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Abstract With the large variations in appearance for
different kinds of defects in Printed Circuit Boards (PCBs),
conventional rule-based inspection algorithms become
insufficient for detecting and classifying defects. In this
study, an automated PCB inspection system based on
statistical learning strategies is developed. First, the partial
Hausdorff distance is used to ascertain the positions of
defects. Next, the defect patterns are categorized using the
Support Vector Machine (SVM) classifier. Defects without
regularities in appearance, which cannot be categorized, are
identified through the regional defectiveness by comparing
the block-wise probability distributions. Experimental
results on a real visual inspection platform show that the
proposed system is very effective for inspecting a variety of
PCB defects.
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1 Introduction

With the increasing demand for flawless quality in the PCB
assembly process, electronics manufacturers constantly
request higher levels of precision in PCB inspection. In
general, a good PCB inspection system has to satisfy the
requirements of high inspection speed, high detection
accuracy, and low false-alarm rate. Commonly used PCB
defect detection procedures can be divided into two

categories: (a) electrical/contact methods and (b) non-
electrical/non-contact methods. The electrical methods can
detect some defects, but the inspection capabilities are limited.
In addition, electrical methods may cause mechanical dam-
ages during the probe contact. For the non-electrical/non-
contact PCB inspection methods, numerous techniques have
been proposed for Automated Optical Inspection (AOI). They
can be categorized into three main approaches: reference
comparison, non-reference verification, and hybrid approach
[1]. The referential approach compares the tested PCB image
with a reference PCB image. The main limitations of this
approach are the need for very precise alignment and the
vulnerability to differences in illumination. The second type
of approach (non-reference verification) tests the design rules
of the PCB features to determine whether each feature falls
within the required range. However, it is not easy for users to
design the rules as constraints on image features in the rule-
based verification, and it lacks flexibility to distorted
features. The hybrid approach concurrently combines the
advantages of the aforementioned approaches. As hardware
gets cheaper and faster, it is becoming more popular to use
hybrid methods that benefit from both approaches.

Numerous PCB inspection algorithms have been pro-
posed and can be found in the literature [2–4]. The earliest
developed PCB inspection algorithm is known as template-
matching technique as proposed by Akiyarnai et al. [5]. In
the following decade, various PCB inspection methods
were developed. For example, Tominaga [6] used a
dichromatic reflection model to describe object surfaces
followed by a hyper-sphere method for defective object
identification. Spence [7] converted the currents moving
between the devices on PCBs to a magnetic field image for
locating the possible faults, and interpreted the magnetic
field patterns with artificial neural networks for fault
identification. Later, Hodges et al. [8] diagnosed solder
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pad arrays on PCBs based on template matching, where
histogram features were used. In [9], Scaman et al. utilized
wide-angled blue lights to differentiate the metal patterns
from polyimide background for PCB inspection. Wu et al.
[10] proposed the use of an elimination–subtraction
procedure to locate and analyze PCB defects by subtracting
the template image from inspection image. Loh et al. [11]
inspected the surface mount technology (SMT) components
on PCBs by using structured-lighting. There, a slant map
was extracted as the shape information of the solder joint
surface, followed by a rule-based defect classification
procedure. In addition, Kim et al. [12] built a PCB
inspection system based on a technique that matches blocks
between reference and inspected images. Tominaga et al.
[13] also proposed a PCB inspection system that first
sampled the surface reflectance with a liquid-crystal tunable
filter imaging system, and a pixel-wise classification was
next performed using k-means algorithm. In the system
developed by Ibrahim et al. [14], the image difference
operation was applied in the HAAR-wavelet domain. An
XOR logic operation was next performed to generate the
final result for inspection. Garcia et al. [15] explored the
multivariate stepwise discriminant methods (MSDM) to
select the best features and applied rules for inspection.
Acciani et al. [16] exploited neural-networks for diagnosing
the solder joint defects on PCBs. Chang et al. [17] adopted
the hybrid approach to construct a two-phase PCB
inspection system. In the first phase, a set of defect images
of several existing basic patterns were stored to form a
concept space, where several empirical rules were used for
defect classification. In the second phase, a new pattern was
evolutionally grabbed by calculating the relative position of
several similar cases in the concept space.

