
An Efficient Hillclimbing-based Watershed Algorithm
and its Prototype Hardware Architecture

C. Rambabu & I. Chakrabarti

Received: 13 July 2007 /Revised: 11 November 2007 /Accepted: 14 November 2007 /Published online: 10 January 2008
2008 Springer Science + Business Media, LLC. Manufactured in the United States

Abstract Image segmentation is the process of isolating
objects in an input image, that is, partitioning the image
into disjoint regions, such that each region is homogeneous
with respect to some property, such as gray value or texture.
Watershed-based image segmentation has gained much
popularity in the field of biomedical image processing and
computer vision where large images are not uncommon.
Time-critical applications like road traffic monitoring, and
steel fissure analysis require fast realization of the segmen-
tation results. The present paper proposes a fast watershed
transform based on hillclimbing technique. The complexity
of the algorithm has been reduced by doing away with
multiplication normally required to form a lower complete
image in an intermediate step of the overall segmentation.
The reduced complexity makes the algorithm suitable for
dedicated hardware implementation. An FPGA-based ar-
chitecture has been developed to implement the proposed
algorithm involving moderate hardware complexity. This
architecture enhances the applicability of this algorithm for
real-time applications.

Keywords image segmentation . watershed transformation .

hillclimbing technique . FGPA implementation

1 Introduction

Image segmentation is a preliminary step to several image
analysis tasks like object recognition, object-based image
compression and context-based indexing of images. Seg-
mentation of an image involves partitioning it into a
number of homogeneous segments. Otherwise, one can
view segmentation as a pixel labelling process in which the
same label is given to all pixels that belong to a
homogeneous region. A collection of techniques [1–3]
have been suggested as possible solution to the inherently
difficult image segmentation problem. They fall into one of
the following categories, namely histogram-based algo-
rithms [4–6], edge-based algorithms [7–9], region-based
algorithms [10–15], Markov Random Field-based algo-
rithms [16–18] and clustering-based methods [19–21]. The
watershed transform method, which belongs to the broad
class of region-based segmentation approach, is simple to
formulate and it can effectively recognize the important
closed contours of a given image. Watershed transformation
methods have found numerous applications such as
industrial, biomedical, and computer vision applications.
As concrete examples, one can mention here the application
of watersheds to automated analysis of image acquired
during oil exploration, road traffic analysis, and to
segmentation of several types of images including electro-
phoresis gels, overlapping grains, fissure facets in a steel
fracture, and 3-D holographic images. Watersheds have also
been used in extracting and tracking objects in time
sequences of a moving heart in nuclear medicine, in
counting objects in noisy, anisotropic 3-D biological
images, and for segmenting the internal structures in 3-D
MR images of brain.

A brief idea of the watershed construction is given as
follows. A gray scale image is considered as a topographic

J Sign Process Syst (2008) 52:281–295
DOI 10.1007/s11265-007-0157-3

C. Rambabu (*)
Imaging Informatics Group, Bioinformatics Institute,
Singapore 138671, Singapore
e-mail: chinta@bii.a-star.edu.sg

I. Chakrabarti
Electronics and Electrical Communication Engineering
Department, Indian Institute of Technology,
Kharagpur 721 302, India

relief, the gray scale value of a pixel being the altitude at
that particular point. Now, let a drop of water fall on such a
topographical surface. By gravity, it will flow down along
the steepest slope path until it reaches a point or region of
minimum. The whole set of points of the surface, whose
steepest slope path reaches a given minimum, constitutes
the catchment basin associated with this minimum. Each
pair of adjacent catchment basins are separated by
watershed lines. Thus, raindrops falling on both sides of a
watershed line flows into different catchment basins. The
watershed transform has been approached from two
different perspectives. One class of algorithms aims to
detect the catchment basins by simulating the flooding
process while the second tracks directly the watershed lines
by using the arrowing techniques. More efforts though have
been concentrated on the first type of algorithm. Among
these, there are algorithms which construct the watershed
lines and the algorithms which do not delimit the basins by
watersheds (0-width watershed lines).

