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Abstract Audio-visual speech recognition (AVSR) us-
ing acoustic and visual signals of speech has received
attention recently because of its robustness in noisy
environments. An important issue in decision fusion
based AVSR system is the determination of appro-
priate integration weight for the speech modalities to
integrate and ensure better performance under various
SNR conditions. Generally, the integration weight is
calculated from the relative reliability of two modal-
ities. This paper investigates the effect of reliability
measure on integration weight estimation and proposes
a genetic algorithm (GA) based reliability measure
which uses optimum number of best recognition hy-
potheses rather than N best recognition hypotheses to
determine an appropriate integration weight. Further
improvement in recognition accuracy is achieved by
optimizing the above measured integration weight by
genetic algorithm. The performance of the proposed
integration weight estimation scheme is demonstrated
for isolated word recognition (incorporating commonly
used functions in mobile phones) via multi-speaker
database experiment. The results show that the pro-
posed schemes improve robust recognition accuracy
over the conventional unimodal systems, and a couple
of related existing bimodal systems, namely, the base-
line reliability ratio-based system and N best recog-
nition hypotheses reliability ratio-based system under
various SNR conditions.
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1 Introduction

Human’s speech perception is bimodal in nature: hu-
man combine audio and visual information in deciding
what the others speak. The first AVSR system was
reported in 1984 by Petajan [18]. During the last decade
more than hundred articles have appeared on AVSR
[5, 6, 8, 9, 13, 17, 23, 25]. AVSR systems can enhance the
performance of the conventional ASR not only under
noisy conditions but also in clean conditions when the
talking face is visible [20, 26]. The major advantage
of utilizing the acoustic and the visual modalities for
speech understanding comes from “Complementarity”
[21] of the two modalities and, “Synergy”: Performance
of audio-visual speech perception can outperform those
of acoustic-only and visual-only perception for diverse
noise conditions [22]. Generally, in AVSR systems, the
integration can take place either before the two infor-
mation sources are processed by a recognizer (early
integration/feature fusion) or after they are classified
independently (late integration/ decision fusion). Some
studies are in favor of early integration [1, 6, 7, 13],
and others prefer late integration [2–5, 19, 24]. Despite
all these studies, which underline the fact that speech
reading is part of speech recognition in humans, still it
is not well understood when and how the acoustic and
visual information are integrated. This paper takes the
advantages of late integration on practical implementa-
tion issue to construct a robust AVSR system.
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Commonly, the integration weight which determines
the amount of contribution from each modality in de-
cision fusion based AVSR system is calculated from
the relative reliability of the two modalities [31]. The
method of reliability measure proposed in [3, 32] use
all the classes of recognition hypotheses, where as the
method proposed in [5, 31] uses only N (i.e N = 4) best
recognition hypotheses. But, both of these methods
did not show performance improvements practically at
very low SNR conditions. To solve this issue, this work
proposes a genetic algorithm based reliability measure
which uses optimum number of best recognition hy-
potheses rather than N best recognition hypotheses to
determine an appropriate integration weight. Further
improvement in recognition accuracy is achieved by
optimizing the above measured integration weight by
genetic algorithm. The performance of the proposed
integration weight estimation scheme using GA based
reliability measure is demonstrated for isolated word
recognition (incorporating commonly used functions
in mobile phones) via multi-speaker database experi-
ment. After the recognition tasks were carried out over
the common audio-visual side face speech database,
the performance of proposed system is compared with
the audio-only, visual-only unimodal systems and some
existing bimodal AVSR systems namely, the baseline
reliability ratio-based system and N best recognition
hypotheses reliability ratio-based system under various
SNR conditions. An outline of the remainder of the
paper is as follows. The following section explains some
of the existing methods to find the integration weight
based on reliability measure of the modalities. How
Genetic Algorithm can be used to measure the correct
reliabilities of each modality and optimize the integra-
tion weight is explained in Section 3. Section 4 discusses
the database, audio, and visual features. Section 5
discusses the Hidden Markov Model (HMM) training
and recognition results. The discussion, conclusion and
future direction of this work are outlined in the last
section.

2 Review of Existing Integration Weight Estimation
Schemes

The main focus of this work is on the estimation of
appropriate integration weight based on the correct
reliability measure of audio and visual modalities. After
the acoustic and visual subsystems perform recognition
separately, their outputs are combined by a weighted
sum rule to produce the final decision. For a given

audio-visual speech test datum of OA and OV , the
recognized utterance C∗ is given by [5],

C∗ = arg max
i

{
γ log P

(
OA/λi

A

)+(1−γ ) log P
(
OV/λi

V

)}

(1)

where λi
A and λi

V are the acoustic and the visual HMMs
for the ith (1 ≤ i ≤ N) utterance class, respectively,
N is the number of utterance classes being used in
the recognition experiment, and log P(OA/λi