Although inspecting bare PCBs is already a successful
industrial application, its full potential has not yet been
exploited. One reason for the absence of AOI systems with
continuous improvements is the lack of flexibility to adapt
its algorithms for inspecting new defects. The problem of
reconfiguration and reprogramming, combined with the
rapid introduction and retirement of electronic products, has
deterred equipment manufacturers from investing in the
development of AOI systems. Besides, as can be seen, most
existing inspection systems are rule-based and designed
from human observations. From a statistical point of view,
they are not robust enough and unable to generalize well for
the unseen defects. Another problem is the requirement to
identify both functional and cosmetic defects from their
visual appearance [1]. Therefore, for PCB inspection, it is
essential to develop methodologies that allow rapid
adaptation and generalize well for different variations of
defects like human beings do. This research introduces the
development of a novel AOI system for PCBs, which has
several advantages and contributions. First, instead of using

the rules to classify the detected defects heuristically, a
learning-based solution is developed through solving an
optimization problem where the generalization ability is
theoretically maximized. Second, the proposed system is
flexible, allowing for potential function extension. By
adding defective samples into the database, the inspection
system has the capability to classify new defects. It
significantly cuts down cost for the eventual upgrading of
the inspection system. Third, for cosmetic defects with
irregular appearance, such as weave exposure, blowhole,
scratches, solder on trace, and problems from solder mask,
such as air inclusion, a probabilistic solution is developed
to identify the defective regions and measure the defective-
ness quantitatively. The key requirements of the reliability
and flexibility are therefore achieved.

This paper is organized as follows: In Section 2, some
theories related to this research are briefly reviewed.
Section 3 describes the components of the proposed
inspection system with application to PCBs. Section 4
presents some experimental settings and results. Finally,
Section 5 concludes this paper.

2 Related Theories

2.1 Hausdorff Distance

Hausdorff distance [18] is useful in determining the degree
of similarity between the edge maps of two templates. It
provides a means of computing the distance between two
point sets. Let A and B be two compact subsets of points in
a metric space M, the definition of Hausdorff distance
between A and B is given by

dH ðA;BÞ :¼ max h A;Bð Þ; h B;Að Þf g; ð1Þ

h A;Bð Þ :¼ max
a2A

min
b2B

d a; bð Þ ð2Þ

where d(a,b) denotes the distance between two points a and
b in M, usually the Euclidean distance. In practice, to match
a template image and a target image, it is necessary to first
apply an edge detector to derive the corresponding point
sets of the images. In Section 3.1, Hausdorff distance
computation is exploited as the technique to align an
inspection image I with a reference image R by finding the
minimal distance value with respect to different geometric
transformations.

2.2 Support Vector Machine

Support Vector Machine (SVM) [19] is a learning system
for efficiently training linear learning machines from
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optimization theory, while the formulation leads to better
generalization with the maximum margin criterion [20]. Let
S ¼ xl; ylf gml¼1 be a set of training examples, where xl 2 R

n

is the lth example associated with the class label
yl 2 f1;�1g. The aim is to define a separating hyperplane
for which the margin between the positive and negative
examples is maximized. This amounts to finding the normal
w and the bias b so the distance between the closest points to
the hyperplane, i.e. 1/||w||, is maximized:

min
w;x

1
2 wk k2 þ C

Pm
l¼1 xl

s:t: yl wTxl þ bð Þ � 1� xl
xl � 0; l ¼ 1; 2; :::;m

: ð3Þ

Here, xl is the positive slack variable introduced to handle
the non-separable cases [19], and C is chosen to control the
tradeoff between errors and functional complexity. Since
||w||2 is convex, minimization can be achieved by differen-
tiating the Lagrangian of (3), and it leads to an equivalent
quadratic programming (QP) problem:

min
a

aTQa � eTa

s:t: 0 � al � C; l ¼ 1; 2; :::;m
ð4Þ

where Qi,j = yiyjK(xi,xj) is an m x m matrix, and K is a sym-
metric kernel function [19, 21]. Some frequently used kernels
include polynomial kernelK(xi,xj):=(xi

Txj+1)
d and RBF kernel

K(xi,xj):=exp(-||xi,xj||
2/2σ2). Assume the optimal solution

α*=(α1,α2,…, αm) is found by solving Eq. 4 with a stan-
dard QP solver [22]. For a new test sample xtest, it is classi-
fied by f ðxtest;a»

; b
»Þ ¼ sgn

Pm
l¼1 alylKðxl; xtestÞ þ b

»� �
. In

Section 3.2, the located PCB defects are expressed by the
extracted features and fed into the SVM learning system for
training and testing procedures.

