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Abstract The availability of RNA interference (RNAi)
libraries, automated microscopy and computational meth-
ods enables millions of biochemical assays to be carried out
simultaneously. This allows systematic, data driven high-
throughput experiments to generate biological hypotheses
that can then be verified with other techniques. Such high-
throughput screening holds great potential for new discov-
eries and is especially useful in drug screening. In this
study, we present a computational framework for an
automatic detection of changes in images of in vitro
cultured keratinocytes when phosphatase genes are silenced
using RNAi technology. In these high-throughput assays,
the change in pattern only happens in 1–2% of the cells and
fewer than one in ten genes that are silenced cause
phenotypic changes in the keratin intermediate filament
network, with small keratin aggregates appearing in cells in
addition to the normal reticular network seen in untreated
cells. By taking advantage of incorporating prior biological
knowledge about phenotypic changes into our algorithm, it
can successfully filter out positive ‘hits’ in this assay which
is shown in our experiments. We have taken a stepwise

approach to the problem, combining different analyses,
each of which is well-designed to solve a portion of the
problem. These include, aggregate enhancement, edge
detection, circular object detection, aggregate clustering,
prior to final classification. This strategy has been instru-
mental in our ability to successfully detect cells containing
protein aggregates.
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1 Introduction

Technological and biological advances have enabled af-
fordable access to large RNAi libraries to study gene
function in cell culture models. Additionally, the use of
automated microscopy increases our ability to acquire data
related to the effect of gene silencing. The speed at which
this data can be generated creates a data bottleneck where
post-acquisition analysis is the limiting factor when
studying images for multiple morphological criteria. More-
over, special care must be taken when handling these data
such that objectivity and reproducibility should be pre-
served. To achieve this, computer vision algorithms are
needed to extract quantitative information. We developed a
computational framework to treat images as quantitative
data with systematic and objective processes. We wish to
identify the changes in protein distribution in a high-
throughput siRNA screen on in vitro cultured keratinocytes
when a phosphatase gene is silenced. However, in each
image of these assays, only about 1–2% of the cells exhibit
a protein aggregation phenotype, the detection pattern used
for positive hits. In this case, a general machine learning
technique [1, 2] would fail to filter possible genes that are
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related to such phenotypic changes. Therefore, a more
sophisticated algorithm incorporating specific biological
knowledge is needed.

1.1 Biological Background

Keratins form the largest subfamily of intermediate filament
cytoskeletal proteins and are expressed in epithelial cells
where type I keratins and type II keratins form obligate
hetero-oligomers in a cell type specific manner [3]. For
example, keratin number 5 and keratin number 14
expression is restricted to the basal proliferative compart-
ment of the epidermis, whereas keratins number 1 and 10
are expressed in differentiating epidermis [4]. Keratins are a
major stabilizing component of the cytoskeleton in epithe-
lial cells, forming both inter and intracellular reticular
networks. The importance of the normal functioning of
these networks is underscored by the numerous genoder-
matoses caused by keratin gene mutations [5, 6]. All
intermediate filament proteins (including keratins) have
three characteristic structural domains: a central alpha-
helical rod domain, flanked by N and C terminal unstruc-
tured “head” and “tail” domains. It is thought that these
unstructured domains are sites of post-translational modifi-
cation [7]. Formation of intermediate filaments proceeds
spontaneously in vitro requiring neither energy nor acces-
sory proteins. Despite this propensity to assemble in vitro,
the intermediate filament network must be in equilibrium in
vivo, to allow cells to remodel their intermediate filament
network as required [8]. Regulation of their assembly is
likely through either post-translational modifications such
as phosphorylation, or association with accessory proteins
[9]. Epidermolysis bullosa simplex (EBS) is an epithelial
fragility disorder that is characterized by sensitivity of the
skin to mild stress, resulting in blistering from intracellular
cell lysis. In this disorder, mutations in either K5 or K14
genes, whose protein products form the intermediate
filament network in the basal cells of stratified epithelia,
result in the disease phenotype [10]. These mutations
thought to destabilize the intermediate filament network,
thus causing the epidermis to be less able to withstand the
mechanical stresses to which they are normally subjected.
Immortalized skin cells derived from patients with EBS
display a reduced cell spreading capability, and abnormal
intermediate filament assembly, with a tendency of the
intermediate filament to disassemble into small aggregates,
suggesting a compromised intermediate filament network.
Network disassembly into small aggregates can also be
induced by treatment with okadaic acid, sodium orthova-
nadate or calyculin A [11, 12]. This drug treatment affects
keratin phosphorylation status, likely through inhibition of
protein phosphatases. It is unknown at present which
specific phosphatase is involved with keratin dynamics or

whether multiple phosphatases could be involved with this
process. Using an siRNA phosphatase library we have
attempted at identify specific phosphatase genes that result
in a change in the keratin number 14’s intermediate
filament network.

