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Abstract The H.264/AVC video coding standard features
diverse computational hot spots that need to be accelerated
to cope with the significantly increased complexity compared
to previous standards. In this paper, we propose an optimized
application structure (i.e. the arrangement of functional
components of an application determining the data flow
properties) for the H.264 encoder which is suitable for
application-specific and reconfigurable hardware platforms.
Our proposed application structural optimization for
the computational reduction of the Motion Compensated
Interpolation is independent of the actual hardware platform
that is used for execution. For a MIPS processor we achieve
an average speedup of approximately 60× for Motion
Compensated Interpolation. Our proposed application struc-
ture reduces the overhead for Reconfigurable Platforms by
distributing the actual hardware requirements amongst the

functional blocks. This increases the amount of available
reconfigurable hardware per Special Instruction (within a
functional block) which leads to a 2.84× performance
improvement of the complete encoder when compared to a
Benchmark Application with standard optimizations. We
evaluate our application structure by means of four different
hardware platforms.

Keywords H.264 .MPEG-4 AVC .Motion compensation .

Motion estimation . Rate distortion . In-loop de-blocking
filter . ASIP. Reconfigurable platform . RISPP.
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1 Introduction and Motivation

The growing complexity of next generation mobile multi-
media applications and the increasing demand for advanced
services stimulate the need for high-performance embedded
systems. Typically, for real-time 30 fps (33 ms/frame) video
communication at Quarter Common Intermediate Format
(176×144) resolution, a video encoder has a 20 ms (60%)
time budget. The remaining 40% of the time budget is
given to video decoder, audio codec, and the multiplexer.
Due to this tight timing constraint, a complex encoder
requires high performance using both application structure
and hardware platform while keeping high video quality,
low transmission bandwidths, and low storage capacity. An
application structure is defined as the organization of
functional/processing components of an application that
determine the properties of data flow.

H.264/MPEG-4 AVC [1] from the Joint Video Team
(JVT) of the ITU-T VCEG and ISO/IEC MPEG is one of
the latest video coding standards and aims to address these
constraints. Various studies have shown that it provides a
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bit-rate reduction of 50% as compared to MPEG-2 with the
same subjective visual quality [5, 6] but at the cost of
additional computational complexity (~10× relative to
MPEG-4 simple profile encoding, ~2× for decoding [7]).
The H.264 encoder uses a complex feature set to achieve
better compression and better subjective quality [6, 7]. Each
functional block of this complex feature set contains
multiple (computational) hot spots hence a complete mobile
multimedia application (e.g. H.324 video conferencing
application) will result in many diverse hot spots (instead
of only a few). However, H.264/AVC is the biggest
component of the H.324 application and requires large
amount of computation, which makes it difficult to achieve
real-time processing in software implementation.

The main design challenges faced by embedded system
designers for such mobile multimedia applications are:
reducing chip area, increasing application performance,
reducing power consumption, and shortening time-to-
market. Traditional approaches e.g.Digital Signal Processors
(DSPs), Application Specific Integrated Circuits (ASICs),
Application-Specific Instruction Set Processors (ASIPs), and
Field Programmable Gate Arrays (FPGAs) do not necessar-
ily meet all design challenges. Each of these has its own
advantages and disadvantages, hence fails to offer a
comprehensive solution to next generation complex mobile
applications’ requirements. DSPs offer high flexibility and a
lower design time but they may not satisfy the area, power,
and performance challenges. On the other hand, ASICs
target specific applications where the area and performance
can be optimized specifically. However, the design process
of ASICs is lengthy and is not an ideal approach considering
short time-to-market. H.264 has a large set of tools
to support a variety of applications (e.g. low bit-rate
video conferencing, recording, surveillance, HDTV, etc.). A
generic ASIC for all tools is impractical and will be huge in
size. On the other hand, multiple ASICs for different
applications have a longer design time and thus an increased
Non-Recurring Engineering (NRE) cost. Moreover, when
considering multiple applications (video encoder is just one
application) running on one device, programmability is
inevitable (e.g. to support task switching). ASIPs overcome
the shortcomings of DSPs and ASICs, with an application-
specific instruction set that offers a high flexibility (than
ASICs) in conjunction with a far better efficiency in terms of
performance per power, performance per area (compared to
GPP and DSPs). Tool suites and architectural IP for
embedded customizable processors with different attributes
are available from major vendors like Tensilica [13], CoWare
[15], and ARC [16]. ASIPs provide dedicated hardware for
each hot spot hence resulting in a large area. While
scrutinizing the behavior of H.264 video encoder, we have
noticed that these hot spots are not active at same time. A
more efficient approach to target such kind of applications

that are quite large and have a changing flow within a tight
timing constraint is a dynamically reconfigurable architecture
with customized hardware (see Section 7).

In a typical ASIP development flow, first the H.264
reference software [2] is adapted to contain only the
required tools for the targeted profile (Baseline-Profile in
our case) and basic optimizations for data structures are
performed. An optimized low-complexity Motion Estimator
is used instead of the exhaustive Full Search of the
reference software. Then, this application is profiled to
find the computational hot spots. For each hot spot, Special
Instructions (SIs) are designed and then integrated in the
application. After all these enhancements, we take this
optimized application as our Benchmark Application for
discussion and comparison. Section 3 presents the details of
optimizations steps to create the Benchmark Application
and explains why comparing against reference software
(instead of comparing with an optimized application) would
result in unrealistically high speedups. The functional
arrangement inside the Benchmark Application architecture
is still not optimal and has several deficiencies. This paper
targets these shortcomings and proposes architectural
optimizations. Now we will motivate the need for these
optimizations with the help of an analytical study.

Figure 1 shows the functional blocks (hot spots) of the
Benchmark Application: Motion Compensation (MC),
Motion Estimation (ME) using Sum of Absolute (Trans-
formed) Differences (SA(T)D), Intra Prediction (IPRED),
(Inverse) Discrete Cosine Transform ((I)DCT), (Inverse)
Hadamard Transform ((I)HT), (Inverse) Quantization ((I)
Q), Rate Distortion (RD), and Context Adaptive Variable
Length Coding (CAVLC). These functional blocks operate
at Macroblock-level (MB=16×16 pixel block) where an
MB can be of type Intra (I-MB: uses IPRED for prediction)
or Inter (P-MB: uses MC for prediction).

The H.264 encoder Benchmark Application interpolates
MBs before entering the MB Encoding Loop. We have
performed a statistical study on different mobile video
sequences with low-to-medium motion. Figure 2 shows the
observations for two representative video sequences. We
have noticed that in each frame the number of MBs for

Figure 1 Arrangement of functional blocks inside the benchmark
application of the H.264 video encoder.
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which an interpolation was actually required to process MC
is much less than the number of MBs processed for
interpolation by the Benchmark Application. After analysis,
we found that the significant gap between the processed
and the actually required interpolations is due to the
stationary background, i.e. the motion vector (which
determines the need for interpolations) is zero.

One of our contributions in this paper is to eradicate this
problem by shifting the process of interpolation after the
ME computation. This enables us to determine and process
only the required interpolations, as it is explained in
Section 4. It will save computational time for both General
Purpose Processor and other hardware platforms with
application accelerators without affecting the visual quality.
However, as a side effect, this approach increases the
number of functional blocks inside the MB Encoding Loop.

Altogether, we evaluate our proposed application structure
by mapping it to the following four different processor types:

& GPP: General Purpose Processor, e.g. MIPS/ARM
& ASIP: Application-Specific Instruction Set Processor,

e.g. Xtensa from Tensilica [13]
& Reconfigurable Platform: Run-time reconfigurable pro-

cessor with static reconfiguration decisions, e.g. Molen
[52]

& Self-adaptive reconfigurable processor (e.g. RISPP: Ro-
tating Instruction Set Processing Platform, see Section 7).

Note: These hardware platforms are not the focus of this
work. The focus of the work is the application structural
optimizations for H.264 video encoder. An application
structure running on a particular hardware platform is
compared with different application structures on the same
hardware platform. To keep the comparison fair all the

application structures get the same set of Special Instructions
and data paths.

ASIPs may offer a dedicated hardware implementation
for each hot spot but this typically requires a large silicon
footprint. Still, the sequential execution pattern of the
application execution may only utilize a certain portion of
the additionally provided hardware accelerators at any time.
The Reconfigurable Platforms overcome this problem by
re-using the hardware in time-multiplex. In Fig. 1, first, the
hardware is reconfigured for Interpolation and while
reconfiguring, the Special Instructions (SIs) for Interpolation
are executed in software (i.e. similar to GPP). After the
reconfiguration is finished, the Interpolation SIs execute in
hardware. Once the Interpolation for the whole frame is
done, the hardware is reconfigured for the MB Encoding
Loop and subsequently it is reconfigured for the in-loop De-
blocking Filter (see Fig. 1). It is important to note that due to
a high reconfiguration time, we cannot reconfigure in
between the processing of a hot spot i.e. within processing
of each MB. We noticed that there are several functional
blocks inside the MB Encoding Loop, and not all data paths
for SIs of the MB Encoding Loop can be supported in the
available reconfigurable hardware. The bigger number of data
paths required to expedite a computational hot spot corre-
sponds to a high hardware pressure inside this hot spot (i.e. a
high amount of hardware that has to be provided to expedite
the hot spot). A higher hardware pressure results in:

(a) more application-specific accelerators that might be
required (for performance) within a computational hot
spot than actually fit into the reconfigurable hardware.
Therefore, not hot spots might be expedited by
hardware but have to be executed in software (similar
to GPP) instead, and

MB Interpolations for QCIF (99 MBs) Video Sequences
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Figure 2 Number of computed vs. required interpolated MBs for two standard test sequences for mobile devices.
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(b) increased reconfiguration overhead, as the reconfigu-
ration time depends on the amount of hardware that
needs to be reconfigured.

Both points lead to performance degradations for
Reconfigurable Platforms, depending on the magnitude of
hardware pressure. This is a drawback for the class of
Reconfigurable Platforms and therefore we propose a
further optimization in the application structure to counter
this drawback.

Our novel contributions in a nutshell:

& Application structural optimizations for reduced pro-
cessing by offering an on-demand MB interpolation
(Section 4).

& Application structural optimizations to reduce the
hardware pressure inside the MB Encoding Loop by
decoupling the Motion Estimation and Rate Distortion
(Section 5).

& Optimized data paths and the resulting Special Instruction
for the main computational hot spots of the H.264 encoder
that are implemented in hardware and used for bench-
marking our optimized application structure (Section 6).

The rest of the paper is organized as follows: related
work is presented in Section 2. Section 3 gives details for
creating our Benchmark Application. We present our
application structural optimization for reduced interpolation
in Section 4 along with the impact on memory and cache
accesses. Section 5 sheds light on the application structural
optimizations for reduced hardware pressure considering
Motion Estimation and Rate Distortion along with the
discussion on its impact on the application data flow in
Section 5.1. We discuss the optimized data paths and the
resulting Special Instructions for the main computational
hot spots of the H.264 encoder in Section 6. The details for
Special Instruction and optimized data paths of De-blocking
Filter are discussed in Section 6.1. The properties of
different hardware platforms used for benchmarking are
explained in Section 7. The detailed discussion and
evaluation of our proposed optimizations are presented in
Section 8 with an in-sight of how we achieve the overall
benefit. We conclude our work in Section 9.

