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Abstract The codebook model-based approach, while
ignoring any structural aspect in vision, nonethe-
less provides state-of-the-art performances on current
datasets. The key role of a visual codebook is to provide
a way to map the low-level features into a fixed-length
vector in histogram space to which standard classifiers
can be directly applied. The discriminative power of
such a visual codebook determines the quality of the
codebook model, whereas the size of the codebook
controls the complexity of the model. Thus, the con-
struction of a codebook is an important step which is
usually done by cluster analysis. However, clustering
is a process that retains regions of high density in
a distribution and it follows that the resulting code-
book need not have discriminant properties. This is
also recognised as a computational bottleneck of such
systems. In our recent work, we proposed a resource-
allocating codebook, to constructing a discriminant
codebook in a one-pass design procedure that slightly
outperforms more traditional approaches at drastically
reduced computing times. In this review we survey sev-
eral approaches that have been proposed over the last
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decade with their use of feature detectors, descriptors,
codebook construction schemes, choice of classifiers
in recognising objects, and datasets that were used in
evaluating the proposed methods.
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1 Introduction

An important problem in computer vision is to de-
termine the presence or absence of a specific object
class under a wide variety of conditions. Each three-
dimensional object in the real world can cast an infinite
number of different two-dimensional images onto the
retina. Changes in pose, lighting, occlusion, clutter,
intra-class differences, inner-class variances, deforma-
tions, background that varies relative to the viewer,
large number of images and several object categories
make this problem highly challenging.

The popular approach in visual object recognition
is to use local information extracted at several points
or patches in the image. Such local patch-based ap-
proaches have been shown to have benefits over global
methods [30]. The assumption is, in different image
classes, the statistical distribution of the patches is
different. For instance, the patches showing spikes in
the ‘wheel’ are more likely to appear in the images of
vehicles than those of animals or persons. In the state-
of-the-art visual object recognition systems, the visual
codebook model has shown excellent categorisation
performance in large evaluations (e.g. the PASCAL
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Figure 1 General framework
of a visual object recognition
system.

VOC Challenges).1 Figure 1 shows the generic frame-
work of such a codebook model.

Naturally, this framework ignores the spatial layout
of features corresponding to overall shapes and sizes of
objects, a limitation that will require community-wide
attention in the future, that is outside the scope of this
paper.

Desirable properties of a visual codebook are com-
pactness, low computational complexity, and high ac-
curacy of subsequent categorisation. Discriminative
power of a visual codebook determines the quality of
the codebook model, whereas the size of a codebook
controls the complexity of the model. Thus, the con-
struction of a codebook plays a central role that affects
model complexity.

Several combinations of image patch detectors
and descriptors, features, matching strategies, cluster-
ing methods and classification techniques have been
proposed for codebook model-based visual object
recognition. Assessing the overall performance of the
individual components in such systems is difficult, since
the computational requirements and the fine tuning of
the different parts become crucial. However, a straight-
forward but effective approach lies in the use of the
codebook model.

This review is organised as follows. In Section 2,
we summarise the widely used visual descriptors, SIFT
and SURF, in a patch-based visual object recognition
framework. In Section 3, we present the bag-of-features
approach that has proved to yield the state-of-the-art
performance in large evaluations such as the PASCAL
Visual Object Classes (VOC) Challenges. Section 4
provides various techniques that have been used in the
literature in constructing visual codebook for object
categorisation. The popular K-means method is also
described in this section together with its drawbacks.
In Section 5, the types of codebook models are dis-
cussed. In this section we provide a review of several
codebook models that are prominent in the literature
of object recognition or scene classification which have
been proposed in the last decade. Section 6, discusses

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/.

a recent work which is free of a codebook model for
visual object recognition. Finally, a summary of this
paper is presented in Section 7.

2 Patch-Based Visual Descriptors

The feature extraction process in visual object recogni-
tion systems generally seeks for invariance properties
that do not vary according to different conditions such
as scale, rotation, affine and illumination changes. Usu-
ally images are composed of different set of colours, a
mosaic of different texture regions, and different local
features. Most previous studies have focused on using
global visual features such as colour, texture, and shape
that are important to describe image contents seman-
tically to categorise objects in scenes. However, the
introduction of powerful patch-based Scale-Invariant
Feature Transform (SIFT) descriptors proposed by
Lowe [33] had a significant impact on the popularity
of local features. Interest points combined with local
descriptors started to be used as a black box providing
reliable and repeatable measurements from images for
a wide range of applications such as object recognition,
texture recognition, robot navigation and visual data
mining. The local patch-based visual object recognition
has several advantages that we list below:

– Local patch-based descriptors can robustly detect
regions up to some extent which are translation, ro-
tation and scale invariants addressing the problem
of viewpoint changes [11, 48].

– Viewpoint invariant local descriptors provide a
wide baseline matching [34].

– When objects to be recognised are partially oc-
cluded then global methods fails as it requires the
outline of an object, but the patch-based method
can cope well as the information is acquired at local
point.

– Changes in the geometrical relation between image
parts can be modelled in a flexible way [25, 41].

– The visual object classes do not need to be seg-
mented prior to recognition [30].

http://pascallin.ecs.soton.ac.uk/challenges/VOC/
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Beside these advantages of the patch-based visual
object recognition system, there are some known dis-
advantages.

– Although the interest points detected are sig-
nificantly lower than the number of pixels in the
image, the feature space suffers from the ‘curse of
dimensionality’, i.e. each interest point detected by
SIFT is described by a 128 dimensional vector.

– When using the bag-of-features approach with the
patch-based object recognition systems, the physi-
cal location from where the patches were extracted
gets discarded. In image scene classification, e.g.
classification of ‘sand’ and ‘sky’, the performance
may achieve better rates when spatial locations are
preserved, i.e. in natural scenes ‘sand’ always ap-
pears at the bottom, whereas ‘sky’ always appears
at the top. However, the usage of latent information
makes the training of object recognition models
more difficult.

– Interest points are detected when sharp changes
happens in the intensities at any resolution of the
image regions, e.g. the Difference of Gaussians
(DoG) [34]. This causes the problem that those
relevant parts of the object that were detected in
the testing images may be missed in the training
images due changes in resolution. If this is the case
classification which relies on these parts is likely to
fail.

In patch-based visual object recognition, SIFT is the
most widely used descriptor due to good performances
observed empirically. SIFT [33] detects interest points
by filtering gray-value images at multiple scales that
have sharp changes in local image intensities. The fea-
tures are located at maxima and minima of a difference
of Gaussian (DoG) function applied in scale space.
Next, the descriptors are computed based on eight
orientation histograms at a 4 × 4 sub region around

the interest point, resulting in a 128 dimensional vec-
tor. The SIFT algorithm can be summarised in four
major stages: Scale-space extrema detection, keypoint
localisation, orientation assignment and representation
of a keypoint descriptor. Ke and Sukthankar [21] im-
proved upon SIFT by replacing the smoothed weighted
histograms with principal components analysis (PCA)
at the final stage of the SIFT [21]. In this PCA-SIFT,
the dimensionality of the feature space was reduced
from 128 to 20 which requires less storage and increased
speed in matching images. Recently, a colour image-
based SIFT has been developed by Koen van de Sande
et al. [56]. In this development, instead of using inten-
sity gradients the color gradients were used into the
Gaussian derivative framework.