RNA interference is a powerful tool to study gene
function in cultured cells. Together with high-throughput
image screening techniques [13, 14], it offers us an
enormous chance to understand the complex relationships
between genes, proteins, cellular components and physio-
logical systems [15]. At the same time, it presents a
challenge for quantitative analysis, which requires efficient
techniques to evaluate this unprecedented amount of data.
For instance, some classification algorithms of subcellular
patterns based on cell morphology have been proposed [16,
17]. Chen and Murphy [18] developed an automated
protein partitioning algorithm based on location patterns.
Others [19] have developed quantitative morphological
profiling methods to systematically investigate the role of
individual genes in the regulation of cell morphology, or
methods for automatic image cytometry [20], demonstrat-
ing the benefits of using a large number of individual cell
measurements when exploring data from high-throughput
screens (multiparametric analysis, reviewed in [21]).

1.2 Our Contribution

In this paper, we present a framework for applying
computer vision on image data sets generated by high-
throughput screening of keratinocytes assays. Our approach
is different from a general machine learning approach [2],
in which we emphasise incorporating biological knowledge
into our algorithm. The biological knowledge we utilize in
our computational framework are:

1. Patterns of Biological Significance: Small keratin aggre-
gates manifest as spots with specific size in the images.

2. Criteria for Detection: Due to the low transfection
efficiency, detection of the existence of mutants is more
important than the number of mutants. For example, we
are both interested in images with one mutant and
images with many mutants.

3. Phosphatases Gene Candidates: It is more important to
find the top few phosphatases gene candidates that
most likely cause the phenotypic changes rather than
finding many phosphatases gene candidates that may
have some effect.

Based on the above, we rank all images according to the
chance of existence of mutants in descending order. The
biologist would only look at a few (<1%) of the top ranked
images and perform extensive and independent validation
assays on not more than a handful of the top few
phosphatases gene candidates.
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Our detection method is based on phenotypic changes in
the keratin proteins labeled with the green fluorescent
protein. Upon broad-spectrum pharmacological inhibition
of phosphatases, small keratin aggregates that manifest as
spots in the images appear in cells in addition to the normal
reticular network seen in untreated cells. Here we demon-
strate that our algorithm can automatically and accurately
identify the positive hits for this phenotype and can
effectively rank phosphatase genes for further validation.

2 Materials and Methods

The proposed framework automatically extracts informa-
tion of keratin aggregate spots for classification. A general
work flow of the image analysis framework is shown in
Fig. 1. Systematic parameter tuning and method selection is
performed in each step. Our framework is optimized for this
high throughput assay. Each step of the process is described
in detail in the following sections.

2.1 Image Acquisition

Cultured cells are placed into 96-well plates and transfected
with a siRNA library for the knockdown of phosphatases.
There are a total of 267 targeted genes and three siRNA are
used for each targeted gene. Hence, a total of 801 siRNAs

are used (267 genes × 3 RNAi sequences per gene). And
each set of 267 genes requires at least three 96-well plates
(267/96≈3) and 89 wells of each plate are used. Hence, a
total of nine plates are used. Our proposed analysis requires
both high-resolution images to assess the protein aggrega-
tion phenotype pattern and a large field of view images to
capture the whole well. The microscope, optimized for live
cell imaging experiments, typically takes images that are
1,040 pixels by 1,392 pixels. Our microscope is based
around an axiovert 200 stand. Images are acquired using a
20×, 0.8NA lens, resulting in a pixel size of 0.400
micrometers. As the pixel resolution is 400 nm/pixel, one
image has a field of view of 400 μm. To cover a large field
of view, 16 images are taken for each well. This makes a
total of 1,424 images in each plate and approximately
13,000 images for the whole study. As a result, thousands
of images with a total size of 10–20 gigabytes are generated
and processed.