The fast implementation of immersion-based watershed
algorithm has been introduced by Vincent and Soille [22].
The authors simulated a flooding process, in which the
water is coming up out of the ground and flooding the
catchment basins without predetermining the regional
minima. Utilizing a First-In-First-Out (FIFO) structure, the
pixels at altitude hþ 1 are processed after those at altitude
h. Due to the processing of pixels at altitude h in every
iteration, the problem is reduced to calculating the geodesic
skeleton of influence zones (SKIZ). Whenever water bodies
originating from different catchment basins reach each
other, a dam is built to prevent the basins from merging.
This approach is implemented in software by several data
structures, including graphs and grids with an arbitrary
connectivity. Alternatively, an ordered queue based water-
shed algorithm has been proposed by Meyer [12]. The
common strategy described first determines the regional
minima independent of their altitude. Afterward, the
adjacent pixels of these minima are added to a hierarchical
queue. At each iteration, the pixels with the lowest altitudes
are popped from the queue and then processed. This step is
repeated until all pixels are processed.

Finally, several shortest-path algorithms for the water-
shed transformation with respect to topographical distance
can be found in literature [23, 24]. In fact, these methods
compute the shortest paths between the regional minima
and all other pixels. Here, a new definition of watershed
and catchment basins in terms of a distance function and
topographic distance has been introduced [24, 25]. Thus, a
pixel is incorporated in the catchment basin associated with
the “closest” regional minimum. Consequently, each pixel
has an ancestor according to the flooding order, which is a
neighbor with the precedent distance value. These shortest
paths are tracked by walking upward (hillclimbing) or

downward (rainfalling) on the topographic surface accord-
ing to the precedence relation imposed by distance. In the
rainfalling simulation, a non-minimum pixel is labelled on a
path along which a drop of water would slide towards a
minimum, when it starts falling from that non-minimum
point in the topographic surface.

On the contrary, in the hillclimbing simulation, regions
grow independently around their regional minima. The
labels of minima are propagated upward to the higher
neighboring pixels which do not have neighbors along a
steepest path other than the given candidate for region
growing. A hillclimbing-based watershed algorithm has
been introduced by Meyer [24]. In this method, the regional
minima are first computed and then the adjacent pixels of
these minima are added to a hierarchical queue. At each
iteration, the pixels with the lowest altitude are dequeued
from the queue and then one labels all the upper neighbors
of the current pixel along the steepest slope, unless the
neighboring pixel is already labelled and the label differs
from the current pixel label, in which case the neighboring
pixel is classified as a watershed pixel. This step is repeated
until all the pixels are processed, thus simulating an over-
flooding of the processed data (called hillclimbing). These
algorithms provide a straightforward way to find the
watershed lines but require extensive computations. In
general, the immersion-based methods of the type discussed
earlier are much faster than the shortest path-based
algorithms.

Meyer [12] proposed an algorithm based on an ordered
queue, which in fact is made of 256 queues, one for each of
the possible grey levels. Recently, an improved technique
of simulated flooding based watershed algorithm [26] has
been proposed. Involving only one single queue, it exhibits
equivalent performance at reduced hardware complexity
while compared to Meyer’s algorithm [12]. However, the
flooding based algorithm [26] suffers from an important
drawback in that no synchronization in label propagation is
possible in a non-minimum plateau which has more than
one closely located regional minima. It leads to a
consequent loss in performance. The present paper
describes a hillclimbing based technique which overcomes
the drawback of the flooding-based algorithm [26]. The
proposed hillclimbing technique is also faster than the
flooding method [26]. For, introducing a steepest lower
complete image in the hillclimbing algorithm reduces the
number of searching points, whereas the label propagation
in the flooding-based method [26] involves a depth-first
search mechanism, processing one local minimum at time.
Moreover, the proposed method has a reduced time
complexity as it does away with inherently time-consuming
lower complete transformation normally involved in a
conventional hillclimbing method [14, 24]. The conven-
tional hillclimbing technique [14] which works well with

282 Rambabu and Chakrabarti

regular gray-scale images, is based on lower complete
transformation that involves time-consuming multiplication
by a constant of the gradient image based on geodesic
distance. The reduced complexity also paves the way for an
economical hardware implementation of the proposed
algorithm. A dedicated hardware architecture for imple-
menting the watershed segmentation algorithm in needed
for time-critical application like traffic monitoring, video
surveillance, etc. A prototype architecture for implementing
the proposed algorithm is also given in the present paper.
The rest of the paper is organized as follows.

