
J Sign Process Syst (2011) 65:171–183
DOI 10.1007/s11265-011-0617-7

Implementation of a High Throughput 3GPP
Turbo Decoder on GPU

Michael Wu · Yang Sun · Guohui Wang ·
Joseph R. Cavallaro

Received: 27 January 2011 / Revised: 1 June 2011 / Accepted: 7 August 2011 / Published online: 10 September 2011
© Springer Science+Business Media, LLC 2011

Abstract Turbo code is a computationally intensive
channel code that is widely used in current and up-
coming wireless standards. General-purpose graphics
processor unit (GPGPU) is a programmable commod-
ity processor that achieves high performance computa-
tion power by using many simple cores. In this paper,
we present a 3GPP LTE compliant Turbo decoder ac-
celerator that takes advantage of the processing power
of GPU to offer fast Turbo decoding throughput. Sev-
eral techniques are used to improve the performance
of the decoder. To fully utilize the computational re-
sources on GPU, our decoder can decode multiple
codewords simultaneously, divide the workload for a
single codeword across multiple cores, and pack mul-
tiple codewords to fit the single instruction multiple
data (SIMD) instruction width. In addition, we use
shared memory judiciously to enable hundreds of con-
current multiple threads while keeping frequently used
data local to keep memory access fast. To improve
efficiency of the decoder in the high SNR regime, we
also present a low complexity early termination scheme
based on average extrinsic LLR statistics. Finally, we
examine how different workload partitioning choices
affect the error correction performance and the de-
coder throughput.
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1 Introduction

Turbo code [1] has become one of the most impor-
tant research topics in coding theory since its discov-
ery in 1993. As a practical code that can offer near
channel capacity performance, Turbo codes are widely
used in many 3G and 4G wireless standards such as
CDMA2000, WCDMA/UMTS, IEEE 802.16e WiMax,
and 3GPP LTE (long term evolution). The inherently
large decoding latency and complex iterative decoding
algorithm have made it very difficult to be implemented
in a general purpose CPU or DSP. As a result, Turbo
decoders are typically implemented in hardware [2–8].
Although ASIC and FPGA designs are more power
efficient and can offer extremely high throughput, there
are a number of applications and research fields, such
as cognitive radio and software based wireless test-
bed platforms such as WARPLAB [9], which require
the support for multiple standards. As a result, we
want an alternative to dedicated silicon that supports
a variety of standards and yet delivers good throughput
performance.

GPGPU is an alternative to dedicated silicon which
is flexible and can offer high throughput. GPU employs
hundreds of cores to process data in parallel, which
is well suited for a number of wireless communica-
tion algorithms. For example, many computationally
intensive blocks such as channel estimation, MIMO
detection, channel decoding and digital filters can be
implemented on GPU. Authors in [10] implemented
a complete 2 × 2 WiMAX MIMO receiver on GPU.
In addition, there are a number of recent papers on
MIMO detection [11, 12]. There are also a number of
GPU based LDPC channel decoders [13]. Despite the
popularity of Turbo codes, there are few existing Turbo
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decoder implementations on GPU [14, 15]. Compared
to LDPC decoding, implementing a Turbo decoder on
GPU is more challenging as the algorithm is fairly
sequential and difficult to parallelize.

In our implementation, we attempt to increase com-
putational resource utilization by decoding multiple
codewords simultaneously, and by dividing a codeword
into several sub-blocks to be processed in parallel. As
the underlying hardware architecture is single instruc-
tion multiple data (SIMD), we pack multiple sub-blocks
to fit the SIMD vector width. Finally, as an excessive
use of shared memory decreases the number of threads
that run concurrently on the device, we attempt to
keep frequently used data local while reducing the
overall shared memory usage. We include an early ter-
mination algorithm by evaluating the average extrinsic
LLR from each decoding cycle to improve throughput
performance in the high signal to noise ratio (SNR)
regime. Finally, we provide both throughput and bit
error rate (BER) performance of the decoder and show
that we can parallelize the workload on GPU while
maintaining reasonable BER performance.

The rest of the paper is organized as follows: In
Sections 2 and 3, we give an overview of the CUDA ar-
chitecture and Turbo decoding algorithm. In Section 4,
we will discuss the implementation aspects on GPU.
Finally, we will present BER performance and through-
put results and analyses in Section 5 and conclude in
Section 6.

2 Compute Unified Device Architecture (CUDA)

A programmable GPU offers extremely high compu-
tation throughput by processing data in parallel us-
ing many simple stream processors (SP) [16]. Nvidia’s
Fermi GPU offers up to 512 SP grouped into multiple
stream multi-processors (SM). Each SM consists of 32
SP and two independent dispatch units. Each dispatch
unit on an SM can dispatch a 32 wide SIMD instruction,
a warp instruction, to a group of 16 SP. During execu-
tion, a group of 16 SP processes the dispatched warp in-
struction in a data parallel fashion. Input data is stored
in a large amount of external device memory (>1GB)
connected to the GPU. As latency to device memory
is high, there are fast on-chip resources to keep data
on-die. The fastest on-chip resource is registers. There
is a small amount of 64KB fast memory per SM, split
between user-managed shared memory and L1 cache.
In addition, there is an L2 cache per GPU device which
further reduces the number of slow device memory
accesses.