2 Related Work

In the following, we discuss three different types of
prominent related work for the H.264 video codec: (a)
hardware/(re)configurable solutions, (b) dedicated hardware
for a particular component, and (c) algorithmic optimizations.

A hardware design methodology for H.264/AVC video
coding system is described in [17]. In this methodology,
five major functions are extracted and mapped onto a four
stage Macroblock (MB) pipelining structure. Reduction in

the internal memory size and bandwidth is also proposed
using a hybrid task-pipelining scheme. However, some
encoding hot spots (e.g. MC, DCT, and Quantization) are
not considered for hardware mapping. An energy efficient,
instruction cell based, dynamically reconfigurable fabric
combined with ANSI-C programmability, is presented in
[18, 19]. This architecture claims to combine the flexibility
and programmability of DSP with the performance of
FPGA and the energy requirements of ASIC. In [20] the
authors have presented the XPP-S (Extreme Processing
Platform-Samsung), an architecture that is enhanced and
customized to suit the needs of multimedia application. It
introduces a run-time reconfigurable architecture PACT-
XPP that replaces the concept of instruction sequencing by
configuration sequencing [21, 22]. In [23, 24], and [25] the
authors have mapped an H.264 decoder onto the ADRES
coarse-grained reconfigurable array. In [23] and [24]
authors have targeted IDCT and in [25] MC optimizations
are proposed using loop coalescing, loop merging, and loop
unrolling, etc. However, at the encoder side the scenario is
different from that in decoder, because the interpolation for
Luma component is performed on frame-level. Although
the proposed optimizations in [25] expedite the overall
interpolation process, this approach does not avoid the
excessive computations for those MBs that lie on integer-
pixel boundary.

A hardware co-processor for real time H.264 video
encoding is presented in [26]. It provides only Context
Adaptive Binary Arithmetic Coding (CABAC) and ME in
two different co-processors thus offers partial performance
improvement. A major effort has been spent on individual
blocks of the H.264 codec e.g. DCT ([33–35]) ME ([36–
39]), and De-blocking Filter ([40–44]). Instead of targeting
one specific component, we have implemented 12 hardware
accelerators (see Section 3) for the major computational-
intensive parts of the H.264 encoder and used them for
evaluating our proposed application structure in the result
section.

Different algorithmic optimizations are presented in [27–
32] for the reduction of computational complexity. [27]
introduces an early termination algorithm for variable block
size ME in H.264 while giving a Peak Signal to Noise
Ratio (PSNR: metric for video quality measurement) loss of
0.13 dB (note: a loss of 0.5 dB in PSNR results in a visual
quality degradation corresponding to 10% reduced bit-rate
[9]) for Foreman video sequence along with an increase of
4.6% in bit rate. Several algorithmic optimizations for the
Baseline-Profile of H.264 are presented in [28]. These
optimizations include adaptive diamond pattern based ME,
sub-pixel ME, heuristic Intra Prediction, loop unrolling,
“early out” thresholds, and adaptive inverse transforms. It
gives a speedup of 4× at the cost of approximately 1 dB for
Carphone CIF video sequence. A set of optimizations
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related to transform and ME is given in [29]. This
constitutes avoiding transform and inverse transform
calculations depending upon the SAD value, calculation
of Intra Prediction for four most probable modes, and fast
ME with early termination of skipped MBs. This approach
gives a PSNR loss of 0.15 dB. [30] detects all-zero
coefficient blocks (i.e. all coefficients having value ‘zero’)
before actual transform operation using SAD in an H.263
encoder. However, incorrect detection results in loss of
visual quality. [31] suggests all-zero and zero-motion
detection algorithms to reduce the computation of ME by
jointly considering ME, DCT, and quantization. The value
of SAD is compared against different thresholds to
determine the stopping criterion. The computation reduction
comes at the cost of 0.1 dB loss in PSNR. Two methods to
reduce computation in DCT, quantization, and ME in H.263
are proposed in [32] that detect all-zero coefficients in MBs
while giving a 0.5 dB PSNR loss and 8% increase in bit-rate.
It uses the DC coefficient of DCT as an indicator.

In short, these optimizations concentrate on processing
reduction in ME and/or DCT at the cost of proportional
quality degradation (due to false early termination of the
ME process or false early detection of blocks with non-zero
quantized coefficient), but they did not consider other
computational intensive parts. We instead reduce the
processing load at functional level by avoiding advance
and extra processing and a reduced hardware pressure in
the MB Encoding Loop by decoupling processing blocks.
In our test applications, we use an optimized low-
complexity Motion Estimator to accentuate the optimization
effect of other functional blocks. After ME load reduction,
MC is the next bigger hot spot. Therefore, this paper rather
considers MC and hardware pressure.

Additionally, we have proposed an optimized data path
for De-blocking Filter and now we will discuss some
related work for this. [40] uses a 2×4×4 internal buffer and
32×16 internal SRAM for buffering operation of De-
blocking Filter with I/O bandwidth of 32-bits. All filtering
options are calculated in parallel while the condition
computation is done in a control unit. The paper uses 1-D
reconfigurable FIR filter (8 pixels in and 8 pixels out) but
does not target the optimizations of actual filter data path. It
takes 232 cycles/MB. [41] introduces a five-stage pipelined
filter using two local memories. This approach suffers with
the overhead of multiplexers to avoid pipeline hazards. It
costs 20.9 K Gate Equivalents for 180 nm technology and
requires 214–246 cycles/MB. A fast De-blocking Filter is
presented in [42] that uses a data path, a control unit, an
address generator, one 384×8 register file, two dual port
internal SRAMs to store partially filtered pixels, and two
buffers (input and output filtered pixels). The filter data
path is implemented as a two-stage pipeline. The first
pipeline stage includes one 12-bit adder and two shifters to

perform numerical calculations like multiplication and
addition. The second pipeline stage includes one 12-bit
comparator, several two’s complementers and multiplexers
to determine conditional branch results. In worst case, this
technique takes 6,144 clock cycles to filter one MB. A
pipelined architecture for the De-blocking Filter is illustrated
in [43] that incorporates a modified processing order for
filtering and simultaneously processes horizontal and vertical
filtering. The performance improvement majorly comes from
the reordering pattern. For 180 nm synthesis this approach
costs 20.84 K Gate Equivalents and takes 192 (memory)+
160 (processing) cycles. [44] maps the H.264 De-blocking
Filter on the ADRES coarse-grained reconfigurable array
([23, 24]). It achieves 1.15×and 3× speedup for overall
filtering and kernel processing respectively.

We are different from the above approaches because we
target first the optimization of core filtering data paths in
order to reduce the total number of primitive operations in
one filtering. In addition to this, we collapse all conditions
in one data path and calculate two generic conditions that
decide the filtering output. We incorporate a parallel
scheme for filtering one 4-pixel edge in eight cycles (see
Section 6) where each MB has 48 (32 Luma+16 Chroma)
4-pixel edges. For high throughput, we use two 128-bit
load/store units (as e.g. Tensilica [13] is offering for their
cores [14]).

3 Optimization Steps to Create the Benchmark
Application

The H.264/AVC reference software contains a large set of
tools to support a variety of applications (video conferencing
to HDTV) and uses complex data structures to facilitate all
these tools. For that reason, the reference software is not a
suitable base for optimizations. We therefore spent a
tremendous effort to get a good starting point for our
proposed optimizations. A systematic procedure to convert
the reference C code of H.264 into a data flow model is
presented in [45] that can be used for different design
environments for DSP systems. We have handled this issue
in a different way i.e. from the perspective of ASIPs and
Reconfigurable Platforms. In order to achieve the Bench-
mark Application, the H.264 reference software [2] is
passed through a series of optimization steps to improve
the performance of the application on the targeted
hardware platforms. The details of these optimizations are
as follows:

(a) First, we adapted the reference software to contain
only Baseline-Profile tools (Fig. 3a) considering
multimedia applications with Common Intermediate
Format (CIF=352×288) or Quarter CIF (QCIF=
176×144) resolutions running on mobile devices. We
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further truncated/curtailed the Baseline-Profile by
excluding Flexible Macroblock Ordering (FMO) and
multiple slice (i.e. complete video frame is one slice).

(b) Afterwards, we improved the data structure of this
application by replacing e.g. multi-dimensional arrays
with one-dimensional arrays to improve the memory
accesses (Fig. 3b). We additionally improved the basic
data flow of the application and unrolled the inner
loops to enhance the compiler optimization space and
to reduce the amount of jumps.

(c) Enhanced Motion Estimation (ME) in H.264 comprises
variable block size ME, sub-pixel ME up to quarter
pixel accuracy, and multiple reference frames. As a
result, the ME process may consume up to 60% (one
reference frame) and 80% (five reference frames) of the
total encoding time [4]. Moreover, the reference
software uses a Full Search Motion Estimator that is
not practicable in real-world applications and is used
only for quality comparison. Therefore, real-world
applications necessitate a low-complexity Motion Esti-
mator. We have used a low-complexity Motion Estima-
tor called UMHexagonS [4] (also used in other
publically available H.264 sources e.g. x264 [3]) to
reduce the processing loads of ME process while
keeping the visual quality closer to that of Full Search.
Full Search requires on average 107811 SADs/frame
for Carphone QCIF video sequence (256 kbps, 16
Search Range and 16×16 Mode). On the contrary,

UMHexagonS requires only 4424 SADs/frame. Note:
Special Instructions (SIs) are designed to support this
Motion Estimator in hardware (Section 6) and same SIs
are used for all application structures to keep the
comparison fair. After optimizing the Motion Estimator,
other functional blocks become prominent candidates
for optimizations.

(d) Afterwards, this application is profiled to detect the
computational hot spots. We have designed and
implemented several Special Instructions (composed
of hardware accelerators as shown in Table 1) to
expedite these computational hot spots (Fig. 3c). This
adapted and optimized application then serves as our
Benchmark Application for further proposed optimi-
zations. We simulated it for a MIPS-based processor
(GPP), an ASIP, a Reconfigurable Platform, and
RISPP while offering the same SI implementations.

Note optimizations (a–c) are good for GPP, while
optimizations (a–d) are good for all other hardware
platforms i.e. ASIPs, Reconfigurable platforms, and RISPP.

Table 1 gives the description of implemented SIs of
H.264 video encoder that are used to demonstrate our
optimized application structure. Section 6 presents the
functional description of these Special Instructions along
with the constituting data paths. All hardware platforms use
the same set of SIs to accentuate only the effect of
application structural optimizations.