The next section gives a detailed discussion of the
conventional and proposed hillclimbing technique and then
analyzes the computational complexity of the principal
steps of the proposed algorithm. Section 4 presents the
simulation results of running the proposed algorithm and
the conventional algorithm on different test images for
comparison. In addition, this section evaluates the quality
of segmentation produced by the proposed algorithm in a
quantitative manner. An FPGA-based prototype architec-
ture has been developed to implement the proposed
algorithm involving moderate hardware complexity, and
its implementation results are presented in section 5.
Finally, section 6 concludes this paper.

2 Hillclimbing Simulation

The sequential watershed transform method based on
hillclimbing simulation has been proposed by Meyer [14,
24]. The conventional algorithm [14, 24] starts by detecting
and labelling the initial seeds, that is, the minima of the
gradient image, which characterize the regions of interest in
a given image. The latter are defined as connected plateaus
of pixels in the gradient image which do not have
neighboring pixels of lower gray level (plateau of minima).
Starting from the minima, region growing is then per-
formed. Thus, the non-labelled pixels are assimilated into
different components in an increasing order of gray levels.
A characteristic of this flooding is that waves always
progress upward, or are synchronized inside a plateau.
Inside the flat areas, which are not yet labelled and are
called plateaus of non-minima, components progress
synchronously, such that they incorporate equal extents
within the plateau. Consequently, a pixel on such a plateau
is labelled along the shortest path completely included in
the plateau to a lower downward brim of the plateau.
During the flooding of a topographic surface, there appears
a dual relation between the pixels, as stated below.

Property 1 A pixel p acquires a label from q iff p has a
higher gray value than q, or p and q have the same gray value,
but q is closer to a downward brim of its plateau than p.

The measure of closeness of a pixel within a plateau to a
lower border is the geodesic distance called the lower
distance which is defined as follows.

Definition 1 (Lower distance) The lower distance d of a
pixel p is as follows: dðpÞ=0 if pixel p is a minimum;
otherwise, dðpÞ is equal to the length s of the shortest path
between two pixels p and q such that 8i 2 f1; 2; . . . ; sg, the
line (pi�1; pi) 2 G (G being the underlying rectangular
grid), p0 = p, ps = q and FðqÞ < FðpÞ. Moreover, if s > 1,
8i 2 f1; 2; . . . ; s� 1g, FðpiÞ ¼ Fðpi�1Þ. Fð:Þ represents the
gray scale image.

A sequential watershed transform, which does not
construct watershed lines, has the drawback of being
scanning order dependent and hence, of producing inaccu-
rate results in some cases. To overcome this problem,
Meyer has introduced a lower-complete transform compu-
tation [23]. From two images, namely the gray scale image
F and the lower distance image d (vide definition 1), a
lower-complete image can be defined to include the
ordering relations imposed by gray level and lower
distance. This image is known as lower-complete [14] and
it is defined as follows.

Definition 2 (Lower-Complete Transform) The mapping
lðpÞ ¼ l � FðpÞ þ dðpÞ; 8p 2 DF , is called the lower-com-
plete transformation of an image F based on the lower
distance image d. Note that l > dðpÞ; 8p 2 DF .

Some representative values for l are maxp2DFfdðpÞg þ
1;max0�h�HfHistogram½FðhÞ�g + 1, where Histogram is an
array used to store the number of pixels with the gray level
h for each gray level h 2 f0; 1; . . . ;Hg in the image F.
Another possible value of l is N �M þ 1, where N �M is
the size of the image F. Note that in a lower-complete
image l, every pixel lðpÞ has a lower neighbor, except for
the minima. It is evident that on a lower-complete image,
any pixel p can possibly have one or more neighbors with
lower values, of which the one with the minimum value
may be referred to as the steepest lower-complete (slc)
neighbor of p, and denoted as slcðpÞ. It is not however,
necessarily unique. Flooding process is applied to a lower-
complete image [23], in which the shortest paths actually
correspond to the lines of the steepest slope. Moreover,
every non-minima pixel is reached by flooding from its
steepest lower-complete neighbor. Consequently, flooding
should progress only between two neighboring pixels
whose lower-complete transformed values satisfy the
ordering relation involved in propagation of labels. Once
a pixel has received a label, it is incorporated in the region
it belongs to. In this algorithm, regions grow independently
around their seeds, namely, the regional minima. More

An Efficient Hillclimbing-Based Watershed Algorithm 283283

specifically, labels of minima are propagated from a
candidate pixel upward to the higher neighboring pixels
which do not have any neighbor with value lower than that
of the given candidate for region growing. This bottom-up
method is known as hillclimbing simulation.