There are two ways to leverage the computational
power of Nvidia GPUs. Compute Unified Device Ar-
chitecture [16] is an Nvidia specific software program-
ming model, while OpenCL is a portable open standard
which can target different many core architectures such
as GPUs and conventional CPUs. These two program-
ming models are very similar but utilize different model
terminologies. Although we implemented our design
using CUDA, the design can be readily ported into
OpenCL to target other multi-core architectures.

In the CUDA programming model, the programmer
specifies the parallelism explicitly by defining a kernel
function, which describes a sequence of operations ap-
plied to a data set. Multiple thread-blocks are spawned
on GPU during kernel launch. Each thread-block con-
sists of multiple threads, where each thread is arranged
on a grid and has a unique 3-dimensional ID. Using the
unique ID, each thread selects a data set and executes
a kernel function on the selected data set.

At runtime, each thread-block is assigned to an SM
and executed independently. Thread-blocks typically
are synchronized by writing to device memory and
terminating the kernel. Unlike thread-blocks, threads
within a thread-block, which reside on a single SM, can
be synchronized through barrier synchronization and
share data through shared memory. Threads within a
thread-block execute in blocks of 32 threads. When 32
threads share the same set of operations, they share
the same warp instruction and are processed in parallel
in an SIMD fashion. If threads do not share the same
instruction, the threads are executed serially.

To achieve peak performance on a programmable
GPU, the programmer needs to keep the available
computation resource fully utilized. Underutilization
occurs due to horizontal and vertical waste. Vertical
waste occurs when an SM stalls and cannot find an
instruction to issue. And horizontal waste occurs when
the issue width is larger than the available parallelism.

Vertical waste occurs primarily due to pipeline stalls.
Stalls occur for several reasons. As the floating point
arithmetic pipeline is long, register to register depen-
dencies can cause a multi-cycle stall. In addition, an SM
can stall waiting for device memory reads or writes.
In both cases, GPU has hardware support for fine-
grain multithreading to hide stalls. Multiple threads, or
concurrent threads, can be mapped onto an SM and
executed on an SM simultaneously. The GPU can min-
imize stalls by switching over to another independent
warp instruction on a stall. In the case where a stall
is due to memory access, the programmer can fetch
frequently used data into shared memory to reduce
memory access latency. However, as the number of
concurrent threads is limited by the amount of shared
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memory and registers used per thread-block, the pro-
grammer needs to balance the amount of on-chip mem-
ory resources used. Shared memory increases compu-
tational throughput by keeping data on-chip. However,
excessive amount of shared memory used per thread-
block reduces the number of concurrent threads and
leads to vertical waste.

Although shared memory can improve performance
of a program significantly, there are several limitations.
Shared memory on each SM is banked 16 ways. It takes
one cycle if 16 consecutive threads access the same
shared memory address (broadcast) or none of the
threads access the same bank (one to one). However,
a random layout with some broadcast and some one-
to-one accesses will be serialized and cause a stall. The
programmer may need to modify the memory access
pattern to improve efficiency.

Horizontal waste occurs when there is an insufficient
workload to keep all of the cores busy. On a GPU
device, this occurs if the number of thread-blocks is
smaller than the number of SM. The programmer needs
to create more thread-blocks to handle the workload.
Alternatively, the programmer can solve multiple prob-
lems at the same time to increase efficiency. Horizontal
waste can also occur within an SM. This can occur
if the number of threads in a thread-block is not a
multiple of 32. For this case, the programmer needs to
divide the workload of a thread-block across multiple
threads if possible. An alternative is to pack multiple
sub-problems into one thread-block as close to the
width of the SIMD instruction as possible. However,
packing multiple problems into one thread-block may
increase the amount of shared memory used, which
leads to vertical waste. Therefore, the programmer may
need to balance horizontal waste and vertical waste to
maximize performance.

As a result, it is a challenging task to implement an
algorithm that keeps the GPU cores from idling–we
need to partition the workload across cores, use shared
memory effectively to reduce device memory accesses,
while ensuring a sufficient number of concurrently exe-
cuting thread-blocks to hide stalls.

3 Turbo Decoding Algorithm

Turbo decoding is an iterative algorithm that can
achieve error performance close to the channel ca-
pacity. A Turbo decoder consists of two component
decoders and two interleavers, which is shown in Fig. 1.
The Turbo decoding algorithm consists of multiple
passes through the two component decoders, where one
iteration consists of one pass through both decoders.
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Figure 1 Overview of Turbo decoding.

Although both decoders perform the same sequence
of computations, the decoders generate different log-
likelihood ratios (LLRs) as the two decoders have
different inputs. The inputs of the first decoder are
the deinterleaved extrinsic log-likelihood ratios (LLRs)
from the second decoder and the input LLRs from
the channel. The inputs of the second decoder are the
interleaved extrinsic LLRs from the first decoder and
the input LLRs from the channel.

Each component decoder is a MAP (maximum a
posteriori) decoder. The principle of the decoding al-
gorithm is based on the BCJR or MAP algorithms [17].
Each component decoder generates an output LLR for
each information bit. The MAP decoding algorithm can
be summarized as follows. To decode a codeword with
N information bits, each decoder performs a forward
trellis traversal to compute N sets of forward state
metrics, one α set per trellis stage. The forward tra-
versal is followed by a backward trellis traversal which
computes N sets of backward state metrics, one β set
per trellis stage. Finally, the forward and the backward
metrics are merged to compute the output LLRs. We
will now describe the metric computations in detail.