More recently, Speeded-up Robust Features (SURF)
are also becoming popular due to their faster perfor-
mance with less number of interest points and dimen-
sion when compared to SIFT. The SURF [3] is partly
inspired by SIFT that makes use of integral images. The
scale space is analysed by up-scaling the integral image-
based filter sizes in combination with a fast Hessian
matrix-based approach. The detection of interest points
is selected where the determinant of the Hessian ma-
trix is maximum. The Hessian matrix is approximated
using a set of box-type filters and no smoothing is
applied when going from one scale to the next. Image
convolutions with these box filters can be computed
rapidly by using integral images independently of their
size. The use of integral images drastically reduces the
computation time. Next, the descriptors are computed
based on orientation using 2D Haar wavelet responses
calculated in a 4 × 4 sub region around each interest
point, resulting in a 32 dimensional vector. When in-
formation about the polarity of the intensity changes
is considered, this in turn results in a 64 dimensional
vector. The extended version of SURF (e-SURF) has
the same dimension as SIFT.

Figure 2 a Original Image
b SIFT keypoints with
magnitude and direction
c SURF keypoints with
magnitude and direction.
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In contrast, SIFT when compared to PCA-SIFT and
SURF, has shown better performance but it is slow and
performs poorly at illumination changes [18]. A survey
on invariant detectors, descriptors and implementation
details can be found in [40, 55]. The SIFT and SURF
features detected on the Lena’s image are illustrated in
Fig. 2b and c, respectively. Here the features detected
are shown by centres of the circles, where the radius
reflects magnitude and the direction reflects the orien-
tation of the feature. The majority of the features are
detected in the face, rim of the hat and mirror, and in
other textured regions of the image. The SIFT detected
473 × R

128 interest points while SURF detected 176 ×
R

64 keypoints, resulting with 57 keypoints overlapping
exactly.

3 Bag-of-Features

The bag-of-words (BOW) approach was originally used
in text mining [17] and is now widely used in image
scene classification [13, 48], retrieval of objects from a
movie [52], and object classification [9, 19, 43, 50, 59, 64]
tasks in computer vision. The bag-of-words in computer
vision is normally referred as ‘bag-of-features’ or ‘bag-
of-keypoints’. The pseudocode of bag-of-features ap-
proach is given in Algorithm 1.

Algorithm 1 Proccess of building a bag-of-feature
(BOF) representation for images
for all image do

interestPts ← detectPts(image)
descriptors ← describePts(interestPts)

end for

codebook ← quantizePts(descriptors(training_images))

for all image do
BOF ← computeHistogram(codebook, descrip-

tors(image))
end for

Interest points or regions are detected in training
images and a visual codebook is constructed by a vector
quantization technique that groups similar features to-
gether. Each group is represented by the learnt cluster
centres referred as ‘visual words’ or ‘codewords’. Each
interest keypoint of an image in the dataset is then
quantized to its closest codeword in the codebook, such
that it maps the entire patches of an image in to a fixed-
length feature vector of frequency histograms, i.e. the
visual codebook model treats an image as a distribution
of local features. The size of the resulting histogram
equals the size of the codebook and hence the number
of clusters obtained from the clustering technique.

The aforementioned histogramming process can be
mathematically expressed as follows. For each code-
word c in the visual codebook C the traditional code-
book model constructs the distribution of codewords
over an image by

H(c) =
∑

c∈I R

⎧
⎨

⎩
1 ; if c = argmin

c∈C
S(c, r)

0 ; otherwise
(1)

where, I R denotes the set of regions or patches in an
image I and S(c, r) denotes the similarity (e.g. Euclid-
ean distance) between a codeword c and a region r.
The mathematical expression in Eq. 1 of assigning a
single codeword to a single image features is referred to
as hard-assignment. Instead of hard-assignment, each
region r, can be assigned to all codewords in a proba-
bilistic manner, i.e. assign weights wc to neighbouring
codewords. Hard-assignment becomes soft-assignment
when Eq. 1 is replaced by

H(c) =
∑

c∈I R

S(c, r) × wc (2)

The traditional codebook approach makes use of
the hard-assignment method. A soft-assigned method
combines the spatial verification, in which each interest
point in an image has more assigned codewords and can
potentially match more features in the other image.

4 Clustering Algorithms Used in Codebook
Construction

When local features are extracted from images of a
particular class, the variability in images makes the
number of detected features to vary. It is the difficulty
of matching images by measuring a distance between
them using variable number of features, which is cir-
cumvented by representing the statistics of these fea-
tures by the bag-of-words approach. The codebook
itself is constructed by clustering a large number of
low-level feature descriptors extracted from training
data. Based on the choice of a clustering algorithm,
one might obtain different clustering solutions, some
of which might be more suitable than others for object
class recognition.

The popular approach to constructing a visual code-
book is usually undertaken by applying the K-means
method [9, 13, 32, 52, 53, 59]. Several other clustering
techniques have been employed to construct visual
codebooks:

– Agglomerative clustering [30]
– Gaussian mixture models [11, 12, 25, 43]
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– Hierarchical K-means clustering [37, 42]
– Mean-shift based clustering [19]
– Randomised clustering forests [41]

We now brief the widely used K-means clustering
technique. Given a matrix X∈ R

N×D (representing N
points—rows—described with respect to D features—
columns), then K-means clustering aims to partition the
N points into K disjoint sets or clusters by minimizing
an objective function, which is the squared error func-
tion, that minimizes the within-group sum of squared
errors:

dij = ‖ X( j)
i − C j ‖2

Xopt =
∑K

j=1

∑N

i=1
dij

where dij is a chosen distance measure between a data
point X( j)

i and the cluster centre C j, is an indicator of
the distance of the N data points from their respective
cluster centres.

The cluster centres obtained by K-means are the
average of the points within their respective clusters
that are useful only when mean is defined, but can-
not be used in categorical data. K-means is unable to
handle noisy data and outliers. It is also not suitable to
discover clusters with non-convex shapes. Although it
can be proved that the iterative procedure will always
terminate, the K-means algorithm does not necessarily
find the most optimal solution, corresponding to the
global objective function that minimises the squared
error within clusters [16, 29].

There are several other known difficulties with the
use of K-means clustering, including the choice of a
suitable value for K and the computational cost of clus-
tering when the dataset is large. It is also significantly
sensitive to the initial randomly selected cluster centres.
The K-means algorithm can be run multiple times to
reduce this effect, but that makes it computationally
more expensive and might take several months or
even years to cluster millions of data! The time com-
plexity of the K-means method is O(NDKm), where
the symbols in parentheses represent number of data,
dimensionality of features, the number of desired clus-
ters and the number of iteration of the expectation-
maximization (EM) algorithm.

It is important to note here that clustering by K-
means and similar algorithms results in cluster centres
which best represent the probability density of the
space of features. There is no a priori reason to believe
that preserving the density in this way should result
in carving the space into partitions that capture rare

and informative visual keywords that help discrimi-
nate between image classes. As noted by Jurie and
Triggs [19] such density preserving clustering will work
well in homogeneous images such as textures, but with
real world object recognition tasks we should expect a
highly non-uniform distribution in feature space. Fur-
thermore, clustering millions of data vectors of higher
dimensions into thousands of cluster centres using the
K-means or GMMs techniques is not straightforward
to apply and need for novel approaches arises. There-
fore, our own work on a novel one-pass algorithm [50]
constructs a visual codebook resulting in a codebook
that retains rare and novel features while drastically
reducing computational costs.