A) and
log P(OV/λi

V) are their log likelihood against the ith
class. The weighting factor γ (0 ≤ γ ≤ 1) determines
the contribution of each modality to the final deci-
sion. If it is not estimated appropriately we cannot
expect complementarity [21] and synergy [22] of the
two information sources and moreover, the combined
recognition performance may be even inferior to that
of any unimodal systems, which is called “attenuating
fusion” [25]. One simple solution to this problem is
assigning a constant weight value over various SNR
conditions or manual determination of the weight [29].
In some other work, the weight is determined from
SNR by assuming that SNR of the acoustic signal is
known which is not always a feasible assumption [4].
Indeed, some researchers determine the weight by us-
ing additional adaptation data [30]. Finally, the most
popular approach among such schemes is the relia-
bility ratio(RR) based method in which the integra-
tion weight is determined from the relative reliability
of the two modalities [31]. Hence, in this section we
briefly, review this baseline reliability ratio(RR)-based
integration method and another related method called
N-best recognition hypotheses reliability ratio-based
integration method [5, 31].

2.1 Audio-Visual Decision Fusion Based on Baseline
Reliability Ratio Method

The reliability of each modality can be measured from
the outputs of the corresponding HMMs. When the
acoustic speech is not corrupted by any noise, there are
large differences between the acoustic HMMs output
or else the differences become small. Considering this
observation, the reliability of a modality is defined by
the most appropriate and best in performance [2]

Sm = 1
Nc − 1

Nc∑

i=1

(
max

j
log P

(
O/λ j

m

) − log P
(
O/λi

m

))

(2)
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which means the average difference between the max-
imum log-likelihood and the other ones and Nc is the
number of utterance classes being considered to mea-
sure the reliability of each modality m ∈ {A, V}. In this
method, all the utterance class recognition hypotheses
are used to measure the reliability. Then, the integra-
tion weight γ can be calculated by [31]

γ = SA

SA + SV
(3)

where SA and SV are the reliability measure of the
outputs of the acoustic and visual HMMs, respectively.

2.2 Audio-visual Decision Fusion Based on N-best
Recognition Hypotheses Reliability Ratio Method

Adjoudani and Benoit [31], measured the reliability
of each modality m ∈ {A, V} over N best recognition
hypotheses allowing for satisfactory evaluation of cer-
tainty versus uncertainty in conformity [5]. Accord-
ingly, the reliability of a modality is defined as

Sm = 2
N(N − 1)

N−1∑

i=1

N∑

j=i+1

∣∣log P
(
O/λi

m

) − log P
(
O/λ j

m

)∣∣

(4)

which means the average absolute differences of log-
likelihood. In this method, only four best recognition
hypotheses are used to measure the reliability of each
modality and then, the integration weight γ is calcu-
lated as in Eq. 3.

3 Audio-Visual Decision Fusion Based on Proposed
Integration Weight Estimation Schemes

In this section, we explain our novel integration weight
estimation scheme which uses optimum best recog-
nition hypotheses to measure the correct reliability
of each modality and in turn appropriate integration
weight. In the next subsection, we present a genetic
algorithm based optimization scheme to further opti-
mize the integration weight from the above measured
reliabilities.

3.1 Audio-visual Decision Fusion Based on GA
Adaptive Reliability Measure Method (Proposal 1)

The method of reliability measure proposed in [3, 32]
use all the classes of recognition hypotheses, where as
the method proposed in [31] uses only N (i.e. N = 4)

best recognition hypotheses. The estimated integration
weight based on these measures shows “attenuating
fusion” [25] for noisy speech data on certain SNR
conditions. To solve this issue, this work proposes a
GA based scheme to select optimum number of best
recognition hypotheses to measure the correct reliabil-
ity of each modality so as to, increase the recognition
accuracy at all SNR conditions.

The genetic algorithm is a method for solving both
constrained and unconstrained optimization problems.
It is built on the principles of evolution via natural
selection: an initial population of individuals is created
and by iterative application of the genetic operators
(selection, crossover, mutation) an optimal solution is
reached according to the defined fitness function. The
GA is used in this work to obtain the correct reliabilities
of each modality and in turn maximize the recognition
accuracy according to the defined fitness function. The
problem is formulated as follows:

The optimum number of acoustic recognition hy-
potheses to measure the correct reliability (SA) is ob-
tained by solving

SA = arg max
NA

{
1

(NA − 1)

NA∑

i=1

max
j

log P
(
OA/λ

j
A

)

− log P
(
OA/λi

A

)}
(5)

similarly, the correct visual reliability (SV) is obtained
by solving

SV = arg max
NV

{
1

(NV − 1)

NV∑

i=1

max
j

log P
(
OV/λ

j
V

)

− log P
(
OV/λi

V

)}
(6)

subject to: 1 ≤ NA, NV ≤ N.
Then, the integration weight (γ ) is calculated as in

Eq. 3. Finally, the fitness function to be optimized is
given as

Recognition Accuracy =
∑

diag(R)
∑ ∑

(R)
× 100 (7)

where R is the confusion matrix. The proposed Al-
gorithm 1 based on GA to solve Eqs. 5, 6 and 7 is
explained step-by-step in the following procedure

Step 1 Initialization: Generate a random initial pop-
ulation of size [N × 2], for best acoustic and
visual recognition hypotheses length to be con-
sidered to measure the correct reliability.