2.3 Multi-Class SVM Classification and Probability
Estimates

Since SVM is designed as a binary classifier, different
approaches have been proposed to use the two-class decisions
for multi-class classification [23, 24]. In many situations,
however, probability estimates are desired to quantify the
results rather than only predicting the class labels. The
scenario of SVM multi-class probability estimation can be
summarized as follows: Let S ¼ xl; ylf gml¼1be the set of
training examples and yl 2 1; 2; :::; kf g be the class label
associated to xl. One first needs to construct k(k-1)/2 pair-
wised SVM classifiers where each one is trained on data
from two classes, say, the ith and jth classes. For any new test
sample xtest, the pair-wise probabilistic outputs are computed
from the SVM for the ith and jth classes, called the pair-
wise class probabilities rij ¼ Pðytest ¼ ijxtest; ytest 2 fi; jgÞ,
and rji=1-rij. Next, the multi-class probability distribution

p=(p1,…,pk)
T is computed from all pair-wise probabilities

rij’s. In this research, Platt’s method [23] is adopted to
calculate rij between all class-pairs for xtest. As a result,
xtest’s multi-class probability distribution p is estimated by
solving the following optimization problem [25]:

min
p

Pk
i¼1

P
j:j6¼i rjipi � rijpj

� �2

s:t:
Pk

i¼1 pi ¼ 1; pi � 0; 8i
: ð5Þ

where pi:=P(ytest=i|xtest), i=1,...,k is the posterior class
probability. Equation 5 can be rewritten as:

min
p

2pTQ0p

s:t: p1 þ p2 þ :::pk ¼ 1 ;
ð6Þ

where Q0
ij ¼

P
s:s6¼i rsi

2 if i=j, and Q0
ij ¼ �rjirij otherwise.

Since Q’ is a positive semi-definite matrix, p is the global
optimum if it satisfies the first order necessary optimality
condition:

Q0 e
eT 0

� �
p
l

� �
¼ 0

1

� �
; ð7Þ

where 1 is the Lagrangian multiplier, e and 0 are k by 1
vectors for all ones and all zeros respectively. In Section 3.3,
the cosmetic defectiveness is evaluated through block-wise
comparing the multi-class probability distributions of image
blocks in the inspection-reference image pairs.

3 The Learning-Based Inspection System

As the flow diagram in Fig. 1 shows, the PCB inspection
system consists of an image acquisition system, and a
processing system to perform the inspection on the acquired
image. The image acquisition system has a mechanical
positioning tool to scan and acquire the PCB image. The
inspection process itself has two steps: image alignment
and image diagnosis. First, the image acquired by the
camera is aligned to the stored reference image as described
in Section 3.1. Next, the PCB diagnosis is performed by
detecting two kinds of defects in two different ways,
namely: 1) the defects that appear as “patterns,” and 2)
the cosmetic defects without regular appearance, which are
usually caused by a failed electroplating process or a failed
rising procedure between fabrication stages. The diagnosis
processes of feature extraction and defect identification are
respectively described in Section 3.2 and Section 3.3 for
two kinds of defects. The diagnosis results of these two
sequences provide the defect inspection of the PCBs. Each
component of these steps is detailed in the following
subsections.
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3.1 Image Alignment

The inspection process starts with the Hausdorff-distance based
image alignment procedure that aligns the inspection image I to
the reference image R. The notation R stands for an idealized
image on which the alignment and the subsequent inspection
procedures rely, and it can be obtained by a compilation or a
rolling average of several defect-free boards in practice. In the
experiments, R is constructed from the compilation of several
good PCBs. The image alignment procedure is as follows:
First, a Sobel edge detector is applied to I and R to extract the
corresponding point sets Iedge and Redge respectively. Next, by
finding the minimal Hausdorff-distance value between Iedge
and Redge with respect to different geometric transformations,
i.e. argminqdH ðIedge; aqðRedgeÞÞ, where aθ(•) is the rigid
transformation with parameter θ, the image alignment process
is accomplished.