Transform

//   Horizontal transform
for (j=0; j < BLOCK_SIZE; j++)
{
for (i=0; i < 2; i++)
{
i1=3-i;
m5[i]=img->m7[i][j]+img->m7[i1][j];
m5[i1]=img->m7[i][j]-img->m7[i1][j];

}
img->m7[0][j]=(m5[0]+m5[1]);
img->m7[2][j]=(m5[0] -m5[1]);
img->m7[1][j]=m5[3]*2+m5[2];
img->m7[3][j]=m5[3]-m5[2]*2;

}
//  Vertical transform
for (i=0; i < BLOCK_SIZE; i++)
{
for (j=0; j < 2; j++)
{
j1=3-j;
m5[j]=img->m7[i][j]+img->m7[i][j1];
m5[j1]=img->m7[i][j]-img->m7[i][j1];

}
img->m7[i][0]=(m5[0]+m5[1]);
img->m7[i][2]=(m5[0] -m5[1]);
img->m7[i][1]=m5[3]*2+m5[2];
img->m7[i][3]=m5[3]-m5[2]*2;

}

Y20

Y30

+X00

X30

+

X10

X20

<< 1

<< 1

+

+

>> 1

>> 1

>> 1

>> 1

Y00

Y10

DCT HT

>> 1

>> 1

IDCT

Designing a hardware accelerator
for the Discrete Cosine Transform

Figure 3 Steps to construct the benchmark application.
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4 Application Structural Optimization for Interpolation

As motivated in Fig. 2, the H.264 encoder Benchmark
Application performs the interpolation for all MBs,
although it is only required for those with a certain motion
vector value (given by the Motion Estimation ME).
Additionally, even for those MBs that require an interpo-
lation, only one of the 15 possible interpolation cases is
actually required (indeed one interpolation case is needed
per Block, potentially a sub-part of a MB), which shows the
enormous saving potential. The last 2 bits of the motion
vector hereby determine the required interpolation case.

Figure 4 shows the distribution of interpolation cases in
139 frames of the Carphone sequence, which is the

standard videophone test sequence with the highest inter-
polation computation load in our test-suite (see results in
Section 8.2). Figure 4 demonstrates that in total 48.78% of
the total MBs require one of these interpolation cases (C-1
to C-15). The case C-16 is for those MBs where the last
2 bits of the motion vector are zero (i.e. integer pixel
resolution or stationary) such that no interpolation is
required. The I-MBs (for Intra Prediction) actually do not
require an interpolation either.

Figure 5 shows our optimizations to reduce the overhead
of excessive interpolations in the Benchmark Application.
After performing the Motion Estimation (ME) (lines 3–5),
we obtain the motion vector, which allows us to perform
only the required interpolation (line 7). The Sub-Pixel ME
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Table 1 Implemented special instructions and data paths for the major functional components of H.264 video encoder.

Functional component Special instruction Description of special instructions Accelerating data paths

Motion estimation (ME) SAD Sum of absolute differences of a
16×16 macroblock

SAD_16

SATD Sum of absolute transformed differences
of a 4×4 sub-block

QSub, Transform,
Repack, SAV

Motion compensation (MC) MC_Hz_4 Motion compensated interpolation for
horizontal case for 4 pixels

PointFilter, BytePack, Clip3

Intra prediction (IPred) IPred_HDC 16×16 intra prediction for horizontal and DC PackLBytes, CollapseAdd
IPred_VDC 16×16 intra prediction for vertical and DC CollapseAdd

(Inverse) transform (I)DCT Residue calculation and (inverse) discrete
cosine transform for 4×4 sub-block

Transform, Repack, (QSub)

(I)HT_2×2 2×2 (inverse) Hadamard transform of
Chroma DC coefficients

Transform

(I)HT_4×4 4×4 (inverse) Hadamard transform of
intra DC coefficients

Transform, Repack

Loop filter (LF) LF_BS4 4-pixel edge filtering for in-loop de-blocking
filter with boundary strength 4

Cond, LF_4
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(line 5) might additionally require interpolations, but it is
avoided in most of the cases (C-16) due to the stationary
nature of these MBs. Our proposed application structure
maintains the flexibility for the designer to choose any low-
complexity interpolation scheme for Sub-Pixel ME e.g.
[39].

4.1 Memory-Related Discussion

Now we will discuss different memory related issues for
cases of pre-computation and our on-demand interpolation.

(a) In case of on-demand interpolation scheme, we
only need storage for 256 pixels (1 MB), as we
exactly compute one interpolation case per MB
(even for sub-pixel ME we can use an array of 256
interpolated pixels and then reuse it after calculation
of each SATD). The same storage will be reused by
other MBs as the interpolated values are no more
required after reconstruction. Pre-computing all inter-
polated pixels up to quarter-pixel resolution instead
needs to store all interpolated values of one video
frame in a big memory of size 16×(size of one video
frame) bytes. For QCIF (176×144) and CIF (352×
288) resolution this corresponds to a 1,584 (176×
144×16/256) and 6,336 (352×288×16/256) times
bigger memory consumption, respectively, compared
to our on-demand interpolation.

(b) Pre-computing all interpolation cases results in non-
contiguous memory accesses. The interpolated frame
is stored in one big memory, i.e. interpolated pixels are
placed in between the integer pixel location. Due to

this reason, when a particular interpolation case is
called for Motion Compensation, the access to the
pixels corresponding to this interpolation case is in a
non-contiguous fashion (i.e. one 32-bit load will only
give one useful 8-bit pixel value). This will ultimately
lead to data cache misses as the data cache will soon
be filled with the interpolated frame i.e. including
those values too that were not required. On the other
hand, our on-demand interpolation stores the interpo-
lated pixels in an intermediate temporary storage using
a contiguous fashion i.e. four interpolated pixels of a
particular interpolation case are stored contiguously in
one 32-bit register. This improves the overall memory
access behavior.

(c) Our on-demand computation improves the data flow
as it directly forwards the interpolated result for
residual calculation (i.e. difference of current and
prediction data) and then to DCT (as we will see in
Section 5.1). Registers can be used to directly forward
interpolated pixels. On the contrary, pre-computation
requires big memory storage after interpolation and
loading for residual calculation.

(d) Pre-computation is beneficial in-terms of instruction
cache as it processes a similar set of instructions in one
loop over all MBs. Conversely, on-demand interpola-
tion is beneficial in-terms of data-cache which is more
critical for data intensive applications (e.g. video
encoder).

Our proposed optimization for on-demand interpolation
is beneficial for all GPP, ASIPs, Reconfigurable Platforms,
and RISPP.

1. // for simplicity of demonstration we are considering only 16x16 Mode, but the concept is orthogonal to all Modes.

2. FOR all MBs in frame DO               // MB Encoding Loop

3. Perform ME for all reference frames and all Modes

4. a) Perform Integer ME

5. b) Perform Sub-Pixel ME
6. FOR LUMA and CHROMA DO

7.

8. Perform DCT and Quantization for P-MB
9. Perform IDCT and Inv. Quantization for P-MB
10. Perform IPRED       // I-MB
11. Perform DCT, HT and Quantization for I-MB
12. Perform IDCT, IHT and Inv. Quantization for I-MB
13. RD: Decide for I- or P-MB Type and its Mode

14. END FOR
15. Perform CAVLC // Both Luma and Chroma
16. END FOR
17. FOR all MBs in frame DO
18. Perform Loop Filter// Both Luma and Chroma
19. END FOR

Perform the required Interpolation for MC      //   P-MB

Figure 5 Optimized application structure of the H.264 encoder for on-demand interpolation.
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5 Application Structural Optimization for Reducing
the Hardware Pressure

As motivated in Fig. 1, there is a high hardware pressure in
the MB Encoding Loop of the H.264 encoder Benchmark
Application. Although the application structural optimization
presented in Section 4 results in a significant reduction of
performed interpolations, it further increases the hardware
pressure of the MB Encoding Loop, as the hardware for the
Motion Compensated Interpolation is now shifted inside this
loop. A higher hardware pressure has a negative impact
when the encoder application is executed on a Reconfig-
urable Platform. This is due to the fact that the amount of
hardware required to expedite the MB Encoding Loop (i.e.
the hardware pressure) is increased and not all data paths
can be accommodated in the available reconfigurable
hardware. Moreover, it takes longer until the reconfiguration
is completed and the hardware is ready to execute.
Therefore, in order to reduce the hardware pressure we
decouple those functional blocks that may be processed
independent of rest of the encoding process. Decoupling of
these functional blocks is performed with the surety that the
encoding process does not deviate from the standard
specification and a standard compliant bitstream is generated.
We decouple Motion Estimation and Rate Distortion as they
are non-normative and standard does not fix their imple-
mentation. However, this decoupling of functional blocks
affects the data flow of application, as we will discuss later in
Section 5.1.

Motion Estimation (ME) is the process of finding the
displacement (motion vector) of an MB in the reference
frame. The accuracy of ME depends upon the search
technique of the Motion Estimator and the motion
characteristics of the input sequence. As Motion Estimator
does not depend upon the reconstructed path of encoder,
ME can be processed independently on the whole frame.
Therefore, we take it out of the MB Encoding Loop (as
shown in Fig. 6) which will decouple the hardware for both
integer and sub-pixel ME. Moreover, it is also worthy to
note that some accelerating data paths of SATD (i.e. QSub,
Repack, Transform) are shared by (I)DCT, (I)HT_4×4, and
(I)HT_2×2 Special Instructions (see Table 1). Therefore,
after the Motion Estimation is completed for one frame and
the subsequent MB Encoding Loop is started, these
reusable data paths are already available which reduces
the reconfiguration overhead. As motion vectors are already
stored in a full-frame based memory data structure, no
additional memory is required when ME is decoupled from
the MB Encoding Loop. Decoupling ME will also improve
the instruction cache usage as same instructions are now
processed for long time in one loop. A much better data-
arrangement (depending upon the search patterns) can be
performed to improve the data cache usage (i.e. reduced

number of misses) when processing ME on Image-level due
to the increased chances of availability of data in the cache.
However, when ME executes inside the MB Encoding
Loop these data-arrangement techniques may not help. This
is because subsequent functional blocks (MC, DCT,
CAVLC etc.) typically replace the data that might be
beneficial for the next execution of ME.,

Rate Distortion (RD) and Rate controller (RC) are the
tools inside a video encoder that control the encoded
quality and bit-rates. Eventually their task is to decide about
the Quantization Parameter (QP) for each MB and the type
of MB (Intra or Inter) to be encoded. Furthermore, the
Inter-/Intra-Mode decision is also attached with this as an
additional RD decision layer. The H.264 Benchmark
Application computes both I- and P-MB encoding flows
with all possible Modes and then chooses the one with the
best trade-off between the required bits to encode the MB
and the distortion (i.e. video quality) using a Lagrange
Scheme, according to an adjustable optimization goal.

We additionally take RD outside the MB Encoding Loop
(see Fig. 6) to perform an early decision on MB type (I or
P) and Mode (for I or P). This will further reduce the
hardware pressure in the MB Encoding Loop and the total
processing load (either I or P computation instead of both).
Shifting RD is less efficient in terms of bits/MB as
compared to the reference RD scheme as the latter checks
all possible combinations to make a decision. However, RD
outside the MB Encoding Loop is capable to utilize
intelligent schemes to achieve a near-optimal solution e.g.
Inter-Modes can be predicted using homogeneous regions
and edge map [46]. Rate Controllers are normally two-
layered (Image-level and MB-level). The Image-level RC
monitors the bits per frame and selects a good starting QP
value for the current frame hence provides a better
convergence of the MB-level RC. The MB-level RC takes
decision on current and/or previous frame motion properties
(SAD value and motion vectors) therefore can be integrated
in the Motion Estimation loop. Furthermore, texture,
brightness, and Human Visual System (HVS: which
provides certain hints about psycho-visual behavior of
humans) properties may be used to integrate the RD inside
the MB-level RC to make early Mode decisions. The
processing description of RD and RC are beyond the scope
of this paper but details can be found in [8, 10–12].