In the conventional algorithm [14], a raster scan is used to
perform the flooding process, in which a FIFO queue is
initialized with the pixels within plateaus of regional minima.
These pixels have non-minima pixels in their neighborhood.
An additional image slc is used to store the altitudes of the
steepest lower complete neighbors of the corresponding
pixels. A candidate pixel p removed from the queue
propagates its label to all its neighboring pixels q if there is
an arc from p to q in the forest, that is, slcðqÞ ¼ lðpÞ. Any
new labelled pixel becomes a candidate, and it is inserted in
the FIFO queue. When the queue of candidates is emptied,
each pixel in the output image gets labelled and appended to
a single connected component and the hillclimbing proce-
dure stops. The set of non-overlapping components contrib-
utes a complete partition of the image.

3 Proposed Hillclimbing Simulation

In Moga’s algorithm [14], first the input gradient image has
been transformed into a lower-complete image. This
transformation involves O(m� n) multiplications and addi-
tions, where m� n is the size of the input image. The
proposed algorithm attempts to reduce the computational
complexity in two ways. First, the lower complete image
computation is avoided. Secondly, the plateau detection and
its labeling is computed in one scan rather than two scans
by the use of two queues. Flooding of the non-minima
plateau pixels has been done by directly using the distance
image. Also in Moga’s algorithm, the raster scan operation
has been employed twice, first in “Minima Detection and
Labeling” process and next in “Simulated Flooding”
process. During the second raster scan, minima and
plateaus of minima, which have been labeled during the
first raster scan, are stored in a FIFO queue. In the proposed
algorithm, however, starting from the minima, the recursive
label propagation (flooding) is performed in breadth-first
order using a single FIFO queue, a distance image and a
steepest lower neighbor image (sln) which stores the
steepest lower neighboring altitude. This steepest lower
image is computed during the first raster scan (local minima
detection and labeling process) rather than the following
scan. Thus the neighboring pixels need not be accessed
again. This improves the complexity of the algorithm.
Moreover, during plateau analysis, the outer pixels are
stored in an array Outers, which will be used in the
procedure of computing the lower distance for subsequent
label assignment. Amongst the pixels belonging to a

plateau, it may be recalled that those having at least one
neighbor with lower altitude are termed outer pixels while
the others are called inner pixels. In Moga’s algorithm,
these outer pixels are first inserted in a FIFO queue, and
then the lower distance computation has been carried out
for inner plateau pixels. Time required for movement of
pixels from Outers array to the FIFO queue can be
diminished by employing another FIFO queue, where the
outer pixels will be directly enqueued. The detailed
description of the two major phases of the proposed
hillclimbing technique is provided next.

3.1 Detection and Labeling of Local Minima

In this procedure, a single raster scan has been employed,
and two FIFO queues QPD (for plateau detection) and QPA

(for plateau analysis) have been utilized as shown in Fig. 1.
For each not yet labelled pixel p, its 4 or 8-connected

neighborhood is inspected. Thus if all the neighbors are of
higher gray level than p, then p is deemed to be an isolated
minimum, and a label is assigned to it. Else, if this pixel
belongs to a plateau, the plateau is scanned in a breadth-
first order, and the visited pixels are labelled with the
current label, and inserted into the queue QPD for detection
of plateau. The examination always starts from an inner
pixel which introduces the neighboring pixels of equal
altitude in the list of candidates. A currently investigated
candidate pixel may still qualify as an inner pixel;
otherwise, it is an outer pixel. The lower distance of the
outer pixel is 1, and inserted into queue QPA for analysis of
plateau. After scanning the plateau, if the queue QPA is not
empty (indicating that a non-minima plateau is detected), it
is then necessary to compute the distance of inner pixels
(from the outer pixels) and assign NARM (not a regional
minimum) label to the plateau currently detected for
subsequent flooding. Also the steepest lower neighboring
altitude pixels are computed and stored in an additional
image known as the steepest lower neighbor image.