To enhance the robustness of alignment, the one-way
Hausdorff distance from Redge to Iedge was actually used for
reducing the influence of outlier points in Iedge. In addition,
the original max–min function in Eq. 2 was modified from
calculating the maximum of minima to the mean of minima
in the implementation because the result of applying the
max function is sensitive to a few points located in the
previously identified problem areas. The modified h func-
tion is defined as:

hmeanðA;BÞ :¼
P
a2A

min
b2B

jja� bjj
Aj j ; ð8Þ

where |A| denotes the cardinality of point set A. Further-
more, the techniques of image pyramid and distance map
images were used to speedup the alignment process. On the
former technique, by constructing a layered image pyramid,

Inspection Output 

Defect Detection and Classification  
1. Detection 

2. Categorization  

Partial Hausdorff Distance Computation 

Cosmetic Defect Detection  
1. Image Block Feature Extraction 

   2. Defect Region Determination 

 Block Defectiveness Estimation 

Rdefect
   Defective Blocks Grouping 

PCB material blocks 

SVM  

SVM  

Defective patterns 

 Image Alignment 

Edge Detection 
Image Pyramids Construction 
Hausdorff Distance Computation 

Image Acquisition 

Feature Extraction 

  

  

  

Figure 1 Flowchart of the pro-
posed PCB inspection system.

(a) (b) (c) (d)

ε

εq 

 q 

Figure 2 Speeding up of alignment process using an image pyramid.
a An example of three-layer pyramid for image alignment, b the local
search area for refinement in the next layer, c an example of three-

layer edge map pyramid computed from an inspection image I, and d
the three-layer pyramid of distance map Rdist constructed from the
corresponding reference image R.
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full-search is applied only at the coarsest layer, and image
alignment is successively refined through local searches on
the candidates from the coarser layer. The searching
procedure is stopped at θ* of the lowest value in the finest
layer. And on the latter technique, a distance map Rdist is
used. The numerator of Eq. 8 can be rapidly retrieved in the
execution stage by accessing Rdist from storage. Figure 2
illustrates the use of the coarse-to-fine approach and the
distance map for speeding up the image alignment process.

3.2 Defect Detection and Classification

Given a well-aligned image pair of inspection and reference
images, the following step is to handle defective patterns
with regular appearance. The defects are first located using
the partial Hausdorff distance based strategy, and subse-
quently categorized by SVM learning approach.

3.2.1 Defect Detection via Partial Hausdorff Distance

Suppose ep 2 Iedge is an edge point at position p on the
inspection image I. It is easy to see, when referring ep to
Rdist at position p, a large value will be derived if the
reference image does not contain such an edge point at p.
This observation points at the possibility of locating defects

by accessing the stored Hausdorff-distance map Rdist.
However, if outliers exist in the compared objects, the
mismatch will become too large. For this reason, use of the
partial Hausdorff distance is more reasonable than the original
Hausdorff distance computation. The partial Hausdorff
distance takes the Kth ranked highest value instead of the
overall maximum:

dpH A;Bð Þ ¼ min hp A;Bð Þ; hp B;Að Þ� �
;

where hpðA;BÞ :¼ Kth
a2Aminb2B a� bk k ¼ Kth

a2AdBðaÞ:
Here Kth

a2A denotes the Kth ranked value in the set of
dB(a) distances, which are the minimum distance values
from each location a to the point set B. It is empirically set
as the third quartile in the experiments.

In summary, given an inspected image I, the defect
location procedure is as follows: Initially, by referring every
edge point ep to Rdist at position p, the distance map Idist is
generated. Next, the edge pixels are marked as defective if
the associated partial Hausdorff distance values on Idist are
larger than a threshold. Finally, any defective pixels within
a certain distance are labeled as one defect. Figure 3
demonstrates some example images for illustration. In the
next section, the image patches of defects are fed into SVM
for further evaluation.