Our optimized application structure provides the flexi-
bility for integration of any fast mode decision logic e.g.
[46, 47]. Techniques like [46] detect the homogenous
regions for mode decision, which can additionally be used
by MB-level RC as a decision parameter. Mode decision of
P-MB will be decided in ME loop while the mode of I-MB
will be decided in the actual Intra Prediction stage.
Moreover, fast Intra Prediction schemes e.g. [48] can also
be incorporated easily in our proposed architecture but the
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edge map will be calculated at Image-level and can also be
used by RC.

We need an additional memory to store the type (i.e. I-
or P-MB) of all MBs in a current frame after the RC
decision which is equal to (Number of MBs in 1 Frame)×
1 bit. In actual implementation, we have considered 99×8=
792 bits (i.e. 99 bytes for QCIF) as we are using ‘char’ as
the smallest storage type, but still it is a negligible

overhead. Our optimized application structure with reduced
hardware pressure provides a good arrangement of process-
ing functions that facilitates an efficient data flow. For
multimedia applications, data format/structure and data flow
are very important as they greatly influence the resulting
performance. Therefore, now we will discuss the complete
data flow inside the encoder along with the impact of
optimizations of the application structures.

If (MB_Type = P_MB)

Motion Estimation (ME)
Integer Pixel ME (uses SAD)

Sub-Pixel ME (uses SATD)
- Up to Quarter-Pixel

Rate Controller
Decides about Image-Level Quantization Parameter

Decides about MB-Level Quantization Parameter

Rate Distortion
MB-Type Decision (I or P)

Block-Mode Decision (for I or P)

Tranform and Quantization (DCT & Q)
Residue Calculation

Luma : 16 DCT_4x4

Chroma :  8 DCT_4x4

Chroma :  2 HT_2x2

Quantize all Coefficients

Motion Compensation (MC)
Luma: 1 out of 15 Interpolation Cases is 
executed on motion vector
Chroma: Weighted Average

Intra Prediction (IPRED)
For Luma

If (Block_Mode = 16x16) Then
- Select 1 out of 4 Modes
- Compute the Prediction

If (Block_Mode = 4x4) Then
- Select 1 out of 9 Modes
- Compute the Prediction

For Chroma
Block_Mode = 8x8

- Select 1 out of 4 Modes
- Compute the Prediction

Hadamard Transform (HT)
Luma : 1 HT_4x4

Quantize all Coefficients

Inverse Transform  and Inverse 
Quantization (IDCT & IQ)

Inverse Quantize for all Coefficients

Chroma :  2 IHT_2x2

Chroma :  8 IDCT_4x4

Luma : 16 IDCT_4x4

Reconstruction

Inverse Hadamard Transform (IHT )
Luma : 1 IHT_4x4

Inverse Quantize for all Coefficients
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Figure 6 Optimized application structure of the H.264 encoder with reduced hardware pressure.
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5.1 Data Flow of the Optimized Application Structure
of the H.264 Encoder with Reduced Hardware Pressure

Figure 7 shows the data flow diagram of our optimized
application structure with reduced hardware pressure. The
boxes show the process (i.e. the processing function of the
encoder) and arrows represent the direction of the flow of
data structure (i.e. text on these arrows). D2 and D2 are two
data stores that contain the data structures for current and

previous frames. E1 and E2 are two external entities to
store the coding configuration and encoded bitstream,
respectively. The format of these data structures is shown
in Fig. 8 along with a short description.

Motion Estimation (1.0, 1.1) takes Quantization Param-
eter from Rate Controller (11.0), Luma components of
current and previous frames (CurrY, PrevY) from two data
stores D1 and D2 as input. It forwards the result i.e. MVand
SAD arrays to the Rate-Distortion based Mode-Decision

Figure 7 Data flow diagram of the optimized H.264 encoder application structure with reduced hardware pressure.

J Sign Process Syst (2010) 60:183–210 193



process (1.2) that selects the type of an MB and its expected
coding mode. If the selected type of MB is Intra then the
mode information (IMode) is forwarded to the Intra
Prediction (2.1) block that computes the prediction using
current frame (CurrYUV), otherwise PMode is forwarded to
the Motion Compensation (2.0) that computes the prediction
using previous frame (PrevYUV) and MV. The three
transform processes (3.0–3.2) calculate the residue from
using Luma and Chroma prediction results (PredYUV) and
current frame data (CurrYUV) that is then transformed using
4×4 DCT. In case of Intra Luma 16×16 the 16 DC
coefficients (TYDC Coeff.) are further transformed using
4×4 Hadamard Transform (6.0) while in case of Chroma 4
DC coefficients (TUVDC Coeff.) are passed to 2×2
Hadamard Transform process (5.0). All the transformed
coefficients (TCoeff, HTUVDC Coeff, HTYDC Coeff) are
then quantized (4.0, 5.1, 6.1). The quantized result (QCoeff,
QYDC Coeff, QUVDC Coeff) is forwarded to CAVLC (9.0)
and to the backward path i.e. inverse quantization (6.3, 5.2,
4.1), inverse transform (6.2, 5.3, 7.0–7.2), and reconstruc-
tion (8.0). The reconstructed image is then processed with in-
loop De-blocking Filter (10.0) while the output of CAVLC
(i.e. bitstream) is stored in the Bitstream Storage (E1).
Depending upon the achieved bit rate and coding configu-
ration (E2) the Rate Controller (11.0) decides about the
Quantization Parameter.

Optimizations of application structures change the data
flow i.e. the flow of data structures from one processing
function to the other. As the looping mechanism is changed,
the data flow is changed. On the one hand performing on-
demand interpolation increases the probability of instruction
cache miss (as discussed in Section 4.1). However, on the
other hand it improves the data cache by offering a smooth

data flow between prediction calculation and transform
process i.e. it improves the data flow as it directly forwards
the interpolated result for residual calculation and then to
DCT. After our proposed optimization, the size of data
structure for interpolation result is much smaller than before
optimization. The new PredYUV (Fig. 8) data structure
requires only 384 bytes [(256+128)×8-bits] for CIF videos,
as the prediction result for only one MB is required to be
stored. On the contrary, pre-computation requires a big data
structure (4×ImageSize i.e. 4×396×384 bytes) storage
after interpolation and loading for residual calculation.

For reduced hardware pressure optimization, the Motion
Estimation process is decoupled from the main MB
Encoding Loop. Since now Motion Estimation executes in
a one big loop, the instruction cache behavior is improved.
The rectangular region in Fig. 7 shows the surrounded data
structures whose flow is affected by this optimization of
reduced hardware pressure. Before optimizing for reduced
hardware pressure, Motion Estimation was processed on
MB-level, therefore MVand SAD arrays were passed to the
Motion Compensation process in each loop iteration. Since
the encoder uses MVs of the spatially neighboring MBs for
Motion Estimation, the data structure provides the storage
for MVs of complete video frame (e.g. 396×32-bits for a
CIF frame). After optimizing for reduced hardware
pressure, there is no change in the size of MV and SAD
data structures. The MV and SAD arrays of the complete
video frame are forwarded just once to the Motion
Compensation process.

Additionally now Rate-Distortion based Mode-Decision
can be performed by analyzing the neighboring MVs and
SADs. The type of MB and its prediction mode is stored at
frame-level and is passed to the prediction processes.

Row 1 1 pixel = 8 Bytes

352x288

CurrY
PrevY

Data Structures (all 1-D Arrays) for Encoding CIF YUV 4:2:0 Video Sequences
[CIF: 288 Rows, each of 352 Pixels i.e. 396 MBs] 

176x144

CurrU, V 
PrevU,V

x y x y x y

1 MB MV[x,y] 16-bit x 16

396x16x32-bit

MV, SAD
(Curr, Prev)

396x32-bit

1 MB SAD 32-bit

396x8-bit

1 MB QP 8-bit

MBType,
QP

396x8-bit

1 MBType 8-bit

PMode,
IMode

396x8-bit

1 PMode 8-bit

396x8-bit

1 IMode 8-bit

(256+128)x16-bit

1 Coefficient is 16-bit

(I)TCoeff,
(I)QCoeff

TYDC Coeff 
(I)HTYDC Coeff
(I)QYDC Coeff 16x16-bit

Each 16-bit

TUVDC Coeff
(I)HTUVDC Coeff 
(I)QUVDC Coeff 64-bit

CurrYUV,
PrevYUV

Description of Data Structures

Luma and Chroma Components of
Current and Previous Frames

Pred YUV
Luma and Chroma Components of 

Prediction Data for 1 MB

(I)TCoeff,
(I)QCoeff

TYDC Coeff 
(I)HTYDC Coeff 
(I)QYDC Coeff

TUVDC Coeff
(I)HTUVDC Coeff 
(I)QUVDC Coeff

MBType

QP

Type of Macroblock (I or P)

PMode
IMode

Mode of P-MB (e.g.16x16 or 8x8)
Mode of I-MB (16x16 or 4x4)

Quantization Parameter

MV, SAD Motion Vector and SAD Arrays

(Inverse) Transformed Coefficients
(Inverse) Quantized  Coefficients

DCT Transformed DC Coefficients for 
Intra Luma 16x16, (Inverse) Hadamard

4x4 Transformed and (Inverse) Quantized

DCT Transformed DC Coefficients for 
Chroma, (Inverse) Hadamard 2x2 

Transformed and (Inverse) Quantized

PredYUV

(256+128)x8-bit

1 Predictor = 8-bit

Figure 8 Description and organization of major data structures.
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Without our proposed optimizations i.e. when processing
Motion Estimation and Rate-Distortion at MB-level, mode
decision algorithms cannot use the information of MVs and
SADs of the spatially next MBs. On the contrary our
proposed optimized application structure facilitates much
intelligent Rate-Distortion schemes where modes can be
predicted using the motion properties of spatially next MBs
too. Summarizing: our proposed optimizations not only
save the excessive computations using on-demand interpo-
lation for Motion Compensation and relax the hardware
pressure in case of Reconfigurable Platforms by decoupling
the Motion Estimation and Rate-Distortion processes but
also improves the data flows and instruction cache
behavior.

6 Functional Description of Special Instructions
and Fast Data Paths

a. Motion estimation: sum of absolute differences and
sum of absolute transformed differences [SA(T)D]

The ME process consists of two stages: Integer-Pixel
search and Fractional-Pixel search. Integer-pixel ME uses
Sum of Absolute Differences (SAD) to calculate the block
distortion for a Macroblock (MB=16×16-pixel block) in
the current video frame w.r.t. a MB in the reference frame at
integer pixel resolution. For one MB in the current frame
(Ft), various SADs are computed using MBs from the
reference frame (e.g. immediately previous Ft−1). Equation 1
shows the SAD formula:

SAD ¼
X15
y¼0

X15
x¼0

C x; yð Þ � R x; yð Þj j ð1Þ

where C is the current MB and R is the reference MB. One
16×16 SAD computation requires 256 subtractions, 256
absolute operations, 255 additions along with loading of 256
current and 256 reference MB pixels from memory. We have
designed and implemented an SI that computes SAD of the
complete MB. It constitutes two instances of the data path
SAD_16 (as shown in Fig. 9) that computes SAD of 4 pixels
of current MB w.r.t. 4 pixels of reference MB.