As shown by Fig. 2, the trellis structure is defined
by the encoder. The 3GPP LTE Turbo code trellis has
eight states per stage. In the trellis, for each state in the
trellis, there are two incoming paths, with one path for

stage k stage k+1

Ub = 1

Ub = 0

Figure 2 3GPP LTE Turbo code trellis with eight states.
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ub = 0 and one path for ub = 1. Let sk be a state at stage
k, the transition probability is defined as:

γk(sk−1, sk) = (
Lc

(
ys

k

) + La
(
ys

k

))
uk + Lc

(
yp

k

)
pk, (1)

where uk, the information bit, and pk, the parity bit,
are dependent on the path taken (sk+1, sk). Lc(ys

k) is
the systematic channel LLR, La(ys

k) is the a priori LLR,
and Lc(yp

k ) is the parity bit channel LLR at stage k.
During the forward traversal, the sets of state metrics

are computed recursively as the next set of state metrics
is dependent on the current set of state metrics. The
forward state metric for a state sk at stage k, αk(sk), is
defined as:

αk(sk) = max∗
sk−1∈K(αk−1(sk−1) + γ (sk−1, sk)), (2)

where K is the set of paths that connects a state in stage
k − 1 to state sk in stage k.

After the forward traversal, the decoder performs
a backward traversal to compute the backward state
metrics recursively. The backward state metric for state
sk at stage k, βk(sk), is defined as:

βk(sk) = max∗
sk+1∈K(βk+1(sk+1) + γ (sk+1, sk)). (3)

After computing βk, the state metrics for all states
in stage k, we compute two LLRs per trellis state. We
compute one state LLR per state sk, �(sk|uk = 0), for
the incoming path that is connected to state sk which
corresponds to uk = 0. In addition, we also compute
one state LLR per state sk, �(sk|ub = 1), for the incom-
ing path that is connected to state sk which corresponds
to uk = 1. The state LLR, �(sk|ub = 0), is defined as:

�(sk|ub = 0) = ak−1(sk−1) + γ (sk−1, sk) + βk(sk), (4)

where the path from sk−1 to sk with ub = 0 is used in the
computation. Similarly, the state LLR, �(sk|ub = 1), is
defined as:

�(sk|ub = 1) = ak−1(sk−1) + γ (sk−1, sk) + βk(sk), (5)

where the path from sk−1 to sk with ub = 1 is used in the
computation.

To compute the extrinsic LLR for uk, we perform the
following computation:

Le(k) = ∗
max
sk∈K

(�(sk|ub = 0)) − ∗
max
sk∈K

(�(sk|ub = 1))

−La(ys
k) − Lc(ys

k), (6)

where K is the set of all possible states and max∗() is
defined as max∗(S) = ln(

∑
s∈S es).

The decoding algorithm described above requires
the completion of N stages of α before the backward
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Figure 3 Next iteration initialization.

traversal. This is very sequential and requires a large
amount of memory to store N stages of α before the
start of β computation. There are several ways to dis-
tribute the workload and memory storage across mul-
tiple decoders to decrease decoding latency. Typically,
the incoming codeword can be broken up into multiple
sub-blocks. Each sub-block is processed independently
and in parallel. As the starting state metrics of the
forward and backward traversal are unknown for the
sub-blocks, we assume a uniform distribution for the
starting state metrics. As each sub-block may not have
an accurate starting metric, decoding each sub-block
independently will result in error correction perfor-
mance loss. There are a number of ways to recover
the performance loss due to this edge effect. One is
next iteration initialization, where we forward the for-
ward and backward state metric between iterations. As
shown in Fig. 3, the last α computed for sub-block i
can be forwarded to the sub-block i + 1. Similarly, the
last backward metric computed by partition i + 1 can
be forwarded to sub-block i. By forwarding the metrics
among sub-blocks between iterations, these sub-blocks
will have more accurate starting metrics for the next
decoding iteration. Another common alternative is to
perform the sliding window algorithm with training se-
quence [18], where the ith sub-block starts the forward
and the backward traversal w samples earlier. This
allows different sub-blocks to start at more accurate
forward and backward metrics.

4 Implementation of Turbo Decoder on GPU

We implemented a parallel Turbo decoder on GPU.
Instead of spawning one thread-block per codeword
to perform decoding, a codeword is split into P sub-
blocks and decoded in parallel using multiple thread-
blocks. The algorithm described in Section 3 maps very
efficiently onto an SM since the algorithm is very data
parallel. As the number of trellis states is eight for the
3GPP compliant Turbo code, the data parallelism of
this algorithm is eight. However, the minimum number
of threads within a warp instruction is 32. Therefore,
to reduce horizontal waste, we allow each thread-block
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to process a total of 16 sub-blocks from 16 codewords
simultaneously. Therefore the number of threads per
thread-block is 128, which enables four fully occupied
warp instructions. As P sub-blocks may not be enough
to keep all the SMs busy, we also decode N codewords
simultaneously to minimize the amount of horizontal
waste due to idling cores. We spawn a total of N P

16
thread-blocks to handle the decoding workload for N
codewords. Figure 4 shows how threads are partitioned
to handle the workload for N codewords.