Step 2 Fitness Evaluation: Fitness of all the solutions
{NA1, NA2....NAN} and {NV1, NV2....NV N} in
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the population is evaluated. The steps for eval-
uating the fitness of a solution are given below:

Step 2a: Assume the confusion matrix R of
size [Nc × Nc] with all zero values.

Step 2b: Class = 1: No of validation utter-
ance class.

Step 2c: Datum = 1: No of validation utter-
ance datum.

Step 2d: Get the acoustic log likelihood
log P(OA/λi

A); (1 ≤ i ≤ Nc) for the
Class and Datum. Each of its en-
tries represents the log likelihood of
the Datum OA against all acoustic
classes.

Step 2e: Find the maximum value in the
acoustic log likelihoods and is rep-
resented as amax.

Step 2f: Compute the acoustic reliability SA

as:

SA = 1
NA − 1

NA∑

i=1

(
amax − log P

(
OA/λi

A

))

(8)

where NA ∈ {NA1, NA2....NAN} is
the number of acoustic recogni-
tion hypotheses being considered
to measure the correct acoustic
reliability.

Step 2g: Similarly get the visual subsystem
log likelihood log P(OV/λi

V); (1 ≤
i ≤ Nc) for the Class and Datum.
Each of its entries represents the
log likelihood of the Datum OV

against all visual classes.
Step 2h: Find the maximum value in the vi-

sual log likelihoods and is repre-
sented as vmax.

Step 2i: Compute the visual reliability
SV as:

SV = 1
NV − 1

NV∑

i=1

(
vmax − log P

(
OV/λi

V

))

(9)

where NV ∈ {NV1, NV2 .... NV N}
is the number of visual recog-
nition hypotheses being consid-
ered to measure the correct visual
reliability.

Step 2j: Estimate the integration weight
γ as:

γ = SA

(SA + SV)
(10)

Step 2k: Integrate the log likelihoods as
follows:

C1 = {
γ log P

(
OA/λi

A

) + (1 − γ ) log P
(
OV/λi

V

)}

(11)

using the estimated integration
weight value γ in step 2j. Now C1
is a [Nc × 1] matrix which gives the
audio-visual combined recognition
hypotheses.

Step 2l: Find the maximum value of C1 and
its corresponding position. The po-
sition represents the recognized ut-
terance class.

Step 2m: Update the confusion matrix R as
follows

R(class, position) = R(class, position) + 1

(12)

Step 2n: Go to step 2c until all the Datum
are over.

Step 2o: Go to step 2b until all the Classes
are over.

Step 2p: The recognition accuracy or fitness
value is calculated as

Recognition accuracy =
∑

diag(R)
∑∑

(R)
× 100

(13)

Step 3 Updating Population: Two best solutions in
the current population [parents] are forwarded
to the next generation parents without any
changes [Elite Count], the remaining solutions
in the new population are generated using scat-
tered crossover function and Gaussian muta-
tion function.
The scattered crossover function creates a ran-
dom binary vector and selects the genes from
the 1st parent if the vector is 1, and the genes
from the 2nd parent if the vector is 0, and com-
bines the genes to form the next generation
parents [16]. Similarly, the Gaussian mutation
function adds a random number taken from a
Gaussian distribution with zero mean and user
defined variance to each entry of the current
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parents to form the next generation parents
[16]. The combination of scattered crossover
function and the Gaussian mutation function
converges quickly to the given fitness function.

Step 4 Termination: Repeat steps 2 to 3 until the
algorithm reaches the maximum number of
iterations.

The final solution of this Algorithm 1 gives the num-
ber of best acoustic and visual subsystems recognition
hypotheses to be considered to measure the correct
reliability of each modality. The performance of the
proposed [1] method over the baseline reliability ratio-
based and N best recognition hypotheses reliability
ratio-based methods are shown in Table 1

3.2 Audio-visual Decision Fusion Based on GA
Adaptive Reliability Measure and Optimum
Integration Weight Method (Proposal 2)

The GA adaptive reliability measure proposed in
Section 3.1 improves the recognition accuracy over the
baseline reliability ratio-based and N best recognition
hypotheses reliability ratio-based methods and its per-
formance comparison is shown in Table 1. But still
there is attenuating fusion at very low SNR conditions
for noisy speech data. To solve this issue, we propose
a scheme to further optimize the integration weight
computed in Section 3.1 and thereby improves the
recognition accuracy without attenuating fusion at any
SNR conditions. The problem is formulated as follows:

Define the new integration weight γ as

γ =
[

SA

(SA + SV)

]
× x (14)

i.e. γ = γ × x. Then, for the given test datum OA and
OV the recognized utterance C∗ is obtained by solving

C∗ =arg max
i,x

{
γ log P

(
OA/λi

A

)+(1−γ ) log P
(
OV/λi

V

)}

(15)

subject to : 0 ≤ γ ≤ 1

Finally, the objective function given in Eq. 7 based
on this new integration weight is optimized using ge-
netic algorithm. The procedure of the proposed [2]
algorithm for optimizing the objective function using
GA is explained in the following procedure

Step 1 Initialization: Generate a random initial pop-
ulation of size [N × 3], for best acoustic and
visual recognition hypotheses length to be con-
sidered to measure the correct reliability, and
the integration weight multiplier (x).