Once the best Integer-pixel Motion Vector (MV) is
found, the Sub-Pixel ME process refines the search to
fractional pixel accuracy. At this stage, due to high
correlation between surrounding candidate MVs, the accu-
racy of minimum block distortion matters a lot. Therefore,
H.264 proposes Sum of Absolute Transformed Differences
(SATD) as the cost function to calculate the block
distortion. It performs a 2-D Hadamard Transform on a
4×4 array of difference values to give a closer representation
to DCT that is performed later in the encoding process. Due

to this reason, SATD provides a better MV compared with
that calculated using SAD. However, because of high
computational load, SATD is only used in Sub-Pixel ME
and not in Integer-pixel ME. The SATD operation is defined
as:

SATD ¼
X4
y¼0

X4
x¼0

HT4�4 C x; yð Þ � R x; yð Þf gj j ð2Þ

where C is the current and R is the reference pixel value of
the 4×4 sub-block, and HT4×4 is the 2-D 4×4 Hadamard
Transform on a matrix D (the differences between current
and reference pixel values) and it is defined as:

HT4�4 ¼
1 1 1 1
1 1 �1 �1
1 �1 �1 1
1 �1 1 �1

2
664

3
775 D½ �

1 1 1 1
1 1 �1 �1
1 �1 �1 1
1 �1 1 �1

2
664

3
775

0
BB@

1
CCA
,

2:

ð3Þ
Our SATD SI uses four different types of data paths to

perform a complete 4×4 SATD operation. All data paths
have two 32-bit inputs and two 32-bit outputs. QSub
(Fig. 10a) performs four subtractions; it takes eight
unsigned 8-bit pixels Pi, Qi, i=0…3 and returns four 16-bit
signed residue outputs i.e. Ri=Pi−Qi; for i=0…3. Repack
(Fig. 10b) rearranges the 16-bit half-words of its 32-bit
inputs by packing two 16-bit LSBs and two 16-bit MSBs in
two 32-bit outputs. If input1=X1○X2 and input2=X3○X4, then
output1=X1○X3 and output2=X2○X4. Transform (Fig. 10c)
performs a four-point butterfly of (Inverse) Discrete Cosine
Transform or (Inverse) Hadamard Transform. Four Trans-
form data paths are used to perform a Hadamard Transform
along one axis using only additions and subtractions. The
second stage of this operation performs an additional
arithmetical right-shift on the four results. SAV (Fig. 10d)
computes the absolute values of its four 16-bit inputs and
returns their sum. After the SAV data path, the four results are
accumulated with three additions to complete the SATD SI.

Figure 9 SAD_16 data path for SAD special instruction.
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b. Motion compensation (MC_Hz_4)

Each MB in a video frame is predicted either by the
neighboring MBs in the same frame i.e. Intra-Predicted (I-
MB) or by an MB in the previous frame i.e. Inter-Predicted
(P-MB). This prediction is subtracted from the current
block to calculate the residue that is then transformed,
quantized, and entropy coded. The decoder creates an
identical prediction and adds this to the decoded residual.
Inter prediction uses block-based Motion Compensation.
First, the samples at half-pixel location (i.e. between
integer-position samples) in the Luminance (Luma: Y)
component of the reference frame are generated (Fig. 11:
blue boxes for horizontal and green boxes for vertical)
using a six tap Finite Impulse Response (FIR) filter with
weights [1/32, −5/32, 20/32, 20/32, −5/32, 1/32]. For
example, half-pixel sample ‘b’ (Fig. 11) is computed as
b ¼ E � 5F þ 20Gþ 20H � 5I þ J þ 16ð Þ=32Þð . T h e
samples at quarter-pixel positions are generated by Bilinear
Interpolation using two horizontally and/or vertically
adjacent half- or integer-position samples e.g. Gb ¼
Gþ bþ 1ð Þ=2, where ‘Gb’ is the pixel at quarter-pixel
position between ‘G’ and ‘b’.

The MC_Hz_4 SI is used to compute the half-pixel
interpolated values. It takes two 32-bit input values
containing 8 pixels and applies a six-tap filter using SHIFT
and ADD operations. In case of aligned memory access,
BytePack aligns the data for the filtering operation. Then
the PointFilter data path performs the actual six-tap
filtering operation. Afterwards Clip3 data path performs
the rounding and shift operation followed by a clipping
between 0 and 255. Figure 12 shows the three constituting
data paths for MC_Hz_4 SI.

c. Intra prediction: horizontal DC (IPred_HDC)
and vertical DC (IPred_VDC)

In case of high motion scenes, the Motion Estimator
normally fails to provide a good match (i.e. MB with
minimum block distortion) thus resulting in a high residue
and for a given bit rate this deteriorates the encoded quality.
In this case, Intra Prediction serves as an alternate by
providing a better prediction i.e. reduced amount of
residues. Our two SIs Ipred_HDC and Ipred_VDC implement
three modes of Luma 16×16 i.e. Horizontal, Vertical, and

DC. Horizontal Prediction is given by p[−1, y], with x, y=
0…15 and Vertical Prediction is given by p[x, −1], with x,
y=0…15. DC Prediction is the average of top and left
neighboring pixels and is computed as follows:

& If all left and top neighboring samples are available,

then DC ¼ P15
x'¼0

p x';�1½ � þ P15
y'¼0

p �1; y'½ � þ 16

 !
>> 5.

& Otherwise, if any of the top neighboring samples are marked
as not available and all of the left neighboring samples are

marked as available, then DC ¼ P15
y'¼0

p �1; y'½ � þ 8

 !
>> 4.

& Otherwise, if any of the left neighboring samples are not
available and all of the top neighboring samples are marked

as available, then DC ¼ P15
x'¼0

p x';�1½ � þ 8

 !
>> 4.

& Otherwise, DC=(1≪(BitDepthY−1))=128, for 8-bit pixels.

IPred_HDC computes the Horizontal Prediction and the
sum of left neighbors for DC Prediction. IPred_VDC
computes the Vertical Prediction and the sum of top
neighbors for DC Prediction. Figure 13 shows the
CollapseAdd and PackLBytes data paths, which constitute
both of the Intra Prediction SIs.
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Figure 10 Data paths for SATD_4×4 special instruction.

Figure 11 Interpolation of Luma half-pixel positions.
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d. (Inverse) discrete cosine transform ((I)DCT)

H.264 uses three different transforms depending on the
data to be coded. A 4×4 Hadamard Transform for the 16
Luma DC Coefficients in I-MBs predicted in 16×16 mode, a
2×2 Hadamard Transform for the 4 Chroma DC Coeffi-
cients (in both I- and P-MBs) and a 4×4 Discrete Cosine

Transform that operates on 4×4 sub-blocks of residual data
after Motion Compensation or Intra Prediction. The H.264
DCT is an integer transform (all operations can be carried out
using integer arithmetic), therefore, it ensures zero mis-
matches between encoder and decoder. Equation 4 shows the
core part of the 2-D DCT on a 4×4 sub-block X that can be
implemented using only additions and shifts:

DCT4�4 ¼ CXCT ¼
1 1 1 1
2 1 �1 �2
1 �1 �1 1
1 �2 2 �1

2
664

3
775 X½ �

1 2 1 1
1 1 �1 �2
1 �1 �1 2
1 �2 1 �1

2
664

3
775

0
BB@

1
CCA: ð4Þ

The inverse transform is given by Eq. 5 and it is
orthogonal to the forward transform i.e. T−1(T(X))=X:

IDCT4�4 ¼ CIY ′C
T
I ¼

1 1 1 1=2
1 1=2 �1 �1
1 �1=2 �1 1
1 �1 1 �1=2

2
664

3
775 Y ′½ �

1 1 1 1
1 1=2 �1=2 �1
1 �1 �1 1

1=2 �1 1 �1=2

2
664

3
775

0
BB@

1
CCA ð5Þ

where Y′=Y⊗Et given Et as the matrix of weighting factor.
The DCT and IDCT SIs use QSub, Transform, and Repack
(Fig. 10a–c) data paths to compute the 2-D (Inverse)
Discrete Cosine Transform of 4×4 array.

e. (Inverse) Hadamard transform 4×4 ((I)HT_4×4)

If an MB is encoded as I-MB in 16×16 mode, each 4×4
residual block is first transformed using Eq. 4. Then, the

Figure 12 Data paths for MC_Hz_4 special instruction.

Figure 13 Data paths for IPred_HDC and IPred_VDC special instructions.
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DC coefficients 4×4 blocks are transformed using a 4×4
Hadamard Transform (see Eq. 3). The inverse Hadamard
Transform is identical to the forward transform (Eq. 3). The
SIs for HT_4×4 and IHT_4×4 use Transform and Repack
(Fig. 10b, c) data paths to compute the 2-D (Inverse)
Hadamard Transform of 4×4 Intra Luma DC array.

f. (Inverse) Hadamard transform 2×2 ((I)HT_2×2)

Each 4×4 block in the Chroma components is trans-
formed using Eq. 4. The DC coefficients of each 4×4 block
of Chroma coefficients are grouped in a 2×2 block (WDC)
and are further transformed using a 2×2 Hadamard
Transform as shown in Eq. 6. Note: the forward and
inverse transforms are identical:

HT2x2 ¼ 1 1
1 �1

� �
WDC½ � 1 1

1 �1

� �� �
� ð6Þ

The SIs for HT_2×2 and IHT_2×2 use one Transform
(Fig. 10c) data path and computes the 2-D (Inverse)
Hadamard Transform of 2×2 Chroma DC array.

g. Loop filter (LF_BS4)

The De-blocking Filter is applied after the reconstruction
stage in the encoder to reduce blocking distortion by
smoothing the block edges. The filtered image is used for
motion-compensated prediction of future frames. The
following section describes the loop filter Special Instruction
and the constituting data paths in detail along with our
proposed optimizations.

6.1 Fast Data Paths and Special Instruction for In-Loop
De-blocking Filter

The H.264 codec has an in-loop adaptive De-blocking
Filter for removing the blocking artifacts at 4×4 sub-block
boundaries. Each boundary of a 4×4 sub-block is called
one 4-pixel edge onwards as shown in Fig. 14. Each MB
has 48 (32 for Luma and 16 for Chroma) 4-pixel edges. The
standard specific details of the filtering operation can be
found in [1]. Figure 15 shows the filtering conditions and
filtering equations for Boundary Strength=4 (as specified in
[1]) where Pi and Qi (i=0, 1, 2, 3) are the pixel values
across the block horizontal or vertical boundary as shown
in Fig. 16.

We have designed a Special Instruction (SI) for in-loop
De-blocking Filter (as shown in Fig. 17a) that targets the
processing flow of Fig. 16. This SI filters one 4-pixel edge,

which corresponds to the filtering of four rows each with
8 pixels. The LF_BS4 SI constitutes two types of data
paths: the first data path computes all the conditions
(Fig. 17c) and the second data path performs the actual
filtering operation (Fig. 18). The LF_BS4 SI requires four
data paths of each type to filter four rows of an edge.
Threshold values α and β are packed with P (4-pixel group
on left side of the edge; see Fig. 16) and Q (4-pixel group
on right side of the edge) type pixels and passed as input to
the control data path. The UV and BS act as control signals
to determine the case of Luma-Chroma and Boundary
Strength respectively. The condition data path outputs two
1-bit flags X1 (for filtering P-type i.e. Pi pixels) and X2 (for
filtering Q-type i.e. Qi pixels) that act as the control signals
of the filter data path. The two sets of pixels (P and Q type)
are passed as input to this data path and appropriate filtered
pixels are chosen depending upon the two control signals.