In our implementation, the inputs of the decoder,
LLRs from the channel, are copied from the host
memory to device memory. At runtime, each group of
eight threads within a thread-block generates output
LLRs given the input for a codeword sub-block. Each
iteration consists of a pass through the two MAP de-
coders. Since each half iteration of the MAP decoding
algorithm performs the same sequence of computa-
tions, both halves of an iteration can be handled by
a single MAP decoder kernel. After a half decoding
iteration, thread-blocks are synchronized by writing
extrinsic LLRs to device memory and terminating the
kernel. In the device memory, we allocate memory
for both extrinsic LLRs from the first half iteration
and extrinsic LLRs from the second half iteration. For
example, the first half iteration reads a priori LLRs
and writes extrinsic LLRs interleaved. The second half
iteration reads a priori LLRs and writes extrinsic LLRs
deinterleaved. Since interleaving and deinterleaving
permute the input memory addresses, device memory
access becomes random. In our implementation, we
prefer sequential reads and random writes over random
reads and sequential writes as device memory writes
are non-blocking. This increases efficiency as the kernel
does not need to wait for device memory writes to
complete to proceed. One single kernel can handle
input and output reconfiguration easily with a couple
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Figure 4 To decode N codewords, we divide each codeword into
P sub-blocks. Each thread-block has 128 threads and handles 16
codeword sub-blocks.

of simple conditional reads and writes at the beginning
and the end of the kernel.

In our kernel, we need to recover performance loss
due to edge effects as the decoding workload is parti-
tioned across multiple thread-blocks. Although a slid-
ing window algorithm with training sequence can be
used to improve the BER performance of the decoder,
it is not implemented. The next iteration initialization
technique improves the error correction performance
with much smaller overhead. In this method, the α

and β values between neighboring thread-blocks are
exchanged through device memory between iterations.

The CUDA architecture can be viewed as a specific
realization of a multi-core SIMD processor. As a result,
although the implementation is optimized specifically
for Nvidia GPUs, the general strategy can be adapted
for other many-core architectures with vector ex-
tensions. However, many other vector extensions
such as SSE and AltiVec do not support transcen-
dental functions which lead to greater throughput
difference between max-log-MAP and full-log-MAP
implementations.

The implementation details of the reconfigurable
MAP kernel are described in the following subsections.

4.1 Shared Memory Allocation

If we partition a codeword with K information bits
into P partitions, we need to compute K

P stages of
α before we can compute β. If we attempt to cache
the immediate values in shared memory, per partition,
we will need to store 8K

P floats in shared memory.
As we need to minimize vertical waste by decoding
multiple codewords per thread-block, the amount of
shared memory is quadrupled to pack 4 codewords into
a thread-block to match the width of a warp instruction.
Since we only have 48KB of shared memory which is
divided among concurrent thread-blocks on an SM, we
will not be able to have many concurrent threads if P
is small. For example, if K = 6,144 and P = 32, the
amount of shared memory required by α is 24KB. The
number of concurrent threads is only 64, leading to ver-
tical waste as we cannot hide the pipeline latency with
concurrent running blocks. We can reduce the amount
of shared memory used by decreasing P. This, however,
can reduce error correction performance. Therefore,
we need a better strategy for managing shared memory
instead of relying on increasing P.

Instead of storing all α values in shared memory, we
can spill α into device memory each time we compute
a new α. We only store one stage of α during the for-
ward traversal. For example, suppose αk−1 is in shared
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memory. After calculating αk using αk−1, we store αk in
device memory and replace αk−1 with αk. During LLR
computation, when we need α to compute �k(sk|ub =
0) and �k(sk|ub = 1), we fetch α directly into registers.
Similarly, we store one stage of βk values during the
backward traversal. Therefore, we do not need to store
β into device memory. In order to increase thread
utilization during extrinsic LLR computation, we save
up to eight stages of �k(sk|ub = 0) and eight stages
of �k(sk|ub = 1). We can reuse shared memory used
for LLR computation, α, and β. Therefore, the total
amount of shared memory per thread-block, packing
16 codewords per thread-block, is 2,048 floats or 8KB.
This allows us to have 768 threads running concurrently
on an SM while providing fast memory access most of
the time.

4.2 Forward Traversal

During the forward traversal, eight cooperating threads
decode one codeword sub-block. The eight cooperating
threads traverse through the trellis in locked-step to
compute α. There is one thread per trellis level, where
the jth thread evaluates two incoming paths and up-
dates αk(s j) for the current trellis stage using αk−1, the
forward metrics from the previous trellis stage k − 1.
Equation 2 computes αk(s j). The computation, how-
ever, depends on the path taken (sk−1, sk). The two in-
coming paths are known a priori since the connections
are defined by the trellis structure as shown in Fig. 2.
Table 1 summarizes the operands needed for α compu-
tation. The indices of the αk are stored as a constant.
Each thread loads the indices and the values pk|ub = 0
and pk|ub = 1 at the start of the kernel. The pseudo-
code for one iteration of αk computation is shown in
Algorithm 1. The memory access pattern is very regular
for the forward traversal. Threads access values of αk in
different memory banks. There are no shared memory
conflicts in either case, that is memory reads and writes
are handled efficiently by shared memory.