Step 2 Fitness Evaluation: Fitness of all the solu-
tions {NA1, NA2....NAN}, {NV1, NV2....NV N},
and {x1, x2....xN} in the population is evalu-
ated. The steps for evaluating the fitness of a
solution are given below:

Step 2a–i: Follow the same steps as in
Section 3.1.

Step 2j: Estimate the new integration weight
γ as:

γ = xi ×
(

SA

(SA + SV)

)
(16)

based on the integration weight mul-
tiplier solution xi. where xi ∈ {x1,

x2....xN}.

Table 1 Recognition
performance comparison
of AV baseline-RR, AV N
best-RR, and AV GA
adaptive-RR bimodal
systems.

SNR AV baseline-RR AV N best-RR AV GA
(%) (%) adaptive-RR (%)

Clean 85.24 86.38 88.47
20 dB 78.76 80.57 83.43
10 dB 56.67 63.43 66.28
5 dB 30.28 60.38 65.52
0 dB 26.19 42.76 59.86
−5 dB 21.52 27.52 47.14

Average(%)
(−5 dB ∼ Clean) 49.77 60.17 68.45
(−5 dB ∼ 10 dB) 33.66 48.52 59.70
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Step 2k: Integrate the log likelihoods as
follows:

C2 = {
γ log P

(
OA/λi

A

) + (1 − γ ) log P
(
OV/λi

V

)}

(17)

using the estimated integration weight
value γ in step 2j. Now C2 is a [Nc × 1]
matrix which gives the audio-visual
combined recognition hypotheses.

Step 2l: Find the maximum value of C2 and its
corresponding position. The position
represents the recognized utterance
class.

Step 2m: Update the confusion matrix R as
follows:

R(class, position) = R(class, position) + 1

(18)

Step 2n–p: Follow the same steps as in
Section 3.1.

Step 3 Updating Population: As similar to step 3 of
the algorithm in Section 3.1, two best solutions
in the current population are forwarded to the
next generation parents without any changes,
the remaining solutions in the new population
are generated using scattered crossover func-
tion and Gaussian mutation function.

Step 4 Termination: Repeat steps 2 to 3 until the
algorithm reaches the maximum number of
iterations.

The final solution of Algorithm 2 gives the number
of best acoustic and visual recognition hypotheses to
be considered to measure the correct reliability of each
modality and the optimum integration weight multi-
plier (x).

4 Experimental Database, Audio, and Visual
Speech Features

This paper focuses on a slightly different type of AVSR
system which use visual features extracted from side-
face mouth region images rather than frontal face im-
ages. Potamianos et al. has demonstrated that using
mouth videos captured from cameras attached to wear-
able headsets produced better results as compared to
full face videos [27]. With reference to the above, as
well as to make the system more practical, around
70 commonly used mobile functions (isolated words)
were recorded 30 times each by a microphone and web

Figure 1 Example video frames of multi-speaker side-face
audio-visual speech database recorded in a typical office
environment.

camera located near the speaker’s right cheek mouth
region. Samples of the recorded side-face videos are
shown in Fig. 1. Advantage of this kind of arrangement
is that face detection, mouth location estimation and
identification of the region of interest etc. are no longer
required and thereby reducing the computational com-
plexity [10]. Most of the audio-visual speech databases
available are recorded in ideal studio environment
with controlled lighting or kept some of the factors
like background, illumination, distance between cam-
era and speakers mouth, view angle of the camera etc.
as constant. But in this work, the recording was done in
the office environment on different days with different
values for the above factors to make the database
suitable for real life applications. Also, the database
included natural environment noises such as fan noise,
birds sounds, sometimes other people speaking and
shouting sounds.

4.1 Acoustic Feature Extraction

The acoustic speech was recorded at the rate of 8
kHz with 16-bit resolution. The popular Mel-frequency
cepstral coefficients (MFCC) are extracted from the
acoustic speech signal [13]. The frequency analysis of
the signal is performed for each frame segmented by
the Hamming window having the length of 32 ms and
an overlap of 12.5 ms. For each frame, we perform the
Fourier analysis, computation of the logarithm of the
Mel-scale filter bank energy, and the discrete cosine
transformation. The cepstral mean subtraction (CMS)
method is applied to remove channel distortions ex-
isting in the speech data [15]. As a result we obtain
39 acoustic parameters: 12 MFCCs, 12 �MFCCs, 12
��MFCCs, log energy, � log energy, and �� log
energy.