5 Codebook Models

A codebook model yields a distribution over code-
words that models the whole image, making this model
well-suited for describing context. Unlike text, visual
words are not intrinsic entities and different quantisa-
tion methods can lead to very different performances.
The size of the codebooks that have been used in
the literature range from 102 to 104, resulting in very
high-dimensional histograms. A larger size of codebook
increases the computational needs in terms of memory
usage, storage requirements, the computational time to
construct the codebook and to train a classifier. On
the other hand, a smaller size of codebook lacks good
representation of true distribution of features. Thus,
the choice of the size of a codebook should be bal-
anced between the recognition rate and computational
needs. The compactness constraint is typically ignored
by several systems who mainly focus on catergorisation
performance.

Now, we provide a review of a selective research
work from patch-based visual object recognition liter-
ature. In general, there are two types of codebook that
are widely used in the literature: global and category-
specific (or concept-specific) codebook. A global code-
book may not be sufficient in its discriminative power
but it is category-independent, whereas a category-
specific codebook may be too sensitive to noise. The
conventional approach to constructing either a global
or category-specific codebook is achieved by cluster
analysis, usually by the K-means method. The learnt
cluster centres are not semantically meaningful since
the clustering is based on appearance similarity only.
However, another type of codebook is the semantic
codebook approach that attempts to bring the semantic
information into visual codebooks. This semantic code-
book model is widely used in image scene categorisation.
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5.1 Globally-Clustered Codebook

A globally-clustered codebook is usually constructed
by clustering visual descriptors that are randomly cho-
sen from each class of a training set. Thereafter, each
image is represented as a feature vector by comput-
ing the frequency histograms with the learnt clusters.
This mapping produces a bag-of-features representa-
tion. Several authors [9, 19, 37, 42, 43, 63] have used
the globally-clustered codebook at some stage in their
framework.

– Csurka et al. [9] used the Harris affine region detec-
tor [39] to identify the interest points in the images
which are then described by SIFT descriptors. A
visual codebook was constructed by clustering the
extracted features using K-means method. Images
are then described by histograms over the learnt
codebook. The authors run the K-means several
times over a selected size of K and different sets
of initial cluster centres. The reported results were
the clusters that gave them the lowest empirical
risk in classification. The size of the codebook used
in reporting the results is 1000. The authors com-
pared Naive Bayes and Support Vector Machine
(SVM) classifiers in the learning task and found
that the one-versus-all SVM with linear kernel
gives a significantly (i.e. 13%) better performance.
The proposed framework was mainly evaluated on
their ‘in-house’ database that is currently known
as ‘Xerox7’ image set containing 1,776 images in
seven object categories. The overall error rate of
the classification is 15% using SVMs. Our resource-
allocating codebook (RAC) approach in [50] when
applied on the Xerox7 image dataset performs
slightly better than the authors’ method but was
achieved in a tiny fraction of computation time.

– Jurie and Triggs [19] proposed a mean-shift based
clustering approach to construct codebooks in an
undersampling framework. Our RAC approach
which is briefly explained in this section, has strong
similarities to this technique. The authors sub sam-
ple patches randomly from the feature set and
allocate a new cluster centroid for a fixed-radius
hypersphere by running a mean-shift estimator [8]
on the subset. The mean-shift procedure is achieved
by successively computing the mean-shift vector of
the sample keypoints and translating a Gaussian
kernel on them. In the next stage, visual descriptors
that fall within the cluster are filtered out. This
process is continued by monitoring the informative-
ness of the clusters or until a desired number of
clusters is achieved.

The features used in their experiments are the
gray level patches sampled densely from multi-scale
pyramids with ten layers. Three different feature
selection methods proposed by [5] were used in the
experiments: maximisation of mutual information,
odds of ratio, and training an initial linear SVM
on the entire training set to select the features
that have the highest weight. Two different ways
of producing fixed-length feature vectors from the
learnt codebook were used in the experiments:
Binary indicator vectors which were produced by
thresholding the frequency counts of the codeword
in the image and the histograms. The proposed
method was evaluated on three datasets: Side views
of cars from [1], Xerox7 image dataset [9] and the
ETH-80 dataset [30] containing four object cate-
gories (cars, horses, dogs and cows) each with 205
images. Naive Bayes and linear SVM classifiers
were compared in all their experiments. The size
of the codebook was 2,500. Based on the obtained
experimental results, the authors conclude the fol-
lowing: (i) the initial training with linear SVM in
feature selection was better however, full code-
books generally outperformed compact codebooks,
(ii) mean-shift based codebooks outperformed K-
means based codebooks, (iii) histogram represen-
tation performs better than binary indicators, and
(iv) linear SVMs easily outperform Naive Bayes
classifiers. The authors’ mean-shift based clustering
method is computationally intensive in determining
the cluster centroid by mean-shift iterations at each
of the sub samples. The convergence of such a
recursive mean-shift procedure greatly depends on
the nearest stationary point of the underlying den-
sity function and its utility in detecting the modes
of the density. Also efficient computation of the
mean-shift method requires the sub sampling of
visual keypoints with a regular grid and the selec-
tion of the bandwidth. A technique that has many
parameters can overfit data and generalise poorly
[46]. In contrast, the RAC approach pursued in
[50] has a single threshold that takes only one-pass
through the entire data, making it computationally
efficient.

– Nister and Stewenius [42] proposed a hierarchi-
cal K-means clustering that constructs a vocab-
ulary tree in an offline training stage for image
retrieval from a large database. Features were ex-
tracted using maximally stable extremal regions
(MSERs) [36] which are then described by SIFT de-
scriptors. SIFT features were then quantized with
the vocabulary tree. The vocabulary tree is con-
structed by a hierarchical scoring scheme based
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on the term frequency-inverse document frequency
(tf-idf ) score. First, an initial K-means process is
run on the training data, defining K centroids. The
training data is then partitioned into K groups,
where each group consists of the features closest
to a particular centroid. The second step is then
recursively processed by quantizing each node into
K new parts, where K defines the number of chil-
dren of each node. The tree is constructed level-by-
level up to a maximum number of levels. Following
the recursive process, in the online phase, each vi-
sual descriptor is propagated down the vocabulary
tree by coding the closest node at each level. The
proposed technique was tested on a ground truth
database containing 6,376 images in groups of four
of the same object but under different conditions.
From their experimental results, they found that
larger vocabulary (between 1 and 16 million leaf
nodes) improves retrieval performance. They claim
that this methodology provides the ability to make
fast searches on extremely large databases (i.e. one
million images).

– Mikolajczyk et al. [37] find local features by extract-
ing edges with a multi-scale Canny edge detector [7]
with Laplacian-based automatic scale selection. For
every feature, a geometry term gets determined,
coding the distance and relative angle of the object
centre to the interest point, according to the dom-
inant gradient orientation and the scale of the in-
terest point. These regions are then described with
SIFT features that are reduced to 40 dimension
via principal component analysis (PCA). The visual
codebook is constructed by means of a hierarchical
K-means clustering. Initially the features are clus-
tered using K-means algorithm and then agglom-
erative clustering is performed to obtain compact
feature clusters within each partition. Given a test
image, the features were extracted and a tree struc-
ture is built using the hierarchical K-means clus-
tering method in order to compare with the learnt
model tree. Classification is done in a Bayesian
manner computing the likelihood ratio. This test
is done at local maxima of the likelihood func-
tion of the object being present. Some additional
tests are applied to determine whether objects of
different classes share similar clusters or whether
overlapping objects exist. In this manner, the loca-
tion, scale and orientation of multiple objects can
be determined. Experiments were performed on a
five class problem taken from the PASCAL VOC
2005 image dataset containing four classes and a
RPG (rocket-propelled grenade) shooter that was
collected from various sources.