Definition 3 (Steepest lower neighbor image) The steepest
lower neighbor image, denoted by sln, corresponding to a
gray scale image F, is derived from the latter as follows.

Figure 1 Local minima detection and labeling process.

284 Rambabu and Chakrabarti

Each pixel p 2 DF is replaced by its steepest lower neighbor,
given by slnðpÞ ¼ minq2NGðpÞfFðqÞ jFðqÞ < FðpÞg, if p is
an outer pixel; otherwise, slnðpÞ = FðpÞ.

The pseudo-code of the whole procedure of detection
and labelling of local Minima is given below. Procedures
Neighborhood_Inquiry and Plateau_Analysis, described
next in the form of a pseudocode as Procedure 2 and 3
respectively, involve detection and labeling of plateaus.

3.2 Flooding of Non-Minima

Another raster scan procedure is used to perform the
flooding process, in which a FIFO queue is initialized with
the pixels within plateaus of minima, as discussed in the

previous section. Consequently, flooding should progress
only between two neighboring pixels whose steepest lower
complete neighbor and distance values satisfy the flooding
ordering relation. Once a pixel has received a label, it is
correctly incorporated in the region it belongs to. The basis
of the proposed flooding order is established by the
following theorem.

Theorem 1 p � q (to be read p is flooded from q) in the
grayscale image F whose lower distance image and steepest
lower neighbor image are d and sln respectively if

FðqÞ ¼ FðrÞ j r 2 NGðpÞf g ^ slnðpÞ ¼ FðrÞf g ð1Þ
else, p � q if

An Efficient Hillclimbing-Based Watershed Algorithm 285285

FðpÞ ¼ FðqÞf g ^ slnðpÞ ¼ FðqÞf g
^ dðpÞ ¼ dðqÞ þ 1f g ð2Þ

Proof (Proof of Eq. (1)) Consider a pixel qe 2 NGðpÞ such
that q satisfies the condition 1. Flooding always proceeds in
increasing order of gray levels. Thus, considering flooding
at level FðqÞ, it is either true that p is not yet flooded and it
will be flooded by q; else, it has been already flooded from
another neighbor re 2 NGðpÞeðr 6¼ qÞ. If the second case
holds, then the gray levels higher than the gray level FðqÞ
will be flooded only after the gray level FðqÞ has been
flooded. Thus FðrÞ � FðqÞ. However, as q satisfies (Eq.
(1)), it happens to be the neighbor of p with the lowest
surrounding gray level. Thus, slnðpÞ ¼ FðqÞ ¼ FðrÞ.
Hence, pixel p is flooded from q or r, depending on which
one is scanned first. however, flooding always occurs from
the surrounding neighbor with the lowest gray level,
although this neighbors may not be unique.

(Proof of Eq. (2)) The lower distance (vide definition 1)
is a measure of closeness of a pixel within a plateau to its
lower brim. It also represents the time taken by the wave

which advances from the closest lower brim of the plateau
and floods the pixel. Thus, if pixel p on a plateau has its
lower distance dðpÞ > 1, it will be flooded from a pixel
which has been flooded by a wave at time dðpÞ � 1.

To prove (Eq.(2)) by contradiction, suppose p inherits its
label from another neighbor r with lower distance
dðrÞ > dðpÞ � 1. It means that the wave from r reaches the
pixel p at time dðrÞ þ 1 to find p without a label. From the
hypothesis, dðrÞ þ 1 > ðdðpÞ � 1Þ þ 1 or dðrÞ þ 1 > dðpÞ.
That is, two wavefronts which reach p along paths of
shortest length fail to immerse the plateau at same rate.
Hence, (Eq. (2)) is established by contradiction.