4.2 Visual Feature Extraction

Visual features proposed in the literature of AVSR
can be categorized into shape-based, pixel-based and
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motion-based features [28]. Pixel-based and shape-
based features are extracted from static frames and
hence viewed as static features. Motion-based features
are features that directly utilize the dynamics of speech
[11, 12]. Dynamic features are better in representing
distinct facial movements and static features are better
in representing oral cavity that cannot be captured
either by lip contour or motion-based features [10].
This work focuses on the relative benefits of both static
and dynamic features for improved AVSR recognition.

4.2.1 DCT Based Static Feature Extraction

Potamianos et al. [13] reported that intensity based
features using discrete cosine transform (DCT) outper-
form model-based features. Hence DCT is employed
in this work to represent static features. Each side-face
mouth region video is recorded with a frame rate of
30 frames/s and [240 × 320] pixel resolutions. Prior to
the image transform the recorded video frames are con-
verted to equivalent RGB image. This RGB image is
converted to YUV color space and only the luminance
part (Y) of the image is kept as such since it retains the
image data least affected by the video compression [14].
The resultant Y- image was sub sampled to obtain [16
× 16] and then passed as the input to the DCT. The
DCT returns a 2D matrix of coefficients and moreover,
the triangle region feature selection outperforms the
square region feature selection, as those include more
of the coefficients corresponding to low frequencies
[14]. Hence in this work, [6 × 6] triangle region DCT
coefficients without the DC component are considered
as 20 static features of a frame.

4.2.2 Motion Segmentation Based Dynamic Feature
Extraction

In this work, dynamic visual speech features which
show the side-face mouth region movements of the
speaker are segmented from the video using an ap-
proach called motion history images (MHI) [11]. MHI
is a gray scale image that shows where and when
movements of speech articulators occur in the image
sequence. The MHI is defined as

MHI = Max
N−1⋃

t=1

DOFt(m, n) × t (19)

where N represents the number of frames used to
capture the side-face mouth region motion and DOF
is the binarized difference image over a threshold.
The threshold is optimized through experimentation.

In Eq. 19, to show the recent movements with brighter
value, the binarized version of the DOF is multi-
plied with a ramp of time and integrated temporally.
Next, DCT was applied to MHI and the transformed
coefficients are obtained. Similar to static feature ex-
traction, only [6 × 6] triangle region DCT coefficients
without the DC component are considered as the dy-
namic features. Finally, the static and dynamic features
are concatenated to represent visual speech.

5 HMM Training and Recognition Results

The HMM is a commonly used classifier in speech
recognition, since it has the desirable property that it
can readily be model the time-varying speech signal
[15]. This work adopts left-right continuous HMMs
having Gaussian mixture models (GMMs) in each state.
The whole-word model which is a standard approach
for small vocabulary speech recognition task was used.
The number of states in each HMM and number of
Gaussian functions in each GMM are set to 10 and
6 respectively, which are determined experimentally.
The initial parameters of the HMMs are obtained by
uniform segmentation of the training data onto the
states of the HMMs and iterative application of the seg-
mental k-means algorithm and the Viterbi alignment.
For training the HMMs, the standard Baum-Welch
algorithm was used [15]. The training was terminated
when the relative change of the log-likelihood value
is less than 0.001 or maximum number of iteration is
reached, which is set to 25.

5.1 Recognition Results

The bimodal decision fusion speech recognition system
using side-face mouth region image is shown in Fig. 2.
The dataset was recorded in an office environment
with a background noise. Each word was recorded 30
times for each speaker, hence we have a total of 90
samples/word. Out of these 90 recorded samples, 60
samples were taken randomly for training the HMMs
and 15 samples have been used as a validation data
to estimate the best acoustic and visual recognition
hypotheses length NA and NV to measure the correct
reliabilities using the proposed Algorithm 1. The same
set of samples have been used to estimate the optimum
integration weight using the proposed Algorithm 2. The
remaining 15 samples were artificially degraded with
additive white Gaussian noise at SNRs of 20, 10, 5, 0,
and −5 dB. Theses noisy samples have been used as
a test data to compute the recognition accuracy. The
experiment was conducted three times for each SNR, in
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Figure 2 Block diagram of the proposed audio-visual decision fusion speech recognition system using mouth region side-face images.

each trial 60 samples were taken randomly for training
and 15 samples for testing. Finally, the average of all
three trials are taken as the recognition accuracy.