– Wu and Rehg [60] showed that when the histogram
intersection kernel (HIK) are used in clustering
patch-based visual descriptors that are histograms,
the codebooks constructed produce improved bag-
of-features classifiers. The proposed method re-
places K-means clustering that uses the L2 distance
measure with HIK for better performance when
the choice of feature representation is histograms.
When comparing K-means with K-median, the lat-
ter uses the L1 distance measure. In the first step,
features are extracted to construct a visual code-
book of size 200. At the next step, an image or
image sub-window is represented by a histogram of
codewords in a specified image region. An image
is represented by the concatenation of histograms
from all 31 sub-windows that split an image into
three levels, resulting in a histogram of dimension
6200. Spatial and edge informations are incorpo-
rated as an additional input, and histograms are
concatenated from the original input and Sobel
gradient image. The authors also propose a one-
class SVM formulation using HIK that can be
used to improve the effectiveness of the HIK-based
codebook, by compact clusters in histogram feature
space. The proposed methods are validated using
three datasets: the dataset used in [28] contain-
ing 15 classes, a sports event dataset containing
eight categories, and the Caltech-101 object recog-
nition dataset. For the experiments performed with
Caltech-101 image datasets, SIFT descriptors were
used to describe the image patches and densely
sampled features over grid. The census transform
histogram (CENTRIST) descriptors [61] proposed
by these authors was used with the other datasets.
The original dimensionality of the CENTRIST de-
scriptor is 256 which can be also reduced to 40
via PCA. One-versus-one SVM is used for clas-
sification with the histogram intersection kernel.
The authors empirically show that the K-median
codebook is a compromise between the HIK and
K-means codebooks.

– In our recent work [50], we demonstrated a
resource-allocating codebook (RAC) method to
constructing a discriminant visual codebook that
takes only one-pass through the entire data, in-
spired by the resource allocation network (RAN)
family of algorithms [45]. The RAC starts by ar-
bitrarily assigning the first data item as an entry
in the codebook. When a subsequent data item is
processed, its minimum distance to all entries in the
current codebook is computed using an appropriate
distance metric. If this distance is smaller than a
predefined threshold (radius of the hypersphere),
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Figure 3 An example of feature space partitioning using K-
means clustering (left) and RAC approach (right) applied on the
Peterson’s dataset [44] that are vowel sounds characterised by the
first two formant frequencies. The figure is a plot of 50 cluster
centres found on the entire vowel dataset. It can be seen that the

cluster centres found by K-means are around densely populated
areas, whereas the centres of RAC are around lesser occurrence
data points. Thus in RAC outlier (or less occurrence) data get
included as part of the codebook.

the hypersphere that includes the processed data
item is redefined by the weighted average of all its
previous points and the new point. If the threshold
is exceeded by the smallest distance to codewords,
a new entry in the codebook is created by including
the current data item as the additional entry. This
process is continued until all data items are seen
only once.
A comparison of RAC algorithm with K-means
and a closely related mean-shift method of
Jurie and Triggs [19] was tested on a set of binary
classes selected from the PASCAL VOC Challenge
2007 dataset. The RAC strategy performs similar
or slightly better than the methods compared in
the experiments but achieved in a tiny fraction
of computation time. RAC when applied on the
Xerox7 image dataset, performs slightly better than
the method in [9] with an error rate of 13.64%,
but was achieved in a tiny fraction of computation
time. That is, K-means clustered 105,000 × R

128

SIFT descriptors into 1,000 clusters in an average
time performing each fold of the ten-fold cross-
validation in 149 h while RAC only needed an aver-
age time of 19 min on a cluster computer with a dual
core Xeon running at 2.6 GHz and 48 GB of RAM,
showing the drastic reduction in the computational
needs. In all the experiments the authors have used
SIFT features and the classification was performed
using one-versus-all linear SVMs. In contrast, RAC
looks for visual codebook that has a wider span of
the feature space than that found by any density
preserving clustering methods, such as K-means

algorithm. Figure 3 illustrates the partitioning of a
feature space using the K-means and RAC tech-
niques, respectively. Note that the cluster centres
found by K-means populate the densest part of the
feature space, whereas RAC finds centres that each
represent a distinct part of the feature space.

5.2 Category-Specific Clustered Codebook

A category-specific or concept-specific codebook is
usually constructed by clustering the extracted features
from images in a single class only. Sometimes, the fea-
tures can also be extracted with a concept that covers
different and independent regions of the same category
or scene. This makes the resulting clusters depend on
only that subset of the feature space which is relevant
for the concept. The construction process of a code-
book is identical to the globally-clustered codebook,
and is carried out separately for each of the categories
or concepts. Several authors [12, 23, 29, 52, 63] have
used the category-specific clustered codebook at some
stage in their framework.

– Sivic and Zisserman [52] proposed an approach to
retrieve visual objects and scenes from a movie
using a text retrieval approach. Local regions were
extracted from each frame in the video in the fol-
lowing two different ways: One method is referred
to as a shape-adapted (SA) region which surrounds
an interest point by an elliptical shape. The second
method is referred to as a maximally stable (MS)
region which is constructed by intensity watershed
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image segmentation. The SA regions are detected
on corner like regions and the MS regions corre-
spond to blobs of high contrast with respect to the
surroundings. Both SA and MS regions are then
described by SIFT descriptors. The authors were
aware of the difficulty in clustering a very large
scale of descriptors extracted from their movies, so
instead they selected 10,000 frames which represent
about 10% of all the frames in the movie, resulting
in 200,000 averaged track descriptors to construct a
codebook. A visual codebook is constructed using
K-means clustering algorithm and Mahalanobis dis-
tance measure. The Mahalanobis distance function
between two patch-based visual descriptors x and y
of the same distribution with the covariance matrix
�, is given by:

d
(
x − y

) =
√(

x − y
)T

�−1
(
x − y

)
(3)

The authors claim that the Mahalanobis distance
enables more noisy components of the SIFT fea-
tures to be weighted down and also decorrelates
the components. It would not be appropriate to use
the covariance matrix over the entire feature space,
since it is mainly influenced by inter-class varia-
tions. K-means was run several times with different
sets of initial cluster centres to maximise retrieval
results. The codebook constructed using SA fea-
tures was about 6,000 and the codebook using MS
features was about 10,000. The ratio of the size of
codebooks for each type is chosen nearly to the
ratio of detected descriptors of each type. The
collections of codewords are used in the term
frequency-inverse document frequency (tf-idf )
scoring of the relevance of an image to the query.
The tf-idf scoring is used in information retrieval
and text mining. The tf term measures the number
of occurrences of a particular codeword in the ex-
ample divided by the total number of patch-based
features in the example. The idf term measures
the distinctiveness of a particular codeword over
different examples. The performance was evalu-
ated on two feature films: ‘Run Lola Run’ and
‘Groundhog Day’. The authors have constructed
codebooks sufficient for two films in a very com-
putationally expensive way, which makes it hard
to apply by using the K-means method for a large
number of films. The proposed system allows to
reduce noise sensitivity in matching and to search
efficiently through a given video for frames contain-
ing a particular object using inverted files. Further-
more, in such a system, better performance can be
achieved by using a large number of visual words.

However, this high number of visual words leads to
less compact models, which may be infeasible for
large video sets.