2.2 Spot Enhancement

The keratin aggregates manifest as spots in the images. To
detect these spots efficiently, a reliable spot enhancement
procedure is needed. A sample image is shown in the top
panel of Fig. 2. Since the performance of the clustering
result greatly relies on the image quality, we first improve
the images by processing them using a wavelet transform
technique [22] to enhance the pattern of small spots while
reducing the background and the effect of noise.

The wavelet transform is a multi-resolution analysis tool
that is designed to provide different levels of local details.
Among many different wavelet transform algorithms [22],
we choose the B3-spline version à trous wavelet algorithms
as proposed by Starck et al. [23] mainly because of its
invariance under translation and the simplicity of the
implementation of the direct and the inverse transform.
We obtained a wavelet decomposition, which is computed
by convolving the original image A0 with a 5×5 mask hTh,
where h=[1/16 1/4 3/8 1/4 1/16]. At the borders of A0, we
extend it by continuity. After obtaining this smoothed
image A1, we obtain the detail coefficient W1 from the
difference A0−A1. The same process is repeated recursively
from the smoothed images Ai, 0< i≤J, with a filter
h augmented at each scale i by inserting 2i−1−1 zeros
between two nonzero entries, i.e.,

h ¼ 1=16 0 . . . 0 1=4 0 . . . 0 3=8 0 . . . 0 1=4 0 . . . 0 1=16½ �

for scale i. At the end, we have the à trous wavelet
representation W1, W2,…, AJ and the reconstruction formula
for the original image is given by

A0 ¼ AJ þ
X

J
i¼1Wi:Figure 1 A general work flow of the image analysis framework.
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To recombine each decomposed images into a new
output image, we can specify a set of resolution scales. In
our algorithm, we propose to use W2 + W3 as our wavelet
processed image. The wavelet image W1 consists mainly of
single pixel noise and is thus discarded. We also discard the
higher order wavelets W4, W5,…, WJ and AJ, as they

represent the background and coarse scale structures.
Examples of the wavelet representation and the wavelet
processed image are shown in Fig. 2.

To justify that wavelet pre-processing is indeed effective,
we process our images without any pre-processing and with
top-hat pre-processing [29]. Validation against ground truth

Figure 2 Wavelet preprocess-
ing. Top: The original noisy
image A0; middle: The à trous
wavelet representation of A0

(note that W1 contains mainly
noise of the images while W4

and W5 contains the background
of the image); bottom: The out-
put image which is the recombi-
nation of detail images (note that
the pattern of the small keratin
aggregates in the mutated cell are
enhanced while the reticular net-
work in the wild type cell is
vanished).
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using the ROC curve shows that wavelet pre-processing is
effective (see Fig. 8).

2.3 Spot Clustering

Once a high quality image is generated, advanced tech-
niques are used to detect small keratin aggregates (clusters
of small spot particles) in a more accurate and more robust
way. We propose a spot clustering algorithm that consists of
three detection steps: (1) first detect edges of the wavelet-
processed image using Canny edge detector [24], (2) detect
circular objects by applying Hough transform [25] on the
edge image, and (3) search for small spot percolating
clusters using DBSCAN [26]. The first row and the second
row of Fig. 3 show the results on each detection step when
a wavelet-processed image and an un-preprocessed image
are used respectively. In particular, bad performance when
using an un-preprocessed image verifies that a bad quality
image can affect the final result. Therefore, to improve the

robustness of the clustering step, it is essential to first
preprocess the images.