(a)         (b)          (c)        (d)         (e)         (f) 

Figure 3 Two examples of defect detection: a an example of open defect, b edge points are marked as defective, c the image patch of defect is
cropped for the use of subsequent classification, d–f another example of short defect.

(d)(a)

0.93 

(e)(b) 

 (c) 
Comparing block 

probability distributions  

 ( )),( ji
Ip b  

Figure 4 The process of defect detection and defectiveness compu-
tation. a The inspected image. b The normal reference image. c The
block defect probability displayed by intensity. d The defect region

after applying closing operator. e The labeled defect region with
defectiveness Rdefect.
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3.2.2 Defect Classification via Support Vector Machine

For an inspection system, the ability to analyze the statistics
of defects in order to reduce the defective rate during
manufacturing is extremely important. However, one of the
most crucial factors for the performance of an inspection
system is the quality of the inspection features. Here, two
kinds of descriptors are designed to extract the discriminant
features to better characterize the defective patterns for
classification. They are:

a. Horizontal / Vertical cross-count: The cross-counts with
16 equally-spaced scan-lines in horizontal and vertical
directions are measured.

b. Projection variations: The variation in projection with
respect to 16 equally-spaced scan-lines is measured for
both horizontal and vertical directions.

Having a set of collected samples of defective image
patches, the descriptors were applied to convert image patches
from pixels into the feature vectors for inspection. Specifical-
ly, let S ¼ xl; ylf gml¼1 be the set of collected defective
patterns, where xl is the feature vector converted from the
lth defective pattern, and yl 2 1; 2; :::; kf g is the defect type
associated with xl. An SVM optimization problem is then
formulated as introduced in Section 2.2 in order to train the
classifier for the types of defective regions. In the testing
phase, the types of defective regions are recognized using the
trained SVM classifier for categorization.

3.3 Cosmetic Defect Detection

On the one hand, it is viable to identify some defects
because of the regular patterns in defect appearance. On the
other hand, because of the diverse appearance and the
difficulty to characterize them, identifying cosmetic defects,
which are caused by failures in the electroplating or rising
processes between fabrication stages, is not easy. In the
following section, through block-wise comparison of the
multi-class probability distributions of image blocks, such
non-regular defects are thus identified. Furthermore, a
quantitative measure for the regional defectiveness is
provided for the defective regions. The procedure for
detecting the cosmetic defects consists of: 1) block feature
extraction, and 2) block-wise and regional defect probabil-
ity computation; which are elaborated below.

3.3.1 Block Feature Extraction

Identification of cosmetic defects is performed by block-
wise comparing the SVM multi-class probability of PCB
material blocks between the inspection and reference
images. Suppose a set of image blocks of various PCB
materials is collected in advance. To train the SVMmodel for
estimating the multi-class probability for every image block,
an effective feature extraction procedure is required. To
better discriminate color textures, for each image block the
feature is extracted by: First, the mean values with respect to

(b) 

(a) (c) 

light 
source 

circuit board 

imaging 
system 

Figure 5 Image acquisition
components and the examples
for SVM training and testing. a
Image acquisition set-up for
PCB defect inspection, b a
snapshot of image acquisition
system output, and c examples
of the observed metal and sub-
strate images.

(d) short (b) open (e) pinhole (c) mousebite (a) under-etch  

Figure 6 Inspection results with different defects marked on PCBs.
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each color channel mR;mG;mBð Þ and the color of the central
pixel cR; cG; cBð Þ are calculated and stored. Second, the
variance to each color channel (i.e. vR; vG; vB), is considered
as well, to keep the block’s color variation information:

vcolor ¼
Xh

i¼1

Xw

j¼1
Pcolor
ij � mcolor

���
���; ð9Þ

where Pcolor
ij denotes the intensity with respect to each color

channel of {R,G,B}, and (i, j) stands for the pixel position
in the h x w block. Third, three rotationally-invariant
features (lR,lG,lB) are computed by applying the LoG
(Laplacian of Gaussian) filter to the image block. In
summary, for each image block of PCB material, a 12-
dimentional feature vector (μR, μG, μB, cR, cG, cB, vR, vG,
vB, lR, lG, lB) is extracted. Let S ¼ xl; ylf gml¼1 be the set of
examples, where xl 2 R

12 is the corresponding feature
vector associated with yl 2 1; 2; :::; kf g, the type of PCB
material. As introduced in Section 2.3, the SVM model
θSVM for multi-class probability estimation is trained with S,
and it will be used to assign the probability of the material
type to image blocks in the next section.