– Leibe and Schiele [30] used the Harris interest
point detector [15] to extract image patches. The
pixel gray values of those patches are then clus-
tered using the agglomerative clustering method to
generate a visual codebook. The size of the learnt
codebook was further reduced by merging the most
similar clusters in a pair-wise manner when the
similarity between clusters exceeds a predefined
threshold t. The similarity between two clusters C1

and C2 was measured by the normalised grey-value
correlation (NGC).

similarity (C1, C2) =
∑

x∈C1,y∈C2
NGC(x, y)

|C1| × |C2| (4)

where,

NGC (x, y) =
∑

i(xi − xi)(yi − yi)√∑
i(xi − xi)2

∑
i(yi − yi)2

(5)

Instead of assigning image patches to their near-
est codeword in the learnt codebook, every patch
casts probabilistic votes to the codebook using the
NGC measure whose similarity is above t. For clas-
sification, a generalised Hough transform-like [33]
voting scheme is applied. The proposed method
was evaluated on a database of 137 images of scenes
containing one car each in varying poses. The size
of the codebook was around 2,500.

– Farquhar et al. [12] proposed alternatives to the
scheme introduced by Csurka et al. [9]. The
Gaussian mixture model (GMM) was proposed as a
replacement of the K-means based codebook con-
struction, and summed responsibility replacing bin
membership for histogram generation. The GMMs
were all trained for category-specific codebooks
and were then combined into a single codebook.
Features were extracted using multi-scale Harris
affine region detector that are then described by
SIFT descriptors. The features were pre-processed
to reduce its dimensionality. The authors used two
different methods to reduce dimensions: the PCA
and partial least squares (PLS), and found that PLS
improves classification performance over the PCA
method for the same number of reduced dimen-
sions. The proposed method was also tested on the
Xerox7 image dataset used in [9]. The classification
results were obtained by using one-versus-all SVM
classifiers with linear kernel. Although about 2%
of improvement was obtained over the original
results of [9], the concatenation of category-specific
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codebooks into a single codebook approach is im-
practical for a large number of visual object cate-
gories, as the size of the concatenated codebook
grows linearly with the number of classes. When
the number of classes increases, not only does it
increase the computational cost but it also makes
the classification of histograms challenging due to
its diverse range in object classes.

– Zhang et al. [63] compare sets of local features
in two different methods. Their first method in-
volved clustering a set of patch-based descrip-
tors in each image to form a representation of
(ci, wi) pairs, that they refer to as image signa-
ture where ci is the cluster centre and wi is the
proportional size of the ith cluster. Cluster cen-
tres were obtained using K-means algorithm with
K = 40. Earth Mover’s Distance (EMD) [51] was
the choice for measuring similarities between im-
age representations. The EMD between two image
signatures S1 = {(p1, u1) , · · · , (pm, um)} and S2 =
{(q1, w1) , · · · , (qn, wn)} is defined as:

D (S1, S2) =
∑m

i=1

∑n
j=1 fij d

(
pi, q j

)
∑m

i=1

∑n
j=1 fij

(6)

where, fij is a flow value that is usually deter-
mined by solving a linear programming problem,
and d

(
pi, q j

)
is the ground distance (e.g. Euclidean

distance) between cluster centres pi and q j.
The second method was clustering the patch-based
descriptors from a training set to build a global
codebook by concatenating class-wise codebooks
and then represent each image as a frequency
histogram. The class-wise codebook was also con-
structed by K-means method. χ2 distance measure
was used in this case to compare two histograms x
and y, which is defined as:

D
(
x, y

) = 1

2

m∑

i=1

[
(xi − yi)

2

xi + yi

]
(7)

Interest points were detected using the Harris
and Laplacian detector, and were compared with
different invariance properties: Scale invariance
only, scale with rotation invariance, and affine in-
variance. The SIFT and/or SPIN [27] descriptors
were used to describe the interest points found
by different detectors as mentioned above. Each
detector/descriptor pair is considered as a sepa-
rate channel at the classifier stage. One-versus-one
SVM classifiers were compared with three different
kernels: linear, χ2, and the EMD. Their experi-
mental evaluations were performed on four texture

(UIUCTex, KTH-TIPS, Brodatz, and CUReT)
datasets and five object category (Xerox7, Caltech-
6, Caltech-101, Graz, and PASCAL VOC 2005)
datasets. Based on their experiments they conclude
that the combination of Harris and Laplacian detec-
tors with SIFT and SPIN descriptors is the prefer-
able choice in terms of classification performance
together with the choice of the χ2 kernel. The χ2

kernel performs better than the linear one and
at the same time it is comparable with the EMD
kernel.

5.3 Semantic Codebook

The semantic relationship between features is useful
especially for scene understanding. The construction of
a semantic codebook can be categorised as supervised
and unsupervised approaches.

The supervised approach is achieved by image patch
annotation or image annotation [41, 62, 64] that yield
meaningful codewords making the codebook more
compact and discriminative. The underlying phenom-
enon of selecting meaningful codewords is that the local
image semantics will propagate to the global codebook
image model. However, not all images can be decom-
posed into semantic codewords. For example, an indoor
scene, say a house, is unlikely to contain sea, sky, rock,
sand, and mountain. In addition, manually annotating
local patches in large evaluations, especially when there
are multiple object categories present in most of the
images, becomes a time consuming process. Moreover,
several other authors [31, 57, 59] use mutual informa-
tion between the features and class labels to create the
semantic codebook from an initial and relatively larger
codebook constructed by the K-means method.

The unsupervised approach is typically used to
model the visual codeword co-occurrences in object
categories. Codeword co-occurrence is typically mod-
eled by a generative probabilistic model [13, 25, 48, 53].
Typically, a generative model is built on top of a
codebook model. In this approach, visual words are
considered as generated from latent aspects (or topics).
The model expresses images as combinations of specific
distributions of topics that can essentially be a seman-
tic codebook. In general, this approach involves many
parameters to be estimated. The parameter estimation
is much more time consuming and difficult to find the
optimal values that yields better performance.

In the following section we present the codebook
models that have been categorised according to some
aspects, such as, discriminative power, compactness,
probabilistic models, and unifying codebook construc-
tion with classifier learning.
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5.3.1 Compact and Discriminative Codebook

– Winn et al. [59] optimised codebooks by hier-
archically merging visual words in a pair-wise
manner using the information bottleneck princi-
ple [54] from an initially constructed large code-
book. The final visual words are represented by
the GMMs of pixel appearance. Training images
were convolved with different filter-banks made of
Gaussians and Gabor kernels. The resulting filter
responses were clustered by the K-means method
with a large value of K in the order of thousands.
Mahalanobis distance between features is used dur-
ing the clustering step. The learnt cluster centres
and their associated covariances define a universal
visual codebook. Following the construction of this
large codebook, each region of the training images
is processed to compute the histogram h over the
initial codebook and the corresponding histogram
H of target codewords. A mapping function H =
φ (h) is used to produce a much more compact
visual codebook, where φ is the pair-wise merging
operation that acts on the initial codewords. Clas-
sification results were obtained on photographs ac-
quired by the authors, images from the web and
a subset of 587 images in total that were selected
from the PASCAL VOC challenge 2005 dataset
containing four classes. Gaussian class models were
compared with multi-modal nearest neighbours in
classification. Their class models were learnt from a
set of manually segmented photographs into object-
defined regions. Even though the authors claim that
the proposed technique is simple and extremely
fast, the complex learning process i.e. the initial
codebook construction based on K-means cluster-
ing and the merging of visual words make it harder
to apply on large number of features. However, if
two distinct visual words are initially grouped in
the same cluster, they cannot be separated later.
Also the vocabulary is tailored according to the cat-
egories under consideration, but it would require
fully retraining the framework on the arrival of new
object categories, whereas the RAC technique can
cope with new object categories without retraining
the whole system.