2.3.1 Edge Detection

The first step of our spot clustering algorithm is to extract
edges of the wavelet-processed image. A good edge
detection result can reduce the searching space and improve
the robustness of the circular object detection. In our
method, we use Canny edge detector [24] implemented by
Matlab. The Canny method finds edges by looking for local
maxima of the gradient of the image. The gradient is
calculated using the derivative of a Gaussian filter with
default sigma=1. There are two thresholds, high and low, to
detect strong and weak edges respectively. In our experi-
ment, we only specific the high threshold tcanny and set the
low threshold to be 0.4× tcanny. The weak edges will be
included only if they are connected to strong edges. Hence,
the method trends to avoid creating false edges due to

Figure 3 Intermediate results of spot cluster detection. First column:
Canny edge detection with tcanny=0.18: the boundaries of the wild
type cell and the spots in the mutant cell in a wavelet preprocessed
image can be successfully detected, while some superfluous edges in
the mutant cell are detected in the un-preprocessed image; second
column: Hough transform circular objects detection: spots can be

distinguished from the wild type cell in the wavelet preprocessed
image, while many false circular objects are detected in the un-
preprocessed image due to the unsatisfactory edge detection result; 3rd
column: DBSCAN cluster detection: a spot cluster can be found in the
wavelet preprocessed image, while no cluster is found in the un-
preprocessed image.
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noise, but to detect as many true edges as possible. An
example of the edge image (i.e. a binary image where the
value is 1 for edge pixels and 0 elsewhere) is shown in
Fig. 3, first column. With wavelet preprocessing, the bound-
aries of the wild type cell and the spots in the mutant cell in
a wavelet preprocessed image can be successfully detected.
On the other hand, many superfluous edges in the mutant
cell are detected in the un-preprocessed image, which may
affect the robustness of the further steps in the spot clustering
algorithm (see below). This shows that spot pattern can be
enhanced by our wavelet preprocessing technique.

2.3.2 Circular Object Detection

For each edge in the edge image, it may be (part of) a wild
type cell boundary, or may be (part of) a small spot
boundary in a mutated cell. To distinguish between these
two cell classes, we use the Hough circle transform [25] on
each connected edge component. For each edge, we per-
form Hough circle transform to find the circle that passes
through most pixels of this edge. We can then decide what
kind of cell the edge belongs to, based on the size of the
detected circle. If the edge forms part of a large circle, then
we assign it as part of the cell body. If the edge forms part
of a small circle (e.g. with radius ≤5 pixels), then we assign
it as a small spot boundary. This threshold value (radius
≤5 pixels) is carefully tuned (see Fig. 5). An example of the
detected circular objects is shown in Fig. 3, second column.
In this example, spots can be distinguished from the wild
type cell in the wavelet preprocessed image, while many
false circular objects are detected in the un-preprocessed
image due to the unsatisfactory edge detection result. This
poor result will cause misclassification of cell type.

2.3.3 Cluster Detection

Since we are only interested in the pattern of small spots in
mutant cells, there are two kinds of detected circles in the
result from the previous steps we should remove before
detecting clusters. First, we should remove the circles
which are fully covered by another large circular object.
These spots may be due to noise inside a healthy cell, and
should not be considered as a candidate of a small keratin
aggregate. Moreover, from the results on the training
images shown in Section 3.1, we learn that the radius of
small keratin particles will not exceed 5 pixels size (see
Fig. 5). Therefore, we should remove those large circles
with radius >5 pixel units. Once a set of uncovered small
spot particles is obtained, we search for percolating clusters
of aggregates. For each spot, we use its center to represent
its location. We define a percolating cluster as followed: for
every spot in a cluster, there must be another spot in the
same cluster with distance less than a predefined radius. To

search this kind of clusters, we can use a clustering
technique called DBSCAN [26] by setting the number of
neighbors in the searching region to be 1 and the predefined
radius parameter of searching to be the average cell
diameter. This quantity has been learned from a set of
training sample images. An example of the detected cluster
is shown in Fig. 3, 3rd column. A spot cluster (i.e. a mutant
cell) can be found in the wavelet preprocessed image, while
no cluster is found in the un-preprocessed image.

