT architecture processes both real and imaginary data at its

input. This architecture is fully pipelined with throughput of
one set of real and imaginary data per clock cycle and on
arrival of each new input, it computes all 32 frequency com-
ponents for 32 point running DFT operation in 32 clock
cycles. The running DFT architecture, reported in [8], pro-
cesses only real data at its input and throughput is 20 clock
cycles per output and computes only 1 frequency component
for single carrier and 8 frequency components for multi carrier
systems. The adaptation delay for the transform domain equal-
izer is 2 sample clock cycles in the architecture realized here.
TheMSE convergence rate for time domain delayed LMS and
transform domain LMS taking an adaptation delay of 2 clock
cycles are compared with LMS (without delay), as shown in
Fig. 8, having stepsize values 0.00012, 0.00001 and 0.0005
respectively for 64 point QAM input having P and Q values
{−7, −5, −3, −1, 1, 3, 5, 7}. The stepsize values are so chosen
that the convergence and stability are guaranteed satisfying
the constraints as described in [5]. Since the hardware reali-
zation for delayless LMS equalizer is not feasible in practice,
the transform domain equalizer has got much faster conver-
gence rate than its time domain counterpart. The critical path
delay in all the blocks used in the equalizer architecture is
limited to the propagation delay of a 16 bit binary adder/
subtractor for 16 bit internal arithmetic. The sample clock
speed is limited by fprimary/32 for 32 tap equalizer, and
fprimary/N for N tap equalizer and the adaptation delay is
2 sample clock cycles for N tap equalizer and thus same
in terms of sample clock for any N. The hardware
utilization of various blocks in terms of 16 bit adder,
data register and RAM bit is shown in Table 1. Thus
with increasing tap length only RAM size is increasing,
other hardware requirements remaining same. The com-
parison between various architectures is shown in Ta-
ble 2. The proposed architecture requires less hardware
resource, than as in [9, 10], without sacrificing conver-
gence rate. Proposed architecture is suitable for implementa-
tion in FPGA and ASIC, and critical path delay may be as low
as 2 ns as reported in [11].
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