– Wang [57] proposed the construction of a discrim-
inant codebook at a multi-resolution level using
a hierarchical clustering technique and then use
a boosting feature selection method to select the
discriminant codewords. Features were extracted
using the Harris affine interest point detector and
SIFT descriptor. The extracted patch descriptors
are clustered into a sufficiently large number of

clusters (e.g. 2000). These clusters are then hier-
archically clustered in a bottom-up way to gener-
ate new clusters in each level. Centroids of these
clusters form a multi-resolution codebook that is
usually very large as it includes more resolution
levels. To reduce the size of the codebook, dis-
criminant codewords are selected by a threshold-
based boosting feature selection technique. To do
this, frequency histograms of the training images
are sorted according to a histogram feature. Using
the threshold through the sorted list, the weak
classifier giving the minimal training error is se-
lected and the corresponding codeword in the
codebook is indicated to be inactive. The choice
of classifier was the Kernel Fisher Discriminant
Analysis (KFDA) with the RBF kernel. Their
method is evaluated against a selected four class
problem (motorbikes, airplanes, faces_easy, and
background_Google) from the Caltech-101 image
dataset. However, this method involves greater
computation and suffers from the difficulty in iden-
tifying the optimal value of the size of an initial
codebook.

– Kim and Kweon [23] proposed a technique to
reduce the size of a codebook and enhance its
discriminative power by eliminating some visual
codes from the codebook using an entropy-based
minimum description length (MDL) criterion. This
process involves the construction of intra-class and
inter-class codebooks. The intra-class codebook is
initially constructed for each object category using
an agglomerative K-means clustering method. The
MDL of each category-specific codebook is then
computed. If the MDL is not minimum then the
codebook that has the lowest entropy is removed.
Following this step, the inter-class entropy of a
codebook that has large entropy is removed from
the intra-class codebook yielding the inter-class
codebook. The authors used their own feature that
they refer to as the generalised robust invariant fea-
ture (G-RIF) [22]. The 189 dimensional G-RIF was
reduced to five dimensions via PCA. In their first
experiment, an intra-class codebook was used to
compare SVMs with nearest neighbour classifiers
using different distance measures: KL-divergence,
χ2, histogram intersection and Euclidean distances.
Based on the experimental results, they found that
the NN with KL-divergence gives better perfor-
mance than SVMs. This might be the case as a
small set of 15 training samples from each category
was used in training the SVMs. Also it is reported
that the directed acyclic graph (DAG) SVMs [47]
for multi-class classification performed worse than
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one-versus-all SVMs. A selected ten object cate-
gory from the Caltech-101 image dataset was used
in their first experiment. In the second experiment,
an inter-class codebook was used to evaluate the
classification performance of the entire Caltech-101
image dataset (15 training and 15 images for test-
ing) using nearest neighbour with KL-divergence
distance metric. However, there is a large amount
of computation involved in constructing both the
intra and inter-class codebooks and the resized
codebook is not optimally compact.

– Moosmann et al. [41] introduced extremely ran-
domised clustering (ERC) forests to construct a
visual semantic codebook. Initially a tree is built
using random forests [6]. This tree is used as a
spatial partitioning method by assigning each leaf
of each tree a visual word, which is how a se-
mantic visual codebook is constructed, instead of
using it as a classifier. Compared to random forests
using C4.5 [49], extremely randomised trees are
faster to construct. Different types of features were
used in their experiments: an HSL (hue, saturation,
and lightness) colour descriptor of 768 dimensions
(16 × 16 pixels × 3), a Haar wavelet-based colour
descriptor that transforms this into another 768
dimensions, and SIFT descriptor of 128 dimension.
A detailed experimental piece of work was carried
out with a Graz-02 image dataset2 containing three
object categories (bicycles, cars and persons) and
negatives (i.e. none of the three object categories
are present). The PASCAL VOC challenge 2005
image dataset and a horse database3 were also
used in evaluating their method. The sizes of the
codebooks used with Graz-02 and PASCAL VOC
2005 are 5,000 and 30,000, respectively. A linear
SVM classifier was employed in the classification
tasks. However, this approach creates a very large
codebook which has difficulty in coping with large
datasets. In addition, it can lead to overfitting.

– Li et al. [32] proposed the construction of a dis-
criminant codebook in a similar fashion to that
proposed in [58] and [59], i.e. constructing a com-
pact codebook through selecting a subset of codes
from an initially learnt large codebook. An initial
codebook was constructed using K-means cluster-
ing algorithm. Each codeword in this codebook is
then modelled by a spherical Gaussian function
through which an intermediate representation for
each training image is obtained. A Gaussian model

2http://www.emt.tugraz.at/~pinz/data/
3http://pascal.inrialpes.fr/data/horses/

for every object category is learnt based on this
intermediate representation. Following this step,
an optimal codebook is constructed by selecting
discriminant codes according to the learnt Gaussian
model. The discriminative capability is measured
either by likelihood ratio or by Fisher score. In-
terest points in their experiments were detected by
the DoG detector and were described by SIFT de-
scriptors. Classification was performed using SVM
classifiers with RBF kernel. The authors claim
that the likelihood ratio performs better than the
Fisher score as it fits their classification problem.
This method was evaluated on the Caltech-4 object
dataset containing four object categories within a
total of 2,876 images and a background class with
450 images. All the images for training or test were
scaled to 300 pixels in width. They also carried out
experiments with different codebook sizes using
the algorithm proposed in [9] using the Caltech-
4 dataset. The highest classification rate achieved
was 91.5% with a codebook size 900. The best
performance of Li et al.’s method was 90.5%, that
was achieved with a more compact codebook of size
100, where the optimal codes were selected from an
initial codebook of size 1,400. Although effective,
it still suffers from the disadvantages caused by K-
means clustering in the construction of an initial
large codebook.

5.3.2 Unif ied Codebook Construction with Classif ier
Learning

– Yang et al. [62] proposed a unified codebook gen-
eration that is integrated with classifier training.
Unlike clustering approaches that associate each
image’s low-level features with a single codeword in
their approach (see Fig. 4) images are represented

Figure 4 Overview of the unified visual bit generation and
classification process. This diagram adapted from [62] with
permission.

http://www.emt.tugraz.at/~pinz/data/
http://pascal.inrialpes.fr/data/horses/
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by means of visual bits associated with different
categories, i.e. an image which can contain ob-
jects from multiple categories is represented using
aggregates of visual bits for each category that
constitute the semantic vocabulary. If a feature is
considered to better describe an image category,
then its visual bit is ‘1’, otherwise ‘0’. Each visual
bit is a linear/RBF kernel classifier that maps the
features to a binary bit for classification. These
visual bits are augmented iteratively to refine visual
words based on the learning performance of the
classifier. The iterative process is carried out until
a desired performance is achieved. Harris Laplace
corner detectors [38] were used in detecting interest
points and were described by SIFT descriptors. The
authors compare their technique with the K-means
based codebook of size 1,000 followed by an SVM
classifier that uses the χ2 kernel, and with a code-
book constructed using the extremely-random clas-
sification forest algorithm [41]. Evaluations were
performed on the PASCAL VOC Challenge 2006
image dataset that contains ten classes of total 5,304
images.