In this procedure, only one FIFO queue data structure
QF has been used for recursive label propagation of the
candidate pixels. First, one stores the seed pixels in the
queue QF ; next, labelling starts as follows. A candidate
pixel p is removed from the queue QF , and its label is
assigned to each of its neighboring NARM pixel q, which
has a higher altitude. If the neighboring pixel q has the
same altitude as p, then the distance image needs to be
made use of to determine the label of q. Only those
neighboring pixels, whose lower distance is one greater

286 Rambabu and Chakrabarti

than that of the candidate pixel, get labelled. Any new
labelled pixel becomes a candidate, and it is inserted in
queue QF . This process is then repeated until the queue
becomes empty. The pseudo-code of the flooding process is
given below.

3.3 Complexity Analysis

Let n ¼ M � N be the dimension of the image F whose
domain is denoted as DF � Z

2, and G is a subset of
Z
2 � Z

2. Let NG stand for the neighborhood pixels on the
grid G.

3.3.1 Minima detection and its labeling

Let p1; p2; p3; . . . ; pP be P plateaus, each pi having ni pixels
and PN be the detected non-minima plateaus.

1. The number of comparisons for plateau detection and
plateau analysis is

PP
i¼1 ni � NG.

2. The number of comparisons for lower distance compu-
tat ion and non-minima plateau label ing isPPN

i¼1 ni � NG.

Total number of comparisons for minima detection and
its labelling is then

LMD ¼ ð
XP
i¼1

ni þ
XPN

i¼1

niÞ � NG 	 n ð3Þ

3.3.2 Flooding process

Let l1; l2; l3; . . . ; lL be the L local minima plateaus in the
image G; moreover, let lj have mj pixels which have at least
one NARM neighborhood pixel. The total number of

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 2 (a). Original image.
(b). Morphological multi-scale
gradient image with a threshold
value of 13. (c). Segmentation
produced by Moga’s watershed
algorithm [14]. (d). Segmenta-
tion produced by the Proposed
watershed algorithm.

An Efficient Hillclimbing-Based Watershed Algorithm 287287

comparisons for the entire label propagation (in the worst
case) is

LP ¼ nþ ð 1

PN

XPN

i¼1

niÞ � ð
XL
j¼1

mj � NGÞ ’ 2n ð4Þ

Total number of comparisons for the entire watershed
computation (on an average case) is

LMDþ LP 	 3n 	 OðnÞ ð5Þ

3.3.3 Analysis of Conventional Hillclimbing Technique [14]

The number of comparisons for minima detection and
flooding process (on an average) is 3n. In addition, the
lower-complete transformation involves n multiplications

and n additions. Thus the computational complexity of the
conventional watershed algorithm (on an average) is

¼ 3n ðcomparisonsÞ þ n ðmultiplicationsÞ
þ n ðadditionsÞ ð6Þ
From the above analysis (Eqs. (5) and (6)), the proposed

algorithm requires a total of 3n operations (only compar-
isons) as against an aggregate of 5n operations including 3n
comparisons, OðnÞ multiplications and OðnÞ additions for
the conventional algorithm [14].

4 Experimental Results

As discussed above, a considerable reduction in the
computational complexity has been obtained. To avoid

Table 1 Comparison between simulation time (in seconds) of Moga’s hillclimbing technique [14] and the proposed technique.

Test Image h No. of regions Time (Sec)

Moga’s [14] Method Proposed method

Claire (352�288) 10 17 0.092 0.075
Tennis (352�288) 13 22 0.095 0.072
Heart (256�256) 8 14 0.083 0.065
Akiyo (164�144) 14 22 0.031 0.024
MRI Brain (256�256) 12 38 0.072 0.055
Cermet (256 � 256) 30 61 0.081 0.064
Washinton (250�250) 16 46 0.098 0.073
Steel Fissure (290�369) 15 10 0.105 0.091
Blood Cells (212�353) 26 20 0.078 0.065

Figure 3 Number of regions
for different threshold value (h).

288 Rambabu and Chakrabarti

over-segmentation, a morphological multi-scale gradient
[27] image with different threshold values are used as the
input for computing the watershed transform. The improved
algorithm has been implemented on a Pentium IV 1.8 GHz
computer under LINUX environment and applied on
various test images to verify its effectiveness. Figure 2
shows the visual segmentation results of applying both
Moga_s algorithm [14] and the proposed algorithm on five
standard images, namely Table Tennis, Cermet, Washington_ir,
Steel Fissure and Blood Cells images. Comparison of the
computation times of both algorithms is given in Table 1. The
improved algorithm is faster and more efficient than the
existing algorithm. Also, the segmentation results are obtained
for different values of the threshold h required as a parameter
in construction of the multi-scale gradient [27] image. Figure 3
shows that an increase in h leads to a reduction in the number
of regions. Variation of simulation time with the values of h is
plotted in Fig. 4.