3.3.2 Defect Region Determination

Let bði; jÞI be the (i, j)th image block of the inspection image
I. After learning from S, the SVM model θSVM is

able to associate bði; jÞI with a probabilityPðbði; jÞI jqSVM Þ ¼
ðpði; jÞ1 ; pði; jÞ2 ; :::; pði; jÞk ÞT , which represents the probability of

the material type for bði; jÞI . The defectiveness of bði; jÞI is next
measured by computing the distance between Pðbði; jÞI Þ
and Pðbði; jÞR Þ, where Pðbði; jÞR Þ denotes the probability

distribution computed from the corresponding block bði; jÞR

in the reference image. Clearly, the farther the distribu-
tions Pðbði; jÞI Þ and Pðbði; jÞR Þ are, the more likely that block
bði; jÞI is defective. The relative entropy [26], also known as
Kullback-Leibler (KL) distance, is used here to measure
the distance between the two probability distributions
Pðbði; jÞI Þ andPðbði; jÞR Þ:

KL P b i;jð Þ
I

� �
;P b i;jð Þ

R

� �� �
¼

Xk

l¼1
P b i;jð Þ

I

� �
l
log

P b i;jð Þ
I

� �
l

P b i;jð Þ
R

� �
l

0
B@

1
CA;

ð10Þ
where P bði; jÞI

� �
l
and P bði; jÞR

� �
l
denote the lth entry of the

corresponding probability distributions. Finally, a logistic

sigmoid function is fit to transform KLðPðbði; jÞI Þ;Pðbði; jÞR ÞÞ
to the probability of the block defectiveness:

pðbði;jÞI Þ ¼ 1� expð�b � KLðPðbði;jÞI Þ;Pðbði;jÞR ÞÞÞ; ð11Þ
where β is an empirically-chosen parameter. For better
representation, the neighbouring defective blocks are
grouped as a single defective region using the standard
morphological operators and the connected component
approach [27]. The regional defectiveness of this cosmetic
defect is defined as:

RdefectðDÞ :¼ exp
1

Dj j
X

bði;jÞI 2D
ln p bði;jÞI

� �
0
B@

1
CA; ð12Þ

where |D| denotes the total number of the defective blocks
inside D. To recap, as explained above, through block-
wise comparing the SVM multi-class distributions be-
tween the inspection and reference image blocks, the
defective blocks are identified. These defective blocks are
then grouped into a defective region with the defectiveness
Rdefect(D). For better illustration, the intermediate results
of each stage are visualized in Fig. 4. The performance of
the proposed inspection system is evaluated in the next
section.

4 Experimental Results

4.1 Imaging System

The image acquisition unit of the inspection system was
composed of a monochrome area CCD, lens, and a 3-color
LED light source. The lighting mode was switched rapidly
among R, G, B by the LED light source, and inspection
images of the corresponding color channels were obtained
by the simultaneously triggered CCD. Before taking the

linear poly., d=2 poly., d=3 poly., d=4 poly., d=5 RBF, σ2=500 SLP

ave. accuracy 91.5% 87% 89% 80% 86.3% 93.5% 85%

ave. # of SVs 100.6 159.2 100.6 149 94 234.2 –

Table 1 Comparison of SLP
and SVMs with different ker-
nels by 5-fold cross validation.

Table 2 The confusion matrix of the defect classification results.

Under-etch Mousebite Short Open Pinhole

Underetch 72 1 7 0 0

Mousebite 0 72 0 8 0

Short 6 0 74 0 0

Open 0 10 0 69 1
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PCB images, the CCD was calibrated with the flat field
correction technique to ensure the uniformity of the
obtained images. The imaging acquisition component is
shown in Fig. 5a, together with a snapshot of the system
output in Fig. 5b. Some examples of the observed metal as
well as the substrate are shown in Fig. 5c. The images
acquired from this imaging system were subsequently
processed by the proposed inspection algorithms to test
their performance.