Table 1 Operands for αk computation.

ub = 0 ub = 1

Thread id (i) sk−1 pk sk−1 pk

0 0 0 1 1
1 3 1 2 0
2 4 1 5 0
3 7 0 6 1
4 1 0 0 0
5 2 1 3 1
6 5 1 4 1
7 6 0 7 0

Algorithm 1 Thread i computes αk(i)
a0 ← αk(sk−1|ub = 0) + Lc(ys

k) ∗ (pk|ub = 0)

a1 ← αk(sk−1|ub = 1) + (Lc(ys
k) + La(k))

+Lc(ps
k)(pk|ub = 1)

αk(i) = max∗(a0, a1)

write αk(i) to device memory
SYNC

4.3 Backward Traversal and LLR Computation

After the forward traversal, each thread-block tra-
verses through the trellis backward to compute β. We
assign one thread to each trellis level to compute β,
followed by computing �0 and �1 as shown in Al-
gorithm 2. The indices of βk and values of pk are
summarized in Table 2. Similar to the forward traversal,
there are no shared memory bank conflicts since each
thread accesses an element of α or β in a different bank.

Algorithm 2 Thread i computes βk(i) and �0(i) and
�1(i)

Fetch αk(i) from device memory
b 0 ← βk+1(sk+1|ub = 0) + Lc(ys

k) ∗ (pk|ub = 0)

b 1 ← βk+1(sk+1|ub = 1) + (Lc(ys
k) + La(k))

+Lc(ps
k)(pk|ub = 1)

βk(i) = max∗(b 0, b 1)

SYNC
�0(i) = αk(i) + Lp(i)pk + βk+1(i)
�1(i) = αk(i) + (Lc(k) + La(k)) + Lp(sk)pk + βk(i)

After computing �0 and �1 for stage k, we can com-
pute the extrinsic LLR for stage k. However, there are
8 threads available to compute the single LLR, which
introduces parallelism overhead. Instead of computing
one extrinsic LLR for stage k as soon as the decoder
computes βk, we allow the threads to traverse through
the trellis and save eight stages of �0 and �1 be-
fore performing extrinsic LLR computations. By saving
eight stages of �0 and �1, we allow all eight threads

Table 2 Operands for βk computation.

ub = 0 ub = 1

Thread id (i) sk+1 pk sk+1 pk

0 0 0 4 0
1 4 1 0 0
2 5 1 1 1
3 1 0 5 1
4 2 0 6 1
5 6 1 2 1
6 7 1 3 0
7 3 0 7 0
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to compute LLRs in parallel efficiently. Each thread
handles one stage of �0 and �1 to compute an LLR.
Although this increases thread utilization, threads need
to avoid accessing the same bank when computing an
extrinsic LLR. For example, eight elements of �0 for
each stage are stored in eight consecutive addresses.
Since there are 16 memory banks, elements of even
stages �0 or �1 with the same index would share the
same memory bank. Likewise, this is true for even
stages of �0. Hence, sequential accesses to �0 or �1 to
compute an extrinsic LLR result in four-way memory
bank conflicts. To alleviate this problem, we permute
the access pattern based on thread ID as shown in
Algorithm 3.

Algorithm 3 Thread i computes Le(i)
λ0 = �0(i)
λ1 = �1(i)
for j = 1 to 7 do

index = (i + j)&7
λ0 = max∗(λ0, �0(index))

λ1 = max∗(λ1, �1(index))

Le = λ1 − λ0

Compute write address
Write Le to device memory

end for

4.4 Early Termination Scheme

Depending on SNR, a Turbo decoder requires a vari-
able number of iterations to achieve satisfactory BER
performance. In the mid and high SNR regime, the
Turbo decoding algorithm usually converges to the
correct codeword with a small numbers of decoding
iterations. Therefore, fixing the number of decoding
iterations is inefficient. Early termination schemes are
widely used to accelerate the decoding process while
maintaining a given BER performance [19–21]. As the
average number of decoding iterations is reduced by
using an early termination scheme, early termination
can also reduce power consumption. As such, early
termination schemes are widely used in low power high
performance Turbo decoder designs.

There are several major approaches to implement
early termination: hard-decision rules, soft-decision
rules, CRC-based rules and other hybrid rules. Hard-
decision rules and soft-decision rules are the most pop-
ular early termination schemes due to low complexity.
Compared to hard-decision rules, soft-decision rules
provide better error correcting performance than other
low complexity early termination algorithms. There-
fore, we implement two soft-decision early termination

schemes: minimum LLR threshold scheme and average
LLR threshold scheme.

The stop condition of the minimum LLR scheme can
be expressed by:

min
1≤i≤N

|LLRi| ≥ T, (7)

in which we compare the minimum LLR value with a
pre-set threshold T at the end of each iteration. If the
minimum LLR value is greater than the threshold, then
the iterative decoding process is terminated.

The stop condition of the average LLR scheme can
be represented by:

1

N

∑

1≤i≤N

|LLRi| ≥ T. (8)

where N is the block length of the codeword and T is
the pre-set threshold.