Figure 17b shows the processing schedule of the
LF_BS4 SI. In first two cycles, two rows are loaded (P
and Q of one row are loaded in one LOAD command). In
cycle 3, two control data paths are executed in parallel
followed by two parallel filter data paths in the cycle 4 to
get the filtered pixels for first and second row of the edge.
In the mean time, next two loads are executed. In cycle 5
and 6, the filtered pixels of first and second rows are stored
while control and filter data paths are processed in parallel
for third and fourth rows. In cycle 7 and 8, the filtered
pixels of third and fourth rows are stored. Now we will
discuss the two proposed data paths.

We have collapsed all the if–else equation in one
condition data path that calculates two outputs to determine
the final filtered values for the pixel edge. In hardware, all
the conditions are processed in parallel and our hardware
implementation is 130× faster than the software implementa-
tion (i.e. running on GPP).

Figure 18 shows our optimized data path to compute the
filtered pixels for Luma and Chroma and selects the
appropriate filtered values depending upon X1 and X2 flags.
This new proposed data path needs fewer operations to
filter the pixels on block boundaries as compared to the
standard equations. The proposed data path exploits
the redundancies in the operation sequence, re-arranges
the operation pattern, and reuses the intermediate results as
much as possible. Furthermore, this data path is not only
good for hardware (ASIPs, Reconfigurable Platforms,
RISPP) implementations, but also beneficial when imple-
mented in software (GPP). In the standard equations, only
one part is processed depending upon which condition is
chosen at run time. For the software implementation of our
proposed data path, the else-part can be detached in order to
save the extra processing overhead. For the hardware
implementation, we always process both paths in parallel.
Note that the filtering data path is made more reusable

p3 p2 p1 p 0 q0 q1 q2 q3P Q

Figure 14 4-pixel edges in one macroblock.
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using multiplexers. It is used to process two cases of Luma
and one case of Chroma filtering depending upon the
filtering conditions. The filtering of a four-pixel edge in
software (i.e. running on GPP) takes 960 cycles for Boundary
Strength=4 case. Our proposed Special Instruction (Fig. 17a)
using these two optimized data paths (Figs. 17c and
18) requires only eight cycles (Fig. 17b) i.e. a speedup of
120×.

We have implemented the presented data paths for
computing the conditions (Fig. 17c) and the filtering
operations (Fig. 18) for a Virtex-II FPGA. The filtering
operation was implemented in two different versions. The
first one (original) was implemented as indicated by the
pseudo-code in Fig. 16 and the second one (optimized) was

implemented in our optimized data path (Fig. 18). The
results are shown in Table 2. The optimized loop filter
operation reduces the number of required slices to 67.8%
(i.e. 1.47× reduction). At the same time, the critical path
increases by 1.17× to 9.69 ns (103 MHz), which does not
increase the critical path for our hardware prototype (see
Section 7).

7 Properties of Hardware Platforms
used for Benchmarking

We evaluate our proposed application structural optimiza-
tions with diverse hardware platforms in the following

α
β β

β
β

β α

β α

Figure 16 Pixel samples across a 4×4 block horizontal or vertical boundary.

LUMA (32 4-pixel edges)

CHROMA (2*8=16 4-pixel edges)

4-pixel 
edge

4x4 sub-block

Block Edge 
(16-pixels)

A Block Edge spans 
the complete 16-pixel 
boundary in an MB

4-pixel edge is a part of the 
Block Edge considering 

4x4 sub-blocks

Figure 15 The filtering process for boundary strength=4.
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result section, i.e. GPP (General Purpose Processor), ASIP
(Application-Specific Instruction set Processor), Reconfig-
urable Platform, and RISPP (Rotating Instruction Set
Processing Platform). Although the focus of this paper is
on our proposed application structural optimizations, we
will briefly describe the differences between ASIPs,
Reconfigurable Platforms, and RISPP that are used as
hardware platforms for benchmarking these optimizations.

The term ASIP comprises nowadays a far larger variety
of embedded processors allowing for customization in
various ways including (a) instruction set extensions, (b)
parameterization and (c) inclusion/exclusion of predefined
blocks tailored to specific applications (like, for example,

an MPEG-4 decoder) [54]. A generic design flow of an
embedded processor can be described as follows: (1) an
application is analyzed/profiled, (2) an extensible instruc-
tion set is defined, (3) extensible instruction set is
synthesized together with the core instruction set, (4)
retargetable tools for compilation, instruction set simulation
etc. are (often automatically) created and application
characteristics are analyzed, (5) the process might be
iterated several times until design constraints comply.
However, for large applications that feature many compu-
tational hotspots and not just a few exposed ones, current
ASIP concepts struggle. In fact, customization for many
hotspots bloats the initial small processor core to consider-
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Chroma paths.
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ably larger sizes (factors of the original base processor
core). Moreover, to develop an ASIP, a design-space
exploration is performed and the decisions (which Special
Instructions (SIs), which level of parallelism, etc.) are fixed
at design time.

Reconfigurable processors instead combine e.g. a pipeline
with reconfigurable parts. For instance, fine-grained reconfig-
urable hardware (based on lookup tables i.e. similar to FPGAs)
or coarse-grained reconfigurable hardware (e.g. arrays of
ALUs) can be connected to a fixed processor as functional
unit or as co-processor [53]. This reconfigurable hardware can
change its functionality at run time, i.e. while the application
is executing. Therefore, the SIs no longer need to be fixed at
design time (like for ASIPs), but only the amount of
reconfigurable hardware is fixed. The SIs are fixed at compile
time and then reconfigured at run time. Fixing the SIs at
compile time has to consider constraints like their maximal
size (to fit into the reconfigurable hardware) and typically
includes the decisions when to reconfigure which part of the
reconfigurable hardware. Determining the decision when to
start reconfiguring the hardware has to consider the rather
long reconfiguration time (in the range of milliseconds,
depending on the size of the SI).

Compared to typical ASIPs or Reconfigurable Platforms
RISPP is based on offering SIs in a modular manner. The
modular SIs are connected to the core pipeline in the
execute stage, i.e. the parameters are prepared in the decode
stage and are then passed to the specific SI implementation
in the execute stage. The interface to the core pipeline is
identical for ASIPs, Reconfigurable Platforms, and RISPP.
The main difference is the way in which the SIs are
implemented. Instead of implementing full SIs indepen-
dently, data paths are implemented as elementary re-usable
reconfigurable units and then combined to build an SI
implementation. The resulting hierarchy of modular SIs (i.e.
SIs, SI implementations, and data paths) is shown in
Fig. 17. Figure 17a shows the composition of the Loop
Filter SI, while Fig. 17c shows one of its elementary data
paths. The schedule in Fig. 17b corresponds to one certain
implementation of this SI, for the case that two instances of

both required data paths are available and can be used in
parallel. However, the same SI can also be implemented
with only one instance of each data path by executing the
data paths sequentially (note that parallelism is still
exploited within the implementation of a data path). On
the one hand, this saves area but on the other hand, it costs
performance. Additionally, the Loop Filter SI can be
implemented without any data paths (executing it like a
GPP) and it can be implemented if e.g. only the filtering
data paths (Fig. 18) is available in hardware (then the
conditions are evaluated like on a GPP and then forwarded
to the filtering data paths). These different implementation
trade-offs are available for all extensible processor plat-
forms, i.e. ASIP, Reconfigurable Platform, and RISPP.
ASIPs select a certain SI implementation at design time and
Reconfigurable Platforms select an implementation at
compile time. RISPP instead selects an implementation at
run time out of multiple compile-time prepared alternatives
[49]. While performing this selection, RISPP considers the
current situation, e.g. the expected SI execution frequency
(determined by an online monitoring [50]) to specifically
fulfill the dynamically changing requirements of the
application.

To efficiently support different implementation alterna-
tives of one SI, RISPP offers the data paths as elementary
reconfigurable units. This means that the configuration of a
single data path is loaded into one out of multiple
reconfigurable regions. As soon as sufficient data paths
for an SI implementation are available, the data paths are
connected (via busses, using a compile-time prepared
connection scheme) to implement this SI. As soon as
sufficient further data paths finished reconfiguration, these
connections are changed to use the further data paths and
thus to realize a faster SI implementation that exploits more
parallelism. Reconfiguring at the level of data paths not
only allows the concept of upgrading SI implementations at
run time but it furthermore allows sharing, i.e. one
reconfigured data path can be used for the implementations
of different SIs. A run-time system manages the currently
available SI implementation and controls the required
connections between the core pipeline and the data paths.
This run-time system also controls in which sequence the
SIs shall be upgraded. The feature to gradually upgrade SI
implementations diminishes the above-mentioned problem
of rather long reconfiguration times, but it does not
diminish the conceptual problem of high hardware pressure
like presented in Section 5. Therefore, either more
reconfigurable hardware has to be added or the hardware
pressure itself has to be distributed, e.g. by our optimized
application structure.

For evaluation purpose, we have implemented a RISPP
prototype on an FPGA board (see Fig. 19). We have
implemented the core pipeline and the reconfigurable

Table 2 Results for hardware implementation of individual data
paths.

Characteristics Data paths

Condition Loop filter
(original)

Loop filter
(optimized)

No. of slices 72 174 118
No. of LUTs 138 306 204
Gate equivalents 1,207 2,754 2,074
Latency [ns] 6.49 8.25 9.69
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regions on the FPGA and tightly coupled the reconfigurable
parts (as functional units) with the execution stage of the
pipeline. Our core pipeline is based on a MIPS processor that
was extended for our requirements (e.g. four read ports in the
register file) and runs at 50 MHz. The processor is connected
to external SRAM for instruction and data memory of the
application as well as to a fast external EEPROM for the
configuration data. The realized peripheral connections
comprise a touch-screen LCD that allows interaction with
the running application (not used while benchmarking).

8 Evaluation, Discussion and Results

8.1 Test Conditions and Fairness of Comparison

In the motivation (Section 1), we have introduced and
analyzed the problem of excessive Interpolation and
hardware pressure. To solve this issue, we have proposed
a set of application structural optimizations. At first, we
have created an optimized Benchmark Application of H.264
video encoder [2] (Section 3) considering multimedia
applications with Common Intermediate Format (CIF=
352×288) or Quarter CIF (QCIF=176×144) resolutions
running on mobile devices. The same Benchmark Application
is used for all hardware platforms, i.e. GPP (General Purpose
Processor; in our case a MIPS), ASIP (Application-Specific
Instruction set Processor), Reconfigurable Platform, and
RISPP). Detailed results are presented for the Carphone (a
typical videophone sequence) under the test conditions
Quantization Parameter (QP)=30, Group of Pictures
(GOP)=IPPP…, and Search Range=16. Before proceeding

to the discussion of results, we will present the fairness of
comparison in this section.

This paper focuses on application structural optimiza-
tions for H.264 video encoder. An application structure
running on a particular hardware platform is compared with
different application structures on the same hardware
platform. Therefore, the performance in terms of cycles is
considered, as the test conditions with respect to the
underlying hardware platforms are always same for
different application structures. In order to study the effect
of the proposed optimizations and to validate our concept,
we have carried out this comparison on several hardware
platforms keeping in mind that the different application
structures are only compared within one hardware platform
at a time. We will now enumerate the similarities and test
conditions that justify the fairness of comparison.