4.2 Pattern Defects

As previously reported in the literature, most common
defects on PCBs are caused by errors of thermal expansion
of the artwork during printing, dirt on board, air bubbles
from electrolysis, incorrect electrolysis timing, or mechan-
ical mis-registrations, which appear on the finished PCB
products and cause defects as: open, short, pinhole, under-
etch, or mousebite [1, 28]. The experiments of this work
focused on these five common defects. In the experiments,
the defective examples in the database were from the failed
PCBs during the manufacturing process and acquired by
the imaging platform. Eighty images for each error type
were obtained from real defect images or by simulating
defect images from non-defective images, thus yielding a
total of four hundred PCB images in the database. Some
examples of defect detection results are given in Fig. 6,
where the detected defects are marked by rectangles. In the
experiments, 100% detection rate was achieved using the
proposed partial Hausdorff-distance based method. The
detected patches were subsequently fed into SVM to further
classify their defect types.

The system performance for defect classification was
evaluated using five-fold cross validation. That is, the
detected image patches were randomly divided into five
portions. Each portion was then applied once for assessing
the performance of the classifier by using the rest four
portions as the training data. In Table 1, the average

classification accuracy and total numbers of support vectors
for SVMs in conjunction with various kernels (i.e.
polynomial and RBF kernels) are compared. The classifi-
cation accuracy of a single layer perceptron (SLP), which
consists of ten hidden nodes associated with weights trained
by the LMS method [29], is also provided for benchmark-
ing. From this table, we see the SVMs incorporated with
the polynomial kernels (with different degrees d) performed
properly in terms of the classification accuracy. On the
other hand, the RBF kernel SVM with an appropriate kernel
parameter setting achieved the highest classification accu-
racy, but it requires the highest computational complexity
and the largest number of support vectors (SVs) compared
to other kernels in the comparison. Applying more complex
kernels (i.e. higher order polynomial kernels) here to map
the data to higher dimensions may lead to smaller training
errors; however, it may cause the system to overfit the
training data and thus degrades the accuracy of the trained
system during testing. The overfitting phenomenon occurs
probably because the available PCB defect samples are
limited. As a result, the linear kernel was adopted for its
computational efficiency and satisfactory performance with
this limited experimental dataset. However, it may need to
use a higher-order polynomial or a more sophisticated
kernel for more complicated PCB classification tasks.

The classification result was further evaluated to study
the confusions among various defect types. In Table 2, a
confusion matrix of the accumulated defect classification
results over five rounds is given, where each row represents
the instances in an actual class and each column represents
the instances in a predicted class. From the table, there are
more misclassification cases between “open” and “mouse-
bite” defect types, which are quite similar in appearance.
The average system execution time is reported in Table 3
for each phase of the proposed inspection system. The
computer platform is equipped with 1.86 GHz CPU and 1G
RAM onboard. Compared to the state-of-the-art approach
of Chang et al. [17], the proposed system inspects defects

Phase Edge Detection Defect Detection Feature Extraction Defect Recognition

Time 65.56 ms 58.45 ms <1 ms <1 ms

Table 3 Average system execu-
tion time.

Table 4 Comparison of the proposed method and CBR evolutionary model [17].

Image size &
field of view

per pixel
resolution

Average
detection time

Defect detection Image alignment Defect
classification

The proposed method 480×640 6 μm 124 ms on
1.86 G CPU

Partial Hausdorff
distance

Fast Hausdorff distance
computation

Statistical optimal
3 mm×4 mm

CBR evolutionary
model [17]

480×480 16.7 μm 530 ms on
2.4 G CPU

XOR logic operator N/A Rule-based
8 mm×8 mm
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faster, and it is more reliable in defect detection and more
accurate for defect classification. Besides, the proposed
learning-based inspection system is easy to adapt for new
defects, while the rule-based system [17] needs to design
additional rules from the new defect observations and
requires checking the dependency between rules. Details of
the comparison were summarized in Table 4. Note that, in
real situations, the defect patterns may not belong to any of
the categories covered by the database. This will lead to
mis-classification. A verification procedure (e.g. non-

reference verification) can be employed to give warning
of possible mis-classifications. By collecting new samples
and training the corresponding sub-classifiers, the proposed
learning-based inspection system can be easily extended to
recognize new types of defects.