The simulation results show that for multi-codeword
parallel Turbo decoding, the variation among mini-
mum LLR values for different codewords is very large.
Since each thread-block decodes 16 sub-blocks from 16
codewords simultaneously, we can only terminate the
thread-block if all 16 codewords meet the early termi-
nation criteria. Therefore, the minimum LLR values
are not accurate metrics for early termination for our
implementation. The average LLR value is more stable
so that the average LLR scheme is implemented for this
parallel Turbo decoder. As mentioned in the previous
sub-section, during the backward traversal and LLR
computation process, eight stages of �0 and �1 are
saved in the memory. After �0 and �1 are known,
the eight threads are able to compute LLRs using
these saved �0 and �1 values in parallel. Therefore,
to compute the average LLR value in one codeword,
each thread can track the sum of the LLRs when going
through the whole trellis. In the end of the backward
traversal, we combine all eight sums of LLRs and com-
pute the average LLR value of the codeword. Finally,
this average LLR value is compared with a pre-set
threshold to determine whether the early termination
condition is met. The detailed algorithm is described in
Algorithm 4.

Another challenge is that it is difficult to wait for
hundreds of codewords to converge simultaneously and
terminate the decoding process for all codewords at
the same time. Therefore, a tag-based scheme is em-
ployed. Once a codeword meets the early termination
condition, the corresponding tag is marked and this
codeword will not be further processed in the later
iterations. After all the tags are marked, we stop the
iterative decoding process for all the codewords. By us-
ing a tag-based early termination scheme, the decoding
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Algorithm 4 Early termination scheme for thread i
Compute the codeword ID Cid

if tag[Cid]==1 then
Terminate the thread i

end if
Forward traversal
for all Output LLR Le During Backward traversal
do

Sum(i)+ = Le

end for
if threadId==0 then

Average = 1

8

∑8
j=1 Sum( j)

end if

throughput can be significantly increased in the mid and
the high SNR regime.

4.5 Interleaver

An interleaver is used between the two half decod-
ing iterations. Given an input address, the interleaver
provides an interleaved address. This interleaves and
deinterleaves memory writes. In our implementation,
a quadratic permutation polynomial (QPP) interleaver
[22], which is proposed in the 3GPP LTE standards
was used. The QPP interleaver guarantees bank free
memory accesses, where each sub-block accesses a
different memory bank. Although this is useful in an
ASIC design, the QPP interleaver is very memory I/O
intensive for a GPU as the memory write access pattern
is still random. As inputs are stored in device mem-
ory, random accesses result in non-coalesced memory
writes. With a sufficient number of threads running
concurrently on an SM, we can amortize the perfor-
mance loss due to device memory accesses through fast
thread switching. The QPP interleaver is defined as:

�(x) = f1x + f2x2 (mod N). (9)

The interleaver address, �(x), can be computed on-the-
fly using Eq. 9. However, direct computation can cause
overflow. For example, 61432 can not be represented
as a 32-bit integer. Therefore, the following equation is
used to compute �(x) instead:

�(x) = ( f1 + f2x (mod N)) · x (mod N) (10)

Another way of computing �(x) is recursively [6],
which requires �(x) to be computed before we can
compute �(x + 1). This is not efficient for our design
as we need to compute several interleaved addresses
in parallel. For example, during the second half of the
iteration to store extrinsic LLR values, eight threads

need to compute eight interleaved addresses in parallel.
Equation 10 allows efficient address computation in
parallel.

Although our decoder is configured for the 3GPP
LTE standard, one can replace the current inter-
leaver function with another function to support other
standards. Furthermore, we can define multiple in-
terleavers and switch between them on-the-fly since
the interleaver is defined in software in our GPU
implementation.

4.6 max∗ Function

We support the Full-log-MAP algorithm as well as
the Max-log-MAP algorithm [23]. Full-log-MAP is
defined as:

∗
max(a, b) = max(a, b) + ln(1 + e−|b−a|). (11)

The complexity of the computation can be reduced by
assuming that the second term is small. Max-log-MAP
is defined as:

∗
max(a, b) = max(a, b). (12)

As was the case with the interleaver, we can com-
pute max∗(a, b) directly. We support Full-log-MAP as
both natural logarithm and natural exponential are
supported on CUDA. However, logarithm and natural
exponentials take longer to execute on the GPU com-
pared to common floating operations, e.g. multiply and
add. Therefore we expect throughput loss compared to
Max-log-Map.

5 BER Performance and Throughput Results

We evaluated the accuracy of our decoder by com-
paring it against a reference standard C language im-
plementation. To evaluate the BER performance and
throughput of our Turbo decoder, we tested our Turbo
decoder on a Windows 7 platform with 8GB DDR2
memory running at 800 MHz and an Intel Core 2 Quad
Q6600 processor running at 2.4Ghz. The GPU used
in our experiments is the Nvidia GeForce GTX 470
graphic card, which has 448 stream processors running
at 1.215GHz with 1280MB of GDDR5 memory running
at 1,674 MHz.

5.1 Decoder BER Performance

Our decoder can divide a codeword into P sub-blocks.
Since our decoder processes eight stages in parallel to
compute LLRs, we support a P value if the length of
the corresponding sub-blocks is divisible by eight. We
expect that the number of sub-blocks per codeword
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affects the overall decoder BER performance as larger
P introduces more edge effects.