1. All the Application Structures use the same Benchmark
Application as the starting point. Same set of optimized
data paths and Special Instruction (SIs) is given to all
application structures. Each data path takes one cycle
for execution.

2. All the application structures were given the same
hardware resources, i.e. register file, number of read/
write ports, memory accesses, etc. when executing on a
particular hardware platform.

3. Only the application structures running on the same
hardware platforms are compared with each other i.e.
Benchmark Application executing on ASIP is compared
with Interpolation-Optimized Application and Hard-
ware-Pressure-Optimized Application running on
ASIP.

Figure 19 FPGA-based RISPP prototyping platform.
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8.2 Results and Discussion

Our proposed optimized filtering operation for the in-loop
De-blocking Filter (Fig. 18) needs (18+5)×48×#MBs
additions (CIF=399,168; QCIF=99,792 additions) while
the standard equations need (30+6)×48×#MBs additions
(CIF=684,288; QCIF=171,072 additions) for both Luma
and Chroma. It shows 41.67% operation reduction. The
standard equations suffer performance degradation due to
six conditional jumps but our optimized implementation
has only two conditions. For a hardware implementation,
this results in simple multiplexers. The optimized filtering
operation reduces the number of required slices to 67.8%
(i.e. 1.47× reduction, see Table 2). At the same time the
critical path increases (by 1.17×) to 9.69 ns (103 MHz),
which does not increase the critical path for our hardware
prototype that is running at 50 MHz (20 ns). In addition to
the filtering operation, the hardware implementation of our
condition data path (Fig. 17c) is 130× faster than the
corresponding software implementation (i.e. running on
GPP) as we process all conditions in parallel. The proposed
condition data path requires only 72 slices as the logic after
comparing the absolute differences is done on bit-level (see
Fig. 17c). Combining two instances of our both optimized

data paths to implement the proposed Special Instruction
(Fig. 17a) takes only eight cycles (see Fig. 17b) to filter a
4-pixel edge for the Boundary Strength=4 case. Performing
the same computation on the GPP requires 960 cycles,
which corresponds to a 120× faster hardware execution.
However, this speedup only considers the execution of our
proposed In-loop De-Blocking Filter, not the whole H.264
encoder. Therefore, we subsequently concentrate on the
execution time of specific hot spots and the whole
application (showing the benefits of our proposed optimi-
zations of the application structure). Eventually, we will
present the detailed analysis of the SI execution pattern
within one frame to clarify and evaluate the conceptual
differences of our both proposed application structures.

Figure 20 shows a comparison between the Benchmark
Application and our on-demand interpolation processing
(Section 4) running on GPP for four typical QCIF video
sequences that cover most of the motion characteristics of
videos for mobile devices. Carphone represents the video
call scenario in a moving car where the motion is due to the
body of the caller and the background from the side-window.
Miss America is a typical head–shoulder movement se-
quence and exhibits relatively low motion characteristics.
Trevor is a relatively complex scene where several persons

Frame Number

E
xe

cu
ti

on
 T

im
e 

[M
C

yc
le

s]

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Quarter Pixel Half Pixel

Actual Occurances Benchmark Application

Half Pixel Line

a) Carphone 
Frame Number

E
xe

cu
ti

on
 T

im
e 

[M
C

yc
le

s]

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Quarter Pixel Half Pixel

Actual Occurances Benchmark Application

Half Pixel Line 

b) Miss America 

Frame Number

E
xe

cu
ti

on
 T

im
e 

[M
C

yc
le

s]

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Quarter Pixel Half Pixel

Actual Occurances Benchmark Application

Half Pixel Line 

c) Trevor 
Frame Number

E
xe

cu
ti

on
 T

im
e 

[M
C

yc
le

s]

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Quarter Pixel Half Pixel

Actual Occurances Benchmark Application

Half Pixel Line

d) Table Tennis 

Figure 20 Processing time of interpolation for the benchmark vs. our proposed application structure when running on GPP (MIPS).
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are moving in one video sequence simulating several
movements occurring in video conferencing. Table Tennis
represents camera pan motion and the motion of game
objects (persons and ball). In case of camera panning the
background is not stationary, rather all the MBs of
background move with a same amount, i.e. motion vectors
are approximately equal for MBs of background.

The processing time of the interpolation in the Bench-
mark Application is always 8.444 MCycles as it processes
all cases. Using our optimized application structure from
Section 4, the interpolations for 1 QCIF frame requires at
maximum 2.417 (average 1.191), 1.244 (average 0.491),
1.298 (average 0.893), and 2.441 (average 1.177) MCycles
for Carphone, Miss America, Trevor, and Table Tennis
respectively. Analyzing the behavior of these four typical
video sequences we find that the maximum and average
processing time for interpolation is much smaller than that of
the Benchmark Application (due to the stationary back-
ground). Therefore, the application structural optimization
for on-demand interpolation gives a huge saving in terms of
processing time (compared to the Benchmark Application) as
we will now evaluate with further video sequences (Table 3).

We have considered seven different QCIF video sequences
[51] with different motion properties to simulate various
mobile video scenarios. In the Benchmark Application, the
interpolation of 139 frames takes 1,174 MCycles (139
frames×8.444 MCycles; same for all video sequences).
Table 3 shows the processing time and the speedup
(compared to the Benchmark Application architecture) of
the interpolation process in our optimized application
structure with on-demand interpolation on GPP. Our pre-
sented approach to reduce the number of performed
interpolations is independent of any specific processor
platform as it conceptually reduces the amount of required
computations, independent whether this computation is done
in software (GPP) or in hardware (e.g. ASIP). It comes at the
cost of increased hardware pressure.

While the above presented optimizations (i.e. optimized
filtering operation and reduced interpolations) are beneficial

for a GPP as well, we will now focus on hardware
implementations (especially on Reconfigurable Platforms).
At design time, a particular amount of hardware is given to
ASIPs, Reconfigurable Platforms, and RISPP. The amount
of hardware determines how many Special Instructions
(SIs) can be expedited to exploit the inherent parallelism
thus directly corresponding to the achieved performance. In
case of ASIPs, the data paths that can be accommodated in
this hardware are fixed, while for Reconfigurable Platforms
and RISPP the data path are loaded at run time and only the
amount of data path that can be present on the reconfig-
urable hardware at the same time is fixed. Figure 21 shows
the execution times of the Benchmark Application (onwards
called BApp), our Interpolation-Optimized Architecture (as
explained in Section 4; onwards called InOpt), and our
Hardware-Pressure-Optimized Architecture (as explained in
Section 5, onwards called HPOpt) running on a Reconfig-
urable Platform. The x-axis in this plot shows to the
amount of data paths that fit to the hardware at the same
time. The more reconfigurable hardware is available the
faster the execution becomes. The application execution
without data paths i.e. always using the instruction set of
the core-pipeline/base processor corresponds to a GPP. As
the performance without data paths is much slower, we do
not show it in the Fig. 21.

We will now shed light on the region between two
important points marked as Label A and Label B in Fig. 21
where (contrary to the other regions) InOpt is not
significantly faster than BApp. For one and two data paths,
the Motion Compensation Special Instruction (i.e.
MC_Hz4) executes in software for both BApp and InOpt.
In this case, InOpt achieves its performance improvement
due to the reduced number of interpolations. HPOpt is
further better than InOpt due to the reduced hardware
pressure, as we will see. At Label A, BApp has almost the
same processing time as of InOpt because in case of BApp,
the MC_Hz4 SI (along with e.g. SAD and SATD) now
executes in hardware. However, for InOpt the MC_Hz4 SI
still executes in software. This is due to the high hardware

Table 3 Processing time and speedup of interpolation (half- and quarter-pixel) for 139 frames compared to the benchmark application
(1,173.77 MCycles) for GPP.

Video sequence Half-pixel (MCycles) Quarter-pixel (MCycles) Total (MCycles) Speedup

Bridge_Close 0.02 3.46 3.48 333.33
Carphone 18.23 147.37 165.60 7.09
Claire 3.08 26.50 29.58 39.68
Grandma 3.46 31.93 35.39 33.22
Miss America 8.98 59.33 68.30 17.18
Salesman 1.72 34.60 36.32 32.36
Table_Tennis 18.98 144.69 163.67 7.17
Trevor 8.89 115.27 124.16 9.45
Average 7.92 70.39 78.31 59.96
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pressure that is introduced by shifting the interpolations
inside the MB Encoding Loop (necessary to reduce the
number of performed interpolations, see Section 4). The
available reconfigurable hardware has to be shared among
the SIs of the MB Encoding Loop, as reconfiguring within
the loop is not beneficial (due to the long reconfiguration
time as discussed in Section 7). As SAD and SATD are
significantly more often executed than the MC_Hz4 SI, it is
more beneficial (concerning overall performance) to imple-
ment SAD and SATD in hardware while executing
MC_Hz4 in software. However, BApp can implement
SAD and SATD as well as MC_Hz4 in hardware, as it
executes them in different loops and reconfiguration
between the loops is feasible. Due to this reason, the gain
of reduced interpolations is cancelled out by the difference
of hardware and software executions of MC_Hz4. This
situation exists between three (Label A) and five (Label B)
available data paths. Afterwards, the main requirements
(i.e. the execution of the most important SIs in hardware),
of the MB Encoding Loop are fulfilled and the MC_Hz4 SI
is executed in hardware for InOpt too.

HPOpt resolves the discussed problem of InOpt by
decoupling the SAD and SATD SIs from the MB Encoding
Loop. The benefit of the reduced hardware pressure
becomes especially noticeable in the region between Label
A and Label B. When more reconfigurable hardware is
available InOpt comes closer to HPOpt as the hardware
needs of each SI are fulfilled. Due to high reconfiguration
overhead, after eight data paths the Reconfigurable Plat-
form does not give significant benefits per additional data
path. However, the specific amount of data paths (where
further performance benefits are no longer significant)

highly depends on the application as well as the specific
reconfiguration bandwidth.

Table 4 shows the maximum and average speedups
(using one to 14 data paths; GPP does not use application-
specific data paths therefore average=maximum) when
executing the H.264 video encoder with the BApp, InOpt,
and HPOpt application structures for all four hardware
platforms. It is worthy to note that all these application
structures use the same Special Instructions therefore the
table purely represents the improvement of application
structural optimizations. The table shows that HPOpt is up
to 2.84× (average 2.36) and 1.94× (average 1.58×) faster
than BApp for ASIP and Reconfigurable Platform respec-
tively. For RISPP, HPOpt is at maximum 2.24× (average
1.91×) and 1.82× (average 1.29×) faster than BApp and
InOpt respectively. Note, higher speedup for ASIP does not
necessarily mean that ASIP is faster than Reconfigurable
Platform or RISPP. They have different ‘1×’ performance
(i.e. execution time of BAPP on ASIP is different from that
on Reconfigurable Platform or RISPP) and we do not
intend to compare them. Therefore, the speedup in Table 4
only provides the comparison of different application
structures on a particular hardware platform.