– Zhang et al. [64] proposed an iterative non-
redundant codebook construction process by
means of a weighted voting scheme of the
AdaBoost procedure that is integrated with
classifier learning. The authors applied this
framework in visual object recognition and
document classification domains with different
experimental setups. However, in this paper, the
visual object recognition part is described for
clarity. The following steps are iterated for a
pre-defined number of iterations T:

1. a base codebook is learnt from a bag-of-
features that are associated with a set of
weights. The weights are initialised to be uni-
form over the training set.

2. training images are then mapped to fixed-
length vectors using the tf-idf weight. A clas-
sifier is then learnt from the fixed-length
feature vectors.

3. the predictions of the classifier in step 2
are used to update the weights using the
AdaBoost procedure to the next iteration
from step 1.

Different feature detectors: Hessian affine, the
Kadir and Brady Salient regions, and the principal
curvature-based region (PCBR) detector [10] de-
scribed by SIFT descriptors are compared in their
experiments. A base codebook is constructed using
the K-means clustering algorithm with different

weighted sampling techniques. A separate code-
book for each detector is constructed with K = 100
and then concatenated to form a global codebook.
The number of boosting iterations T is set to 30.
This straightaway increases the model’s complexity
by T × K, making it difficult to cope with a large
number of images and a large number of object
categories. Evaluations are made on the Stonefly
image dataset [24] containing 3,826 images of nine
different species. An ensemble of 50 unpruned C4.5
decision trees [49] was employed in each boosting
iteration.

5.3.3 Probabilistic Latent Model

– Fei-Fei and Perona [13] proposed a Bayesian hi-
erarchical model that represents the distribution
of codewords in each category of natural scenes
as a mixture of aspects. Each aspect is defined
by a multinomial distribution over the quantized
local descriptors. Their method is modified on the
latent Dirichlet allocation (LDA) model [4] by
introducing a category variable for classification,
which explicitly requires each image example to be

Figure 5 The graphical representation of the modified latent
Dirichlet allocation model. An image I consists of N patches
denoted by x. The total number of object categories is C. η is a
C-dimensional vector of a multinomial distribution, and π is the
parameter of a multinomial distribution. K is the total number of
themes. θ is a parameter conditioned on the category c. x and c
are observed variables.
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Figure 6 Overview of the
latent mixture codebook
model and the corresponding
graphical model
representation. This diagram
adapted from [25] with
permission.

labelled during the learning process. A graphical
representation of the modified LDA is depicted
in Fig. 5. The authors tested four different ways
of extracting local regions: evenly sampled grid,
random sampling, the Kadir and Brady Saliency
detector [20] and difference of Gaussian (DoG)
detector [33]. The patches are then described by
two different methods: normalised 11 × 11 pixel
gray values or SIFT. Features extracted from all
training images of all categories were clustered by
the K-means algorithm. Following the construction
of the codebook, clusters with too small number of
members were pruned out. The dataset they used
for evaluation contained 13 categories of natural
scenes with 3,859 images that were collected from
a mixture of COREL images, Google image search
engine and personal photographs. Based on their
experimental results, they report that the SIFT rep-
resentation is more robust than the pixel gray value
representation. Furthermore, the evenly sampled
grid-based SIFT approach out performs the ran-
dom, saliency, and DoG based SIFT approaches by
4.5, 12.1 and 12.7%, respectively.

– Larlus and Jurie [25] proposed a generative model
based on latent aspects that represent images at
low-level feature descriptors. The construction of
a visual codebook is achieved by an object model
that embeds visual words as a component of the
learning process. In their model, images are treated
as distributions of topics, topics are considered
as distributions of visual words, and visual words
considered as Gaussian mixtures over SIFT de-
scriptors. Figure 6 depicts the proposed model.
This latent variable model of Larlus and Jurie [25]
is a form of Gaussian-Multinomial latent Dirich-
let allocation (GM-LDA). Topic distributions over
words are sampled from a Dirichlet distribution.

Compared to the model in [13], GM-LDA has an
extra layer responsible for the generation of visual
descriptors conditional to visual words that allows
for learning the visual codebook. The model pa-
rameters are estimated by an iterative technique
called Gibbs sampling. Experiments were carried
out on two datasets: a subset of the ETH-80 dataset
[30] containing four object categories and the Bird
dataset [26] containing six categories each with
100 images. Local descriptors were extracted on
a dense grid at different scales and each patch
was represented by SIFT descriptor. The experi-
ments using the proposed model under different
settings compare image categorisation based on the
latent topics and visual features in a bag-of-features
framework. Also the standard codebook model
using K-means and the standard LDA model are
compared with their model. The topic-based clas-
sification was compared with SVM classifiers and a
Bayesian type classifier in which the authors note
that both of the classifiers perform equally. The
bag-of-features based classification employs SVM
classifiers, from which the authors conclude that
the GM-LDA is better than the K-means based
method, and the bag-of-features approach com-
pared to topic-based classification performs much
better. As the proposed model has four parameters,
its estimation is much more time consuming than a
standard LDA or K-means clustering method.

– Quelhas et al. [48] have extended the work of
Fei-Fei and Perona [13] for scene classification
that integrates scale-invariant feature extraction
and probabilistic latent semantic analysis (PLSA)-
based clustering of images. Images are modelled
as mixtures of aspects in an unsupervised way.
The distribution over aspects serves as image rep-
resentation that is inferred from new images and
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then used for classification. The visual codebook
was constructed by the K-means algorithm with a
desired choice of K, typically K = 1,000. Following
the construction of the codebook, the authors use
the PLSA model to capture co-occurrence informa-
tion between elements in the bag-of-features repre-
sentation. The parameters of the PLSA model are
estimated using the maximum likelihood principle.
They compare different feature detectors: DoG,
multi-scale Harris affine, multi-scale Harris, and a
fixed 15 × 20 grid; three different descriptors: SIFT,
complex filters, and a 11 × 11 pixel sample of the
area defined by the detector were used in paired
combinations. The main experiments were tested
on two datasets, one used in [13] and the other
on six natural scene classes containing a total of
700 images. The classification results were obtained
by one-versus-all SVMs with Gaussian kernel. The
authors’ experimental results confirm that in prac-
tice DoG+SIFT constitutes a reasonable choice for
image scene classification.

– Sudderth et al. [53] developed a family of hierar-
chical probabilistic models for object recognition in
natural scenes. Visual objects are modelled as a set
of parts with an expected appearance and position,
in an object-centred coordinate frame. The authors
started developing models for images with single
objects, and models which share parts among re-
lated categories, and finally turned to multiple ob-
ject scenes through the use of Dirichlet processes.
They extracted interest regions from images using
three different criteria: Harris affine invariant re-
gions, Laplacian of Gaussian operator [34] and the
maximally stable extremal regions (MSERs) [36]
algorithms that were then described by SIFT de-
scriptors. Edge-based features were also extracted
using the Canny detector [7]. K-means clustering
was used to construct a visual codebook of size
1,000, where the K was set by cross-validation. Each
of the three different feature types is then mapped
to a disjointed set of visual words. An expanded
codebook then jointly encodes the appearance and
coarse shape of each feature. The parameters of
the models are learnt via a Gibbs sampler which
uses a graphical model to analytically average over
many parameters. They evaluated the model on a
collection of 16 categories containing seven animal
faces, five animal profiles and four wheeled vehicles
as object categories and also evaluated the model
on a simple street scene containing three object cat-
egories (buildings, cars, and roads). Classification
is undertaken using the likelihood ratio. The ap-

proach only works for images with roughly aligned
objects, as in the Caltech 101 object database.