Table 2 shows recognition accuracies obtained by the
audio-only, visual-only, audio-visual baseline reliability
ratio (AV baseline-RR), audio-visual N best recog-
nition hypotheses reliability ratio (AV N-best RR),
and the proposed GA adaptive reliability ratio (AV-
GA adaptive-RR) and GA adaptive reliability and
optimized (AV-GA adaptive RR & GA optimized)
bimodal systems at various SNR conditions. Similarly
Fig. 3 compares the unimodal and bimodal system’s
recognition performance. In Table 2, “Clean” means
the recorded speech samples without any additional
white Gaussian noise. From the results (Table 2), the
following observations were made,

1. The acoustic-only recognition shows nearly 77%
for the recorded speech but, as the speech contains
more artificially added white Gaussian noise, its
performance is degraded sharply; the recognition
is even less than 2% at −5 dB SNR conditions.
Since the maximum recognition accuracy for the
recorded speech is 77%, it shows that the recorded
speech itself is highly noisy.

2. The average recognition accuracy for visual-only
system is 62.57%, which appears constant regard-
less of acoustic noise conditions.

3. The baseline reliability ratio-based and N best
recognition hypotheses reliability ratio-based bi-
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Figure 3 Performance of the existing unimodal and bimodal
systems and the proposed AV-GA adaptive-RR and AV-GA
adaptive RR & GA optimized bimodal systems in recognition
accuracy (%).
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Table 2 AVSR performance in recognition accuracy (%) by the audio-only, visual-only, unimodal systems and AV baseline-RR, AV
N-best RR, and the proposed [1] & [2] bimodal systems.

SNR Audio Visual AV baseline-RR AV N-best RR AV-GA AV-GA
only (%) only (%) (%) (%) adaptive-RR adaptive RR &

(%) GA optimized (%)
Clean 77.05 62.57 85.24 86.38 88.47 89.52
20 dB 67.71 62.57 78.76 80.57 83.43 84.67
10 dB 33.05 62.57 56.67 63.43 66.28 74.95
5 dB 07.14 62.57 30.28 60.38 65.52 69.05
0 dB 04.87 62.57 26.19 42.76 59.86 66.19
−5 dB 01.81 62.57 21.52 27.52 47.14 65.52

Average(%)
(−5 dB ∼ Clean) 31.87 62.57 49.77 60.17 68.45 74.98
(−5 dB ∼ 10 dB) 11.62 62.57 33.66 48.52 59.70 68.93

modal systems show performance improvement
only under Clean and 20 dB SNR conditions over
the acoustic-only and visual-only systems but, un-
der the remaining SNR conditions (i.e., −5 dB ∼
10 dB) their performances are inferior to that of
visual-only system i.e. they show attenuating fusion
at these SNR conditions.

4. The proposed [1] GA adaptive reliability ratio-
based system improves the recognition accuracy
over baseline reliability ratio and N best recogni-
tion hypotheses reliability ratio-based systems un-
der most of the SNR conditions.

5. The proposed [2] GA adaptive reliability ratio
and optimized bimodal system further improves
the recognition accuracy and shows performance
improvement as compared to all other systems at
all SNR conditions. Especially, the performance
improvement is larger when the SNR is small
i.e. −5 dB ∼ 10 dB. This demonstrates that the
noise-robustness of recognition is achieved by the
proposed [2] system for the recorded noisy audio-
visual speech recognition task.

6 Discussion and Conclusion

In this paper, influence of the reliability measure on
integration weight estimation is demonstrated via 70
commonly used mobile functions isolated words audio-
visual speech database of three speakers. The proposed
systems use an audio-visual speech data base devel-
oped by us, which extracts visual features from the
side-face mouth region images rather than frontal face
images. Generally, the dynamic visual speech features
are obtained by derivative of static features [14], but
in this work the dynamic features are obtained via

MHI approach and concatenated with static features
to represent the visual speech. For evaluating the pro-
posed systems, the recognition accuracy is compared
with other two related methods namely reliability ratio
based method and N-best recognition hypothesis relia-
bility ratio based method. The results in Table 2 clearly
show overall performance improvement by the pro-
posed systems over the existing unimodal and bimodal
systems in a noisy side face audio-visual speech data-
base. Especially at low SNRs, all the reported methods
show very poor recognition accuracy. But the proposed
methods solve this issue and improve the recognition
accuracy considerably.

In the proposed works, the fusion happens at the
end of each utterance based on a single reliability
measure for the whole utterance. This will not be able
to effectively account for time-varying noise conditions
where the reliability will also vary during the duration
of the utterance. This problem can be solved to a
certain extent, when we measure the reliability of both
acoustic and visual signal in a frame-by-frame basis and
fuse the decision to find the correct utterance. If we
do so, the complexity of the algorithms become very
high even for the isolated word recognition task. This
is one of the drawbacks of the proposed algorithms,
in view of handling time-varying noises in the acoustic
signal. Also, the amount of training data used to model
the HMMs are low, hence we obtained very poor
recognition accuracy at low SNRs. In future, we will
record more samples from other speakers and model
the HMMs in more reliable form to obtain reasonable
accuracy at low SNRs.

The proposed works consider effect of noise only
in audio signal. Since we recorded the video signal so
close to the speaker’s mouth region the possibility of
video distortion is less. This assumption may not be
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correct always. So, in future we will include the effect of
noise in the recorded video signal and also apply these
proposed algorithms to see their performance.