2.4 Mutant Classification

Once the clusters are detected, the result can be used to
examine existence of mutant in the images. In particular,
there are two pieces of information obtained from the
detection results for mutant classification: the size (number
of spots within a cluster) of every cluster and the number of
clusters. As discussed in Section 1 under “Criteria for
detection”, it is more important to detect existence of
mutants accurately than to count the number of mutants in
an image. Since images with large cluster are very likely to
consist of phenotypic changes in the filament network and
should be chosen as positive ‘hits’, we propose to use the
size of clusters in an image as its feature/score. On the other
hand, the number of clusters may not be a good feature for
classification because small clusters are usually due to
noise. Including this in our decision may affect the
accuracy of our classifier. Since we are only interested in
the existence of phenotypic changes in the images, we will
not consider the number of clusters for classification. To
classify the images, we first sort the size of all the clusters
within an image in descending order. We then rank the
images in lexical order and display them in a user-friendly
platform as shown in Fig. 4. The lexical order is defined as
followed: we first compare the size of the largest cluster of
every image and the one within larger size will assign a
higher rank. If there is a tie, then we compare the second
largest and so and so forth. If there are no more clusters in
one of the images for comparison, then we consider that
image with a zero-spot cluster for convention. The system
will then assign a lower rank for that image. Users can
retrieve the results of any individual images by simply
clicking on the corresponding link. Sample results can be
found in Fig. 5. By defining a cutoff value of this list, we
can classify all the images at the top part of the list to be
mutant. As a result, the decision boundary between wild
type and mutant of our classifier is determined by the cutoff
value of the list.

2.5 Implementation

The framework of detection of change of protein distribu-
tion is implemented in Matlab R2006b. A computational
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intensive module, Hough transform for circular object
detection, is implemented in C++ and compiled as a shared
library which is executable from within Matlab. All the
tests are done with a PC with an Intel Pentium D 3 GHz
processor and 2 GB memory. The computer codes are
available upon request from the corresponding author.

3 Results

Cells are cultured in 96-well plates as described in Section 2.1.
Usually due to experimental fault, a small portion of images
will be excluded from the analysis. Therefore, the total
number of images in each plate may be varied and the
amount we used is about 1,350 images. We test our

algorithm using images from Plate-1, Plate-2 and Plate-3
of the second set of 267 genes. First, we work on ten
selected training images. These images are manually
selected by the biologist to represent the typical pattern
we aim to detect. There are 20 mutants altogether in these
images, since the pattern we want to search for is very
specific, 20 mutants is sufficient for tuning the parameters..
Then we work on a larger set of images (about 200–300
images) and test our algorithm under different situations to
show the effect on (1) threshold parameter used in edge
detection, (2) the presence of the preprocessing step, and
(3) class distribution, i.e. the fraction of positive samples
and the fraction of negative samples. To validate our
algorithm, we manually classify the images and report the
ROC curves of different studies. Finally, we work on the
whole set of images from Plate-3 and report the accuracy
with different cutoff values.

There are three parameters in our algorithm: (a) sen-
sitivity threshold for Canny edge detection tcanny, (b)
maximum radius of small keratin spots rspot, and (c)
maximum distance of paired spots within each cluster
dcluster. For rspot, we can learn from a set of training images
as prior biological knowledge tell us that K14 aggregates
are of almost identical sizes. For dcluster, the K14 aggregates
must be contained within the cell membrane, therefore, we
can set dcluster to be the average cell diameter. To learn rspot,
we first manually find out all the spots in every training
image and report the spot size count in Fig. 5. From the
histogram of the keratin particles detected from the training
images, we observe that almost 90% of the particles’ radii
do not exceed 5 pixels. Therefore, we fixed rspot to be
5 pixel units. To learn dcluster, we sample the cells of every
training image and obtain their radius manually. Since the

Figure 5 Average number of spots with different radii over 10
training images. Almost 90% of the spot radii do not exceed 5 pixels.

Figure 4 The list of the sorted images showing the top 25 ranks.
Column 2 specifies the well number and the image number, which can
be used as an index of the images to find the corresponding gene.
Sixteen images are taken from each well and numbered from 1 to 16.
Third column shows the number of spots in each clusters detected
using DBSCAN. For example, rank 1 image from well D11, image 13
has one cluster with 12 spots and one cluster with one spot. The
images are sorted in lexical order starting from the size of their largest
cluster.
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average radius of every image is within 23–30 pixels, we
fixed dcluster to be 60 pixel units. For tuning the Canny
parameter tcanny, we run the algorithm with different values
of tcanny for a larger set of images (about 200–300 images).
Then we compare the results against ground truth to get the
ROC curves (see Fig. 7) in order to get the optimal value
for tcanny.