– Perronnin [43] characterised images using a set
of category-specific histograms generated one per
object category, where each histogram describes
whether the content can be best modelled by a uni-
versal vocabulary or by its corresponding category-
specific codebook. A universal codebook describes
the visual content of all the considered categories
that are trained with data from all classes under
consideration and a codebook is represented by
GMMs using maximum likelihood estimation. On
the other hand, category-specific codebooks are
obtained by adapting the universal codebook using
the class training data and a form of Bayesian adap-
tation based on the maximum a posteriori (MAP)
criterion. The maximum number of Gaussians in
the universal codebook was set to 2,048. An image
is then characterised by a set of histograms called
bipartite as they can be split into two equal parts.
Each part describes how well one codebook ac-
counts for an image compared to the other code-
book. Local patches were extracted from regular
grids at five different scales. Each patch is then
described by SIFT and colour features. PCA was
applied to reduce the dimensionality of SIFT from
128 to 50, and the RGB colour channels from 96
to 50. Evaluations were performed on their own
in-house database containing 19 classes of object
categories and scenes, and the PASCAL VOC 2006
image dataset containing ten classes. Classification
was performed using one-versus-all linear SVMs
and a logistic regression with a Laplacian prior.
However, in this method the memory requirement
is high due to the storage of large number of Gaus-
sians for each adapted codebook. Furthermore, in
this approach, if two visual object classes are visu-
ally close, there is no guarantee that a distinctive
visual word will be obtained. On the other hand,
the process that generates bipartite histograms is
computationally expensive.

6 Codebook-Free Model

Martínez-Muñoz et al. [35] recently proposed a frame-
work that is free from the use of a codebook for
categorising objects in images. The dictionary-free cat-
egorisation is achieved by learning an initial random
forest of trees, followed by the construction of a second-
level (‘stacking’) training set, and learning through
a stacked classifier. Bootstrap samples of images are
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drawn with replacements from the training set to cre-
ate an initial random forest using a modified version
of C4.5 [49]. A histogram of the training examples
belonging to each class is stored at each leaf of the
decision tree. The purpose of the second-level training
set is to consider the images that were not used to
build the initial tree. For each image, its descriptors
are dropped through each tree and their histograms are
concatenated to obtain the feature vector for the stack-
ing example. The authors extracted several features
with the use of different combinations of detectors and
descriptors. A random forest is associated with each
and every combination of the detector and descriptor.
Experiments were carried out with the Stonefly-9 [24]
image dataset containing 3,826 images of nine different
species, and the PASCAL VOC Challenge 2006 image
dataset containing ten classes. For the PASCAL06 im-
age set, interest points in each image were detected
using Harris, Hessian and PCBR detector [10] and
regularly sampled image patches. These interest points
are then independently described by three different
descriptors: SIFT, Colour SIFT [56], and the filter-
bank descriptor employed by Winn et al. [59]. For the
Stonefly-9 dataset, interest points were found using
Hessian, Kadir and Brady salient region, and PCBR
detectors; each of them was then described using SIFT
descriptors. Edges were extracted using the Canny edge
detector. The classifier is a boosted decision tree. Al-
though they claim that the proposed method is simple
and elegant, they were unable to grow any single tree
on all the extracted descriptors as they drew a random
sample of the descriptors. Despite this, they have to
determine the minimum number of training examples
in each leaf node, the minimum number of trees in each
random forest, and the number of boosting iterations
for the stacked classifier.

7 Summary

This paper provides a review of the literature on
the codebook model-based approach to visual object
recognition. The approach, while ignoring any struc-
tural aspect in vision, nonetheless provides state-of-the-
art performances on current datasets. This is impressive
because we are simply modelling the statistical distrib-
utions of low-level image features. As in any review,
the coverage here is not exhaustive in visual object
recognition. However, as our focus in this paper is
on the design of the codebook, we have attempted to
provide an exhaustive coverage of the different code-
book design strategies different authors have adopted.
A summary of those several approaches that have been

proposed over the last decade with their use of different
feature detectors, descriptors, codebook construction
schemes, choice of classifiers in recognising objects is
depicted in Figs. 7 and 8.

Many models have been proposed using conven-
tional methods such as K-means, balanced clustering
such as agglomerative or mean-shift, and even more
complex models such as the latent Dirichlet allocation
(LDA), probabilistic latent semantic analysis (PLSA),
Gaussian mixture models (GMMs), or random forests.
The vast majority of methods in the literature relating
to the construction of codebooks are either K-means or
GMMs, in which the obtained cluster centres are those
that have high probability density. These codewords
are not necessarily the most discriminative. GMM has
better representative power than a single cluster. How-
ever, it requires more computational power.

In addition, recent studies have started to explore the
construction of visual codebook leading to an improved
categorisation performance in terms of discriminative
power, compactness, and inclusion of spatial informa-
tion. Winn et al. [59], Kim and Kweon [23], Wang et al.
[58], Li et al. [32] and Yang et al. [62] have focused on
both compactness and discriminative power of visual
codebooks, whereas Larlus and Jurie [25], Lazebnik
et al. [28] and Moosmann et al. [41] have focused
on incorporating spatial information in the codebook
model. Moreover, Grauman and Darrell [14], Nister
and Stewenius [42], Agarwal and Triggs [2], Wang [57]
and Zhang et al. [64] have focused on constructing
multi-resolution codebooks.

The practical difficulty and bottleneck in a bag-
of-keypoints approach is the construction of a vi-
sual vocabulary with huge number of keypoints using
the traditional clustering methods such as the K-
means algorithm. It is worth noting that in their work,
Sivic and Zisserman [52] used 200,000 × R

128 features
which represent about 10% of the original dataset
that was clustered into 10,000 and 6,000 clusters for
each type of detector used in constructing a codebook.
Winn et al. [59] used a subset of the PASCAL VOC
Challenge 2005 dataset (587 images) to construct an
initial codebook of size 1,200. Furthermore, Moosmann
et al. [41] in their experiments with the PASCAL VOC
Challenge 2005 dataset, used 50,000 patches in total
over the 648 images (73 patches per image) to construct
a codebook of size 30,000. These examples show the
major bottleneck occurs in handling the massive scale
of the datasets and the patch-based descriptors in con-
structing a visual codebook. While several approaches
were explored, there has been very little attempt at a
large scale clustering of patch-based descriptors. The
methods that we reviewed in this paper are mostly
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Figure 7 Summary of
codebook models in the
literature that employed
several combinations of
image patch a detectors and
b descriptors for visual object
recognition.

Figure 8 Summary of
codebook models in the
literature that employed
a different clustering
techniques and b various
classifiers in patch-based
visual object recognition. It
can be noticed that majority
of the visual codebook
construction involves
K-means or its combination
with hierarchical clustering.
Another popular approach is
the use of Gaussian Mixture
Models (GMMs) in
constructing a codebook.
Both of these techniques
constructs a codebook in such
a way that the obtained
cluster centres are those that
have high probability density.
In the classification step, the
choice of SVMs are quite
straightforward as they are
naturally designed to perform
classification in high
dimensional spaces.
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applied to modest size problems. Recently, many tra-
ditional approaches have gained favour as machines
have become fast enough to make them practical in
constructing a codebook on relatively large scale de-
scriptors. As the size of training sets is increasing,
the size of codebook and complexity of construction
will increase. Future research should focus on design-
ing more effective online clustering approaches in
constructing highly discriminative and compact his-
tograms rather than focusing on methods tuned to
achieve high performance in classification. Our own
contribution, the resource-allocating clustering ap-
proach is fundamentally different from traditional ap-
proaches in that it is not the density of detected patches
one needs to retain in the codebook but the coverage
across the feature space.
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