And more over, the proposed algorithms in their
current form are suitable for isolated word recognition
because, we can easily calculate the combined like-
lihood based on a single reliability measure. But, if
we extend these algorithms to the continuous speech
recognition task it become very challenging because we
have to unmanageably consider many possible word or
phoneme sequence hypotheses to calculate the com-
bined likelihood. With these considerations, further
investigations on applying the proposed algorithms to
complex tasks such as continuous speech recognition
are in progress.

References

1. Iwano, K., Yoshinaga, T., Tamura, S., & Furui, S. (2007).
Audio-visual speech recognition using lip information ex-
tracted from side-face images. EURASIP Journal on Audio,
Speech, and Music Processing, 2007, 64 506+.

2. Lee, J. S., & Park, C. H. (2008). Adaptive decision fu-
sion for audio-visual speech recognition. In F. Mihelic &
J. Zibert (Eds.), Speech recognition, technologies and appli-
cations (pp. 550). Vienna, Austria.

3. Lee, J. S., & Park, C. H. (2008). Robust audio-visual speech
recognition based on late integration. IEEE Transaction on
Multimedia, 10, 767–779.

4. Meyer, G. F., Mulligan, J. B., & Wuerger, S. M. (2004). Con-
tinuous audiovisual digit recognition using N-best decision
fusion. Information Fusion, 5, 91–101.

5. Rogozan, A., & Deléglise, P. (1998). Adaptive fusion of
acoustic and visual sources for automatic speech recognition.
Speech Communication, 26, 149–161.

6. Potamianos, G., Neti, C., Gravier, G., Garg, A., & Senior,
A. W. (2003). Recent advances in the automatic recognition
of audio-visual speech. In Proceddings of IEEE (Vol. 91,
no. 9).

7. Dupont, S., & Luettin, J. (2000). Audio-visual speech model-
ing for continuous speech recognition. IEEE Transactions on
Multimedia, 2, 141–151.

8. Seymour, R., Stewart, D., & Ming, J. (2007). Audio-visual
integration for robust speech recognition using maximum
weighted stream posteriors. In Proc. of INTERSPEECH
(pp. 654–657).

9. Chibelushi, C. C., Deravi, F., & Mason, J. S. D. (2002). A
review of speech based bimodal recognition. IEEE Transac-
tions on Multimedia, 4, 23–37.

10. Rajavel, R., & Sathidevi, P. S. (2009). Static and dynamic
features for improved HMM based visual speech recognition.
In Proc. of 1st international conference on intelligent human
computer interaction (pp. 184–194). Allahabad, India.

11. Yau, W. C., Kumar, W. C., & Arjunan, S. P. (2006). Voice-
less speech recognition using dynamic visual speech features.
In Proc. of HCSNet workshop on the use of vision in HCI.
Canberra, Australia.

12. Yau, W. C., Kumar, D. K., & Weghorn, H. (2007). Vi-
sual speech recognition using motion features and Hidden

Markov models. In M. Kampel & Hanbury, A. (Eds.), LNCS
(pp. 832–839). Heidelberg: Springer.

13. Potamianos, G., Neti, C., Luettin, J., & Matthews, I. (2004).
Audio-visual automatic speech recognition: An overview. In
G. Baily, E. Vatikiotis-Bateson, & P. Perrier (Eds.), Issues in
visual and audio-visual speech processing. MIT Press.

14. Seymour, R., Stewart, D., & Ming, J. (2008). Comparison of
image transform-based features for visual speech recognition
in clean and corrupted videos. EURASIP Journal on Image
and Video Processing, 2008. doi:10.1155/2008/810362.

15. Rabiner, L., & Juang, B. H. (1993). Fundamentals of speech
recognition. Englewood Cliffs: Prentice Hall.

16. Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algo-
rithm. Hoboken, NJ: Wiley.

17. Chen, T. (2001). Audiovisual speech processing. Lip reading
and lip synchronization. IEEE Signal Processing Magazine,
18, 9–21.

18. Petajan, E. D. (1984). Automatic lipreading to enhance
speech recognition. In Proc. global telecommunications conf.
(265–272). Atlanta.

19. Wang, X., Hao, Y., Fu, D., & Yuan, C. (2008). Audio-visual
automatic speech recognition for connected digits. In 2nd
international symposium on intelligent information technology
application (pp. 328–332). China.

20. Arnold, P., & Hill, F. (2001). Bisensory augmentation: A
speechreading advantage when speech is clearly audible and
intact. British Journal of Psychology, 92, 339–355.

21. Summerfield, A. Q. (1987). Some preliminaries to a com-
prehensive account of audio-visual speech perception. In
B. Dodd & R. Campbell (Eds.), Hearing by eye: The
psychology of lip-reading (pp. 3–51). London: Lawrence
Erlbarum.

22. Benoit, C., Mohamadi, T., & Kandel, S. D. (1994).
Effects of phonetic context on audio-visual intelligibility of
French. Journal of Speech and Hearing Research, 37, 1195–
1203.