For our simulation, the host computer first gen-
erates random 3GPP LTE Turbo codewords. After
BPSK modulation, input symbols are passed through
the channel with AWGN noise, the host generates LLR
values based on the received symbol which are fed
into the Turbo decoder kernel running on the GPU.
For these experiments, we tested our decoder with the
following P values, P = 1, 32, 64, 96, 128 for a 3GPP
LTE Turbo code with N = 6144. In addition, we tested
both Full-log-MAP as well as Max-log-MAP with the
decoder performing six decoding iterations.

Figure 5 shows the BER performance of our decoder
using Full-log-MAP, while Fig. 6 shows the BER per-
formance of our decoder using Max-log-MAP.

In both cases, BER of the decoder becomes worse as
we increase P. The BER performance of the decoder
is significantly better when Full-log-MAP is used. Fur-
thermore, we see that larger P can offer reasonable per-
formance. For example, when P = 96, where each sub-
block is only 64 stages long, the decoder provides BER
performance that is within 0.1dB of the performance
of the optimal case (P = 1). For parallelism of 32, the
decoder provides BER performance that is close to the
optimal case.

5.2 Decoder Throughput

5.2.1 Maximum Throughput

The value P affects the throughput performance as
it controls the number of thread-blocks spawned at
runtime. To find the maximum throughput this de-
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Figure 5 BER performance (BPSK, Full-log-MAP).
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Figure 6 BER performance (BPSK, Max-log-MAP).

coder can achieve, we use an extremely large workload,
a batch of 2,048 codewords, to ensure there are a
sufficient number of thread-blocks for all possible P
values. As the decoding time is linearly dependent on
the number of trellis stages traversed, varying P and
K do not significantly affect the decoder throughput
provided there is a sufficient workload to keep the
cores busy. The decoder’s maximum throughput only
depends on the number of iterations performed, max∗
and the interleaver method used. We vary these para-
meters and measure throughput of the decoder using
event management in the CUDA runtime API. The
throughput of the decoder is summarized in Table 3.
We see that the throughput of the decoder is inversely
proportional to the number of iterations performed.
The throughput of the decoder after m iterations can
be approximated as T0/m, where T0 is the through-
put of the decoder after one iteration. Although the
throughput of Full-log-MAP is slower than Max-log-
MAP as expected, the difference is small. However,
Full-log-MAP provides significant BER performance
improvement.

Table 3 Maximum decoder throughput.

Iteration Max-log-MAP Full-log-MAP
(Mbps) (Mbps)

1 95.36 89.79
2 61.08 57.14
3 44.99 42.07
4 35.57 33.14
5 29.45 27.54
6 25.13 23.31
7 21.92 20.26
8 19.41 18.00
9 17.44 16.19
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Figure 7 Number of codewords (N) versus number of sub-
blocks (P).

5.3 Number of Sub-blocks vs. Number of Codewords

In the previous section, we found the maximum de-
coder throughput by feeding a very large workload
into the decoder. For workloads with fewer codewords,
P affects the throughput performance as P controls
the number of thread-blocks spawned at runtime. A
workload of N codewords will spawn N P

16 thread-blocks
since each thread-block processes 16 sub-blocks for
16 codewords at the same time. As the GPU runs
many concurrent threads to keep the SM busy and hide
stalls through thread switching, we expect that larger
P configurations, which spawn more thread-blocks per
codeword, will require smaller N to approach maxi-
mum throughput.

To show how P affects the number of codewords
required to achieve high throughput, we set a target
throughput and vary N in steps of 32 for various values
of P until the decoder’s throughput exceeded the target
throughput. In these experiments, we set K = 6,144,
the number of decoding iterations to 5. For Max-log-
MAP decoder, we set a target throughput of 27Mbps.
Similarly, we set a target throughput of 24Mbps for
Full-log-MAP.

As shown in Fig. 7, the trends are similar for both
cases. As expected, as a larger P spawns more thread-
blocks per codeword, larger P offers better throughput
performance. There is a trade-off between decoding
latency and error correction performance. Although
larger P offers lower latency, larger P provides poorer
error correction performance. Simulations show that
the case of P = 32 seems to provides balanced per-

formance. This particular configuration provides good
error correction performance while requiring a reason-
able size workload to achieve high throughput.

5.4 Throughput with Early Termination

To accelerate the decoding process, we implement early
termination by using the average LLR rule according
to Algorithm 4. The computation of average LLR is
performed in the CUDA kernel. As the cost of the
tag checking is small, tag checking is done in the host
code. A simulation-based analysis is performed to de-
termine a threshold value. In these simulations, the
average LLR values are computed when the decoding
process converges to the correct codeword. Based on
the simulation results, a threshold of T = 40 is selected
to guarantee that the BER is below 10−5. To get better
BER performance, a higher threshold T can be used.