4.3 Cosmetic Defects

In the following experiments, the defective PCBs with
cosmetic defects of skip plating, copper exposure, and those

(e)

(a)

(i)

(f)

(b)

(j)

(g)

(c)

(k)

(h)

(d)

(l)

0.94

0.73

0.90

0.89
0.89

Figure 7 Experimental results
for material defect inspection:
a–f Ni-Cu image with foreign
oxidized material, and g–l PCB
image with copper exposure.

0.93

(i) (j) (k) (l)

(e) (f) (g) (h)

(a) (b) (c) (d)

0.64

0.57

0.55
0.650.97

0.67

Figure 8 Experimental results
for material defect inspection:
a–f Au-Ni images with foreign
oxidized material, and g–l pads
of skip plating and copper ex-
posure on the PCB.
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with abnormal oxide on board were inspected by block-
wise comparing their probability distributions. The multi-
class probability distributions were estimated by the SVM
with linear kernel. Figures 7a and 7g are two problematic
PCB images being inspected, while 7b and 7h are the
corresponding defect-free reference images. In Fig. 7a, an
irregular region containing foreign oxidized material is seen
on a Ni-Cu image, and in Fig. 7g a defective region of
copper exposure is shown. Figures 7c, 7d and 7i, 7j are the
SVM material classification results for the corresponding
inspection and reference images. As for Figs. 7e and 7k,
they are the intensity representation of the block defect
probabilities for the inspection images in Figs. 7a and 7g,
respectively. The final inspection results were shown in
Figs. 7f and 7l depicting the detected regions with the
values for defectiveness. Higher defectiveness value is
shown if a region consists of blocks more dissimilar from
the normal board, so the region is more certainly identified
as a defect.

Figures 8a and 8g are another two problematic PCB
images being inspected, while 8b and 8h are the
corresponding defect-free reference images. The layout of
the figures is similar to Fig. 7. As for the first problematic
case shown in Fig. 8a, there is an irregular region with
foreign oxidized material on an Au-Ni image. The proposed
system successfully detected the defective region with a
high confidence value because the defective region has a
very different appearance from that of the corresponding
reference image. On the other case shown in Fig. 8g, the
PCB image concurrently has defects of skip plating and
copper exposure. In Fig. 8k, the pad region of skip plating
displayed with bright intensity was successfully detected
with high probability. It is evident that the system also
detects the regions with slight copper exposure. Yet,
because copper is quite similar to gold in natural appear-
ance, those blocks were not as firmly recognized to be
defective and were associated with the lower regional
defectiveness value in Fig. 8l. Thus, the reliability and the
effectiveness of the proposed inspection system for identi-
fying the cosmetic defects were validated through this
experiment.

5 Conclusions

This paper presents an innovative and automated learning-
based PCB inspection system. It compares the inspection
image to a reference image, corrects the misalignment
errors, and has the ability to accurately assess defects before
they propagate further down the assembly line, while
providing very rapid data analysis. In the experiments, the

effectiveness of the system was demonstrated for defective
patterns (opens, shorts, pinholes, mousebite, under-etch),
and for cosmetic defects of irregular appearance (copper
exposure, skip plating and oxides on board). The experi-
ments indicated that the learning-based AOI system
provides a reliable and flexible solution for PCB inspection,
and it can be easily extended to deal with unknown defects
for future PCB inspection tasks.

Several future directions for extending the proposed AOI
system are discussed in the following. A possible improve-
ment is to include the feature selection step into the system
for enhancing both the generalization capability and the
computation speed of the learned model. Since the
proposed algorithms are flexible, handling different diag-
nostic tasks with the proposed algorithms according to the
positions on the PCB assembly line is also feasible, such as
SMT component placement inspection. Finally, incorporat-
ing different imaging technologies by using visible or
invisible light, e.g. X-ray, into the system may also help the
inspection for multi-layer PCBs.
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