3.1 Results on Training Images

We first apply our image analysis method to a set of
training images, which are some images with mutated cells.
There are two aims for this experiment: first, we try to
examine the resulting images in order to verify the
effectiveness of our method. Next, we can obtain the best
values for the parameters rspot and dcluster from the training
images. The training images, chosen by the biologists, are
less blurred and less noisy. Hence, the patterns of the
particles of interest are more significant than that in other
images, which is perfect for learning from them the suitable
parameter values for the whole set of images. Figure 6
shows that the training images marked with their clusters.
We can conclude from the results that our algorithm is able
to extract the small particles and locate the keratin
aggregates if they exist in the images.

3.2 Results on a Subset of Images

In the first part of this experiment, we choose 288 images
prepared in a same experimental run. To show the accuracy

of the classification results, we manually obtain the true
labels of the images. The class distribution of this set of
images is quite uneven: 47 positive and 241 negative. First
we study the effect on different Canny threshold values.
Next we investigate the difference in the classification
results with or without the presence of preprocessing step.
We report the true positive rate and the false positive rate

Figure 6 The cluster detection
results of 4 training images.
Results show that our algorithm
is able to detect and locate the
keratin aggregates in the images,
even when they are located in a
sea of untreated cells.
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Figure 7 Effect on threshold for edge detection. ROC curves are used
to record the different true positive rate and the false positive rate by
setting different cutoff values (i.e. 30, 60, 90, etc.) of the list. ROC
curves for the scheme with wavelet preprocessing: the scheme with
tcanny=0.3 outperforms the scheme with other tcanny settings almost
everywhere.
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after examining every 30 images (i.e. 30, 60, 90, etc.) from
the top of the list and the detailed descriptions are as follows:

& Effect on threshold for edge detection. We first
preprocess the images using the wavelet filtering
technique and apply the Canny edge detector using
different Canny parameters (0.26, 0.3, 0.4, 0.5) on the
preprocessed images (see Fig. 7). To avoid losing some
true edges, one may select a small Canny parameter to
make the edge detector more sensitive. However, we

observe from the ROC curves that using small
parameter (i.e. 0.26) on edge detection usually leads to
a poor performance of the classification result. It is
caused by the increasing number of false detected
edges found by an insensitive edge detector. On the
other hand, the poorer performance when using tcanny>
0.4 also verifies the fact that using too large parameter
for edge detection tends to lose some true edges, which
will affect the robustness of the further classification
steps. Hence, this result suggests that a suitable
parameter (i.e. 0.3 or 0.4) should be chosen to avoid
too many false detected edges, while still able to detect
useful edges. In fact, the result in Fig. 7 shows that the
setting tcanny=0.3 gives the best performance. In
conclusion, the parameter should be chosen in a range
of [0.1, 0.4] in order to obtain a reasonable result.

& Effect on preprocessing step. We first omit the
preprocessing step and apply the Canny edge detection
algorithm using different Canny parameters (0.14, 0.18,
0.22, 0.26) on the unprocessed images. For the
unprocessed images, we use a smaller threshold value
since the pattern of the particles of interest is not as
significant as in the preprocessed images. We observed
that the difference between the results (not shown)
using different Canny parameters are quite small. This
indicates that there is not much observable improve-
ment by parameter selection. Moreover, the overall
performance is poor. We only show the best result in
Fig. 8 for comparison. In Fig. 8, we can see that the
performance of the classification algorithm with the
presence of image preprocessing step is much better.
For instance, 80% of true positive images are contained
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Figure 8 Effect on preprocessing step. The comparison of the best
ROC curves shows that our method with wavelet preprocessing
always outperforms the one without wavelet preprocessing, while the
method with wavelet or with top-hat filter performs comparably. This
clearly demonstrates that the wavelet preprocessing step is able to
improve the quality of the image for further image analysis task.
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Figure 9 Effect on edge detector. We test the performance of our
framework when using different edge detection methods. The
sensitivity threshold with the best performance is chosen and its value
is shown in the legend. From the result, we notice that Canny
outperforms other edge detectors.
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Figure 10 Effect on class distribution. A similar classification results
(using different Canny parameters 0.15, 0.22, 0.26, 0.30) on an image
set with even class distribution to the result on uneven distributed data
(cf. Fig. 6, second column) shows that the performance of our
algorithm will not be affected by class distribution of the data.