Figure 8 shows the throughput results when the
early termination scheme is employed. The maximum
number of iterations is set to 16. As the SNR goes
higher, the average number of iterations needed to
reach the given BER level is reduced, so the decoding
throughput is increased. The simulation results also
show that the throughput for Eb/N0 = 0.5 dB is higher
than that for Eb/N0 = 0 dB although their average
number of iterations are the same (both are 16). This
result matches our expectation for the tag-based early
termination algorithm. As mentioned in Section 4.4,
the tag-based early termination algorithm stops the
decoding process for the already converged codeword,
so even with the same average number of iterations the
amount of computations is significantly reduced under
these circumstances.
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5.5 Architecture Comparison

Table 4 compares our decoder with other program-
mable Turbo decoders. Compared to the general pur-
pose processors and the multi-core DSP based solutions
from [5, 24–27], our decoder with P = 32 compares fa-
vorably in terms of throughput and BER performance.
For example, compared to a custom designed SIMD
processor from [5], our solution shows both a flexibility
advantage by supporting both Full-log-MAP and Max-
log-MAP algorithms and a throughput advantage by
supporting 15 times the data rate. This is expected
as our device has significantly more computational
resources than general purpose processors and multi-
core DSPs. In addition, we can support both the Full-
log-MAP algorithm and the sub-optimal Max-log-MAP
algorithm while most other solutions only support the
sub-optimal Max-log-MAP algorithm.

There are two recent papers on Turbo decoder on
GPU [14, 15]. Both of these implementations try to
increase computational throughput by reducing device
memory accesses by saving α values in shared memory.
However, the amount of shared memory per SM is
limited. As a result, we need to divide a codeword
into many sub-blocks to reduce the amount of shared
memory required by each thread-block. Dividing a
long codeword into many small sub-blocks improves
throughput but reduces the error correction perfor-
mance. An alternative is to divide a long codeword
into a few sub-blocks. This requires a large amount
of shared memory per thread-block. As a result, we
cannot pack multiple sub-blocks in a thread-block and
cannot have many concurrent threads to hide pipeline
stalls, leading to significant horizontal and vertical
waste which reduce decoder throughput. In [14], we
kept the design to eight threads per thread-block, which
supports sub-block length up to 192 stages. As the
underlying instructions are 32 wide SIMD instructions,
cores are used only at most 1

4 th of the time with this
design.

In this paper, we took a more a more balanced
approach to shared memory usage. Since α values

are stored in device memory and fetched into shared
memory when needed, shared memory is not a lim-
itation and is not dependent on P. As a result, we
can spawn more concurrent threads to hide stalls and
pack multiple sub-blocks in a thread-block to meet the
SIMD instruction width. In this paper, we pack multiple
sub-blocks from 16 codewords onto the same thread-
block. We have 128 threads per thread-block which
can fully utilize the width of the SIMD instructions,
minimizing vertical waste. As a result, our present
solution is significantly faster while requiring fewer
number of sub-blocks per codeword to achieve high
performance.

To understand the impact of architecture change and
code redesign between [14] and this paper, we bench-
marked our original max-log-MAP decoder in [14] on
Nvidia GTX470 for 5 decoding iterations. For P = 96,
we achieved a throughput of 11.05 Mbps. Compared
to the throughput performance of our original design
on Telsa C1060, the improvement is approximately two
times faster. The improvement is expected as there
are 1.87 times more cores on Nvidia GTX470 and
the introduction of L1 and L2 cache. The throughput
performance of the proposed design on GTX470 is
approximately 2.67 times faster than the original design
on GTX470. This reflects the improvement we achieved
with the redesign. Although our new design packs
multiple sub-blocks to meet the SIMD instruction
width, we do not achieve four times the throughput.
This is due to two reasons. First, although we fully
utilize the SIMD instruction width, the number of in-
structions needed is not four times smaller than the
number of instructions needed in the original design.
Compared to our original implementation, the number
of instructions for our new design increase as extra load
and store instructions are needed to move data between
shared memory to device memory. Using the profiler,
we noticed that the number of issued instructions of
the new design is only 46.5% of the original design.
Second, as data are fetched from device memory in
the proposed implementation. There are cache misses
which increase the execution time.

Table 4 Our GPU based
decoder vs other
programmable Turbo
decoders.

Work Architecture MAP algorithm Throughput Iter.

[24] Intel Pentium 3 Log-MAP and Max-log-MAP 366 Kbps/51 Kbps 1
[25] Motorola 56603 Max-log-MAP 48.6 Kbps 5
[25] STM VLIW DSP Log-MAP 200 Kbps 5
[26] TigerSHARC DSP Max-log-MAP 2.399 Mbps 4
[27] TMS320C6201 DSP Max-log-MAP 500 Kbps 4
[5] 32-wide SIMD Max-log-MAP 2.08 Mbps 5
[15] Nvidia C1060 Max-log-MAP 2.1 Mbps 5
[14] Nvidia C1060 Log-MAP and Max-log-MAP 6.77/5.2 Mbps 5
This work Nvidia GTX470 Log-MAP and Max-log-MAP 29.45/27.54 Mbps 5
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6 Conclusion

In this paper, we presented a 3GPP LTE compliant
Turbo decoder implemented on GPU. We divide the
workload across cores on the GPU by dividing the
codeword into many sub-blocks to be decoded in par-
allel and by decoding multiple codewords at the same
time. In addition, we improve efficiency by allowing
a thread-block to decode multiple codeword at the
same time. We use shared memory to speed up device
memory access. However, we do not store all immedi-
ate data on-chip to increase the number of concurrently
running threads. The implementation also ensures com-
putation is completely parallel for each sub-block. As
different sub-block sizes can lead to BER performance
degradation, we presented how both BER performance
and throughput are affected by sub-block size. We
show that our decoder provides high throughput even
though the Full-log-MAP algorithm is used. This work
will enable the implementation of a high throughput
decoder completely in software on a GPU.
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