23. Neti, C., Potamianos, G., Luettin, J., Matthews, I., Glotin,
H., Vergyri, D., et al. (2000). Audio visual speech recogni-
tion, final workshop 2000 report, CLSP. The Johns Hopkins
University, Baltimore.

24. Teissier, P., Robert-Ribes, J., & Schwartz, J. L. (1999).
Comparing models for audiovisual fusion in a noisy-vowel
recognition task. IEEE Transactions on Speech and Audio
Processing, 7, 629–642.

25. Chibelushi, C. C., Deravi, F., & Mason, J. S. D. (2002). A
review of speech-based bimodal recognition. IEEE Transac-
tions on Multimedia, 4(1), 23–37.

26. Silsbee, P. L. (1994). Sensory integration in audiovisual auto-
matic speech recognition. In 28th annual asilomar conference
on signals, systems, and computers (Vol. 1, pp. 561–565).

27. Potamianos, G., Neti, C., Huang, J., Connell, J. H., Chu, S.,
Libal, V., et al. (2004). Towards practical development of
audio-visual speech recognition. In IEEE international conf.
on acoustic, speech, and signal processing, (pp. iii777–780).
Canada.

28. Foo, S. W., & Dong, L. (2002). Recognition of visual speech
elements using Hidden Markov models. In Y. C. Chen, L. W.
Chang, & C.T. Hsu (Eds.), Advances in multimedia infor-
mation processing-PCM02, LNCS2532 (pp. 607–614). Berlin
Heidelberg: Springer-Verlag.

29. Verma, A., Faruquie, T., Neti, C., & Basu, S. (1999). Late
integration in audiovisual continuous speech recognition. In
Proc. workshop on automatic speech recognition and under-
standing (pp. 71–74). Keystone.

30. Tamura, S., Iwano, K., & Furui, S. (2005). A stream-weight
optimization method for multi-stream HMMs based on like-

http://dx.doi.org/10.1155/2008/810362


J Sign Process Syst (2012) 68:83–93 93

lihood value normalization. In Proc. of ICASSP (Vol. 1,
pp. 469–472). Philadelphia.

31. Adjoudani, A., & Benoit, C. (1996). On the integration of
auditory and visual parameters in an HMM-based ASR.
In D. G. Stork & M. E. Hennecke (Eds.), Speechreading by
humans and machines: Models, systems, and speech recog-
nition, technologies and applications (pp. 461–472). Berlin,
Germany: Springer.

32. Lewis, T. W., & Powers, D. M. W. (2004). Sensor fu-
sion weighting measures in audio-visual speech recognition.
In Proceedings of 27th conf. Australasian computer science
(pp. 305–314). Dunedin, New Zealand.

R. Rajavel obtained his Bachelor’s Degree in Electronics and
Communication Engineering from the University of Madras in
1999. He received the Master of Engineering Degree in Instru-
mentation and Process Control Engineering from the Annamalai
University in 2002. His general research interests include signal
processing, speech recognition and medical image processing.

He was a research scholar in National Institute of Technology
Calicut, India from June 2006 to April 2010. Currently, he is
on the research staff of Network Systems and Technologies, at
Technopark, Trivandrum, India.

P. S. Sathidevi is currently serving as Professor in the Depart-
ment of Electronics and Communication Engineering at National
Institute of Technology Calicut, India. She received B.Tech.
Degree in Electronics Engineering from Regional Engineering
College, Calicut, India in 1985, M.Tech. in Electronics from
Cochin University of Science and Technology, Cochin, India
in 1987 and Ph.D from Regional Engineering College, Calicut,
India in 2003, in the field of Speech and Audio Processing. Her
current research interests include speech processing, perceptual
audio coding, image processing, Computational Auditory Scene
Analysis (CASA) and cryptography. She has over 50 publications
to her credit in various international journals and conferences.


	Adaptive Reliability Measure and Optimum Integration Weight for Decision Fusion Audio-visual Speech Recognition
	Abstract
	Introduction
	Review of Existing Integration Weight Estimation Schemes
	Audio-Visual Decision Fusion Based on Baseline Reliability Ratio Method
	Audio-visual Decision Fusion Based on N-best Recognition Hypotheses Reliability Ratio Method

	Audio-Visual Decision Fusion Based on Proposed Integration Weight Estimation Schemes
	Audio-visual Decision Fusion Based on GA Adaptive Reliability Measure Method (Proposal 1)
	Audio-visual Decision Fusion Based on GA Adaptive Reliability Measure and Optimum Integration Weight Method (Proposal 2)

	Experimental Database, Audio, and Visual Speech Features
	Acoustic Feature Extraction
	Visual Feature Extraction
	DCT Based Static Feature Extraction
	Motion Segmentation Based Dynamic Feature Extraction


	HMM Training and Recognition Results
	Recognition Results

	Discussion and Conclusion
	References