We now analyze the detailed differences in the execution
patterns of InOpt (Fig. 5) vs. HPOpt (Fig. 6), on RISPP
with four, five, and six data paths when encoding one QCIF
video frame of Carphone sequence to explain how we get
the performance benefit by reducing the hardware pressure.
We show the number of executions of important SIs (y-
axis) for timeframes of 100 KCycles time-slots (x-axis). For
clarity, we restrict to those SIs that show the difference of
the application structures. InOpt runs the SIs for ME and
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Table 4 Maximum and average speedups of optimized vs. benchmark application architectures for different amount (i.e. one to 14) of
accelerating hardware resources.

InOpt vs. BApp HPOpt vs. BApp HPOpt vs. InOpt

Maximum speedup Average speedup Maximum speedup Average speedup Maximum speedup Average speedup

GPP 1.38 1.46 1.06
ASIP 2.34 2.01 2.84 2.36 1.30 1.17
Reconf. 2.05 1.54 1.94 1.58 1.67 1.09
RISPP 1.98 1.51 2.24 1.91 1.82 1.29

a)
   

6 
D

at
a 

P
at

hs
 

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

0,
0

0,
5

1,
0

1,
5

2,
0

2,
5

3,
0

3,
5

DCT_4x4

MC_Hz4

SAD

Timeframe [MCycles]

N
um

be
r 

of
 S

I 
E

xe
cu

ti
on

s

Execution of Loop Filter

Execution of Motion Estimation and Encoding Engine

SATD

LF_BS4

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

0,
0

0,
5

1,
0

1,
5

2,
0

2,
5

3,
0

3,
5

DCT_4x4

MC_Hz4

SAD

Timeframe [MCycles]

N
um

be
r 

of
 S

I 
E

xe
cu

ti
on

s

Execution of 
Loop Filter

Execution of 
Motion Estimation

Execution of Encoding Engine

SATD

LF_BS4

b)
   

5 
D

at
a 

P
at

hs
 

0

500

1.000

1.500

2.000

2.500

3.000

0,
0

0,
5

1,
0

1,
5

2,
0

2,
5

3,
0

3,
5

4,
0

4,
5

DCT_4x4

MC_Hz4

SAD

Timeframe [MCycles]

N
um

be
r 

of
 S

I 
E

xe
cu

ti
on

s Execution of Loop Filter

Execution of Motion Estimation and Encoding Engine

SATD

LF_BS4

0

500

1.000

1.500

2.000

2.500

3.000

0,
0

0,
5

1,
0

1,
5

2,
0

2,
5

3,
0

3,
5

4,
0

4,
5

DCT_4x4

MC_Hz4

SAD

Timeframe [MCycles]

N
um

be
r 

of
 S

I 
E

xe
cu

ti
on

s Execution of 
Loop Filter

Execution of 
Motion Estimation

Execution of Encoding Engine

SATD

LF_BS4

c)
   

4 
D

at
a 

P
at

hs
 

0

200

400

600

800

1.000

1.200

1.400

1.600

0,
0

0,
5

1,
0

1,
5

2,
0

2,
5

3,
0

3,
5

4,
0

4,
5

5,
0

5,
5

6,
0

6,
5

7,
0

7,
5

8,
0

8,
5

DCT_4x4

MC_Hz4

SAD

Timeframe [MCycles]

N
um

be
r 

of
 S

I 
E

xe
cu

ti
on

s

Execution of Loop Filter

Execution of Motion Estimation and Encoding Engine

SATD

LF_BS4

0

200

400

600

800

1.000

1.200

1.400

1.600

0,
0

0,
5

1,
0

1,
5

2,
0

2,
5

3,
0

3,
5

4,
0

4,
5

5,
0

5,
5

6,
0

6,
5

7,
0

7,
5

8,
0

8,
5

DCT_4x4

MC_Hz4

SAD

Timeframe [MCycles]

N
um

be
r 

of
 S

I 
E

xe
cu

ti
on

s

Execution
of Loop
Filter

Execution of Motion Estimation

Execution of 
Encoding Engine

2,899

SATD

LF_BS4

Figure 22 Execution time profile of major functions (five SIs) in our
proposed application structures InOpt and HPOpt for 1 QCIF video
frame. Detailed utilization variations for four, five, and six available
data paths, used by InOpt and HPOpt respectively for RISPP. All
figures show the encoding of 1 video image. The x-axis shows the

timeframes of 100 KCycles, the y-axis denotes the number of SI
executions. For a given number of data paths, the x-axis for InOpt and
HPOpt was selected as the maximum number of timeframes that one
of the application structures required to encode one video image.
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MB Encoding Loop (DCT, SATD, …) together in one big
loop over all MBs in a frame while HPOpt processes SIs of
ME and MB Encoding Loop in two separate loops.

Figure 22a shows the detailed SI execution pattern for
six available (reconfigurable) data paths using InOpt and
HPOpt for RISPP. As ME (Motion Estimation) and MC
(Motion Compensation) are processed in the same loop for
InOpt, the first five data paths are allocated to SAD and
SATD to expedite ME which is the most compute-intensive
part of the video encoder. For InOpt, in the first
100 KCycles SAD is executed (running in software). After
100 KCycles (approximately one reconfiguration time,
depending on which data path is loaded [49]), the first
accelerating data path SAD_16 is loaded that will expedite
the SAD Special Instruction (SI). Additionally, SATD
starts execution, first in software and between 100 and
500 KCycles the corresponding data paths are loaded
sequentially, therefore the SATD execution upgrades
gradually (as explained in Section 7). The amount of
SATD, DCT, and MC executions in the first 500 KCycle
shows that not all accelerating data paths are loaded yet and
therefore RISPP is not yet executing SIs at full perfor-
mance. As more data paths finish loading, the single SI
executions become faster and thus more SIs are executed
per timeframe. Table 5 shows the six selected data paths in
this case for the MB Encoding Loop. It is worthy to note
that five data paths are given to the ME SIs while the MC
SI gets only one data path. The optimization target thereby
is to reduce the execution time of the complete application
and not only of one functional block. Additionally, the (I)
DCT, (I)HT_2×2, and (I)HT_4×4 SIs are expedited due to
reusable data paths (i.e. Repack, Transform, and QSub are
shared between SATD and these SIs). Due to high
hardware pressure not all SIs can be completely supported
in hardware therefore the MB Encoding Loop takes longer
to finish its execution, i.e. 3.6 MCycles. Afterwards, the
data paths for in-loop De-blocking Filter are loaded. InOpt

requires 3.9 MCycles to process the encoding of one QCIF
video frame.

In contradiction to the presented InOpt processing flow,
HPOpt first processes the ME SIs and therefore all the data
paths are allocated to SAD (two data paths) and SATD
(four data paths). It is noticeable in Fig. 22a that after all six
data paths (2×SAD_16, Repack, Transform, QSub, SAV)
are loaded, the total number of SI executions in the ME hot
spot increases significantly as SAD and SATD are now
executed in a faster hardware implementation (exploiting
more parallelism). These faster hardware implementations
were not selected for InOpt, as then no data path would
have been left to accelerate MC. Therefore, MC would have
been the bottleneck, leading to a reduced performance of
this loop. After HPOpt finished the ME hot spot, the three
data paths 2×SAD_16 and SAVare replaced by PointFilter,
Clip3, and BytePack to expedite the MC_Hz4 SI. The loop
decoupling in HPOpt allows offering more data paths per
SI as less SIs are needed per timeframe (SAD now
additionally gets another data path of SAD_16 while
MC_Hz4 additional gets Clip3 and BytePack). Therefore,
all SIs can be offered in a better performance (exploiting
more parallelism) which results in more executions per
timeframe. Additionally, the number of DCT and MC_Hz4
executions is reduced in HPOpt due to the early decision
between I- and P-MB types by Rate Distortion (RD). In
the result, HPOpt requires 2.6 MCycles to process the
encoding of one QCIF video frame and is finished much
earlier as compared to InOpt, showing the saving of
1.3 MCycles.

Compared to the presented details for six data paths,
Fig. 22b and c present the results for five and four data
paths respectively. It is noticeable in Fig. 22c that for four
data paths InOpt requires 8.9 MCycles to process the
encoding of one QCIF video frame which is significantly
slower when compared with the performance of six data
paths. This big difference comes due to the MB Encoding

Table 5 Data paths supported in hardware for InOpt and HPOpt for four, five, and six data paths.

No. of
data paths

Data paths selected for acceleration

InOpt (data paths used in each hot spot) HPOpt (data paths used in each hot spot)

MB encoding loop In-loop de-
blocking filter

Motion estimation MB encoding loop In-loop de-
blocking filter

4 SAD_16, Repack,
Transform, QSub

Cond, LF_4 SAD_16, Repack,
Transform, QSub

Repack, Transform, QSub,
PointFilter, Clip3

Cond, LF_4

5 SAD_16, Repack,
Transform, QSub, SAV

Cond, LF_4 SAD_16, Repack,
Transform, QSub, SAV

Repack, Transform, QSub,
SAV, PointFilter, Clip3

Cond, LF_4

6 SAD_16, Repack, Transform,
QSub, SAV, PointFilter

Cond, LF_4 2×SAD_16, Repack,
Transform, QSub, SAV

Repack, Transform, QSub,
PointFilter, Clip3, BytePack

Cond, LF_4
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Loop that requires 8.6 MCycles to complete. Due to only
four available data paths, MC_Hz4 as well as SATD cannot
be supported in a fast hardware implementation (e.g. SAV is
missing for SATD, see Tables 1 and 5). HPOpt improves
the performance (saving 1.6 MCycles compared to InOpt)
but due to the absence of SAV the ME loop is still slow
(requires 5.7 MCycles). However, for five data paths
(Fig. 22b) SAV is available (see Table 5), therefore SATD
executes in hardware but MC_Hz4 is still in software. As
SATD has a bigger contribution in the performance gains
and we target reducing the overall execution time of the
whole application, the data path for SATD is given
preference on that of MC_Hz4. As a result the execution
of InOpt for five data paths is faster than that of five data
paths (Fig. 22b) but still slower than that of six data paths.
HPOpt here gets a bigger benefit as now it complete the
ME hot spot much earlier (1.8 MCycles) giving an overall
saving of 2 MCycles for one frame encoding. Summarizing,
because of faster SI implementations (more data paths per
SI) and reduced computations, HPOpt is finished much
earlier as compared to InOpt, showing the maximum
speedup of 1.82× for RISPP (compared to the Benchmark
Application running on RISPP), as shown in Table 4.

9 Conclusion

We have presented optimizations for the H.264 encoder
application structure for reduced processing and reduced
hardware pressure along with several novel data paths and
the resulting Special Instruction for the main computational
hot spots of the H.264 encoder. For in-loop De-blocking
Filter, the optimized filtering data path reduces the number
of required slices to 67.8% (i.e. 1.47× reduction, see
Table 2). The Special Instruction is 120× faster than the
General Purpose Processor Implementation. Our approach
of reduced processing is good for all four hardware
platforms (i.e. GPP, ASIP, Reconfigurable Platform, and
RISPP), while the optimization of reduced hardware
pressure target the Reconfigurable Platform and RISPP
specifically. As compared to the optimized Benchmark
Application, we achieve an average speedup of approxi-
mately 60× for Motion Compensated Interpolation for
MIPS. For RISPP, our optimized application structure for
interpolation achieves up to 1.98× improvement (see
Table 4) over the Benchmark Application architecture.
The reduced hardware pressure improves the performance
of our optimized application architecture up to 2.24×
compared to the Benchmark Application.
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