Phenotypic change detection in keratinocyte 9



at the top 40% of the list obtained by our method with
wavelet preprocessing. However, when un-preprocessed
images are used, we need to examine those images at the
top 60% of the list to get the same amount of positive
images. This can clearly demonstrate that the prepro-
cessing step is able to improve the quality of the image
for further image analysis task. Next, we apply another
preprocessing method for comparison. In particular, we
use a morphological operator called top-hat filter, which
is commonly used for detecting and characterizing spots
in an automatic manner [27, 28], and keep the same
settings in other steps. Since we learnt from the training
images that the radii of spots are around 2–6 pixels.

Therefore, we apply top hat filter using a disk with 5
pixel radius as our structuring element parameter. From
Fig. 7, we can see that the performances of the classifier
using wavelet and using top-hat are comparable. This
shows again that the preprocessing step is very
important. However, one of the disadvantages of the
top hat filter is that we need to know in advanced about
the size limit of the spots [29], which may be varied in
different applications.

& Effect on edge detector. The aim of this experiment is
to verify if our choice of Canny edge detector is the
best among several well-known edge detectors includ-
ing Sobel method, Prewitt method, Roberts method and
Laplacian of Gaussian method. We fix the settings in
other steps; while only change the choice of edge
detector. For each method, we use the function
implemented by Matlab and only specify the sensitivity
threshold. We then try different threshold values and
report the one with the best performance in Fig. 9.
From the result, we noticed that Canny outperforms
other edge detectors. This demonstrates that our choice
for edge detection works well in our images.

Note that the class distribution of the first set of images
is quite uneven. In the second part of the experiment, we
are interested to test our algorithm on a set of images from
Plate-1 with even class distribution. We selected 192
images with 83 positive images and 109 negative images.

& Effect on class distribution. We apply our algorithm on
this set of images using different Canny parameters and
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Figure 11 Accuracy of our classifier. A large amount (85 out of the
top 100) of images with mutant cells can be found from 7.5% of the
whole set of images.

Figure 12 The top 6 images in the list obtained by our algorithm are shown. All of them consist of mutants.
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the result is shown in Fig. 10. A similar result to the
result on uneven class distributed data shows that the
performance of our algorithm will not be affected by
class distribution of the data.

3.3 Results on the Whole Set of Images

In this subsection, we demonstrate how to use our method in
practice. For this experiment, instead of using only the
ranking result obtained by one single value of tcanny, we
combined the results obtained by different tcanny as followed:
we first sort a list of ranks of each image in ascending order
and then rank the images by their list in lexical order.
Suppose we have a set of 1,344 images (i.e. Plate-3). The
images will be processed in the following way:

& Apply the image analysis framework using different
tcanny to the images to extract their cluster information.

& Sort the images according to their maximum cluster size
to obtain a ranking list for each tcanny.

& Obtain a combined ranking result by combining the
ranks with different tcanny of every image as described
above.

& Examine the images from the top of the list.

In this experiment, we set tcanny=0.15, 0.26, 0.3, 0.4,
0.5. Moreover, as mentioned in Section 1, there is less than
10% of the silenced genes cause phenotypic changes.
Therefore, we set the cutoff to be 100 (~7.5%), which is a
reasonable amount of images for manually examining by
the biologist. Then the top 100 images is examined and
labeled manually as ground truth. The accuracy of the
classification results is reported in Fig. 11. Note that there
are 85 positive images out of the top 100 images, which
shows that our algorithm can successfully filter out many
wild type images therefore making inference of gene
knockdown much easier. In particular, more than ten
images at the top of the list are all containing mutant cells
and the top 6 images are shown in Fig. 12.

4 Discussion

High-throughput imaging techniques become very popular
since they can help scientists to study biological events in a
dynamic way. However, due to the size of such huge data set,
automatic image analysis tools are essential. In this paper, we
proposed an image analysis framework which is based on
advanced image processing techniques to extract spot
patterns and classify mutants among a large set of images.
Tests performed on the set of skin cell images demonstrate
that our method can successfully filter out many wild type
images therefore making inference of gene knockdown

much easier. Moreover, we observe that our framework can
be easily generalized to other high-throughput image
analysis problems. For instance, we can combine different
wavelet coefficients to obtain different interest patterns.
Therefore, a more generic image processing framework will
be considered as one of our future directions.
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