Following a region-based performance evaluation
scheme [28], the segmentation quality of the proposed
algorithm is quantitatively assessed in terms of size and

location of the segmented regions. Let S1 and S2 be the
segmented image produced by proposed algorithm and its
ground truth respectively, and expressed as

S1 ¼ R1
1;R

2
1;R

3
1; . . . ;R

n
1

� �
S1 ¼ R1

2;R
2
2;R

3
2; . . . ;R

n
2

� �

The directional Hamming distance from S1 to S2 is defined
as

DH ðS1) S2Þ ¼
X
Ri
2

X
Rk
1 6¼Rj

1;R
k
1\Ri

2 6¼;
j Ri

2 \ Rk
1 j;

where j : j denotes the size of a set. Therefore, DH ðS1)
S2Þ is the total area under the intersections between all Ri

2 2
S2 and their non-maximal intersected regions Rk

1’s from S1.
The reverse distance DHðS2) S1Þ can also be similarly
computed. The region-based performance measure based
on normalized Hamming distance is given as

p ¼ 1� DH ðS1) S2Þ þ DHðS2) S1Þ
2� j S j ;

Table 2 Quantitative evaluation of the segmented images.

Test Image h No. of regions Mismatched pixels Performance measure ðPÞ

Claire (352�288) 10 17 23 0.99965
Tennis (352�288) 13 22 16 0.99984
Heart (256�256) 8 14 36 0.99945
Akiyo (164�144) 14 22 12 0.99949
MRI Brain (256�256) 12 38 31 0.99952
Cermet (256 � 256) 30 61 37 0.99943
Washinton (250�250) 16 46 61 0.99902
Steel Fissure (290�369) 15 10 18 0.99995
Blood Cells (212�353) 26 20 6 0.99992

Figure 4 Simulation time while
running Meyer’s ordered queue
based algorithm [12], Moga’s
Hillclimbing technique [14] and
proposed hillclimbing technique
on Tennis image.

An Efficient Hillclimbing-Based Watershed Algorithm 289289

where j S j is the image size and p 2 ½0; 1�. The smaller the
degree of mismatch, the closer the measure p is to one. The
goal is to quantitatively describe the mismatch between S1
and S2. The performance measure P of the proposed
algorithm evaluated for various test images is provided in
Table 2, which shows that the homogeneous regions are
identified by proposed algorithm and ground truth in an
almost identical manner (P 	 1).

4.1 Comparison with the Flooding-based Method

Table 3 lists the simulation time and performance index of
flooding-based method [26] and the proposed method. As
shown in Table 3, the execution time of the hillclimbing-
based watershed algorithm proposed in the present paper is
faster than that of the flooding-based method [26] because
of the following reasons. The steepest lower distance

F2_Empty

LENGTH
COUNTER

WAVE – Flag_WLC

F1_Empty

VALID_N

[N-1 :0]

COMP

LABEL
COUNT

DIST
COUNT

N

N

N

8

8

FLAG_F

Flag_M

Flag_N

Flag_D

N

SCAN_OVER

RST/CLK/WE/EN signals RST/CLK/EN/RD/WR
FIFOs

MUXes
for

Select Signal DONE
CLOCK

RESET
RAM

Signals
Status

Figure 5 Complete architecture
of the proposed watershed
transform.

Table 3 Comparison between simulation times and performance index of flooding-based method [26] and the proposed method.

Test image Simulation time (s) for different
methods

Performance index

Flooding
method

Proposed
method

Flooding method Proposed method

No. of mismatched
pixels

Performance
measure

No. of mismatched
pixels

Performance
measure

Claire 0.11 0.075 539 0.99468 23 0.99965
Tennis 0.107 0.072 627 0.99266 16 0.99984
Heart 0.086 0.065 978 0.98648 36 0.99945
Akiyo 0.039 0.024 399 0.98278 12 0.99952
MRI Brain 0.039 0.024 1023 0.98181 31 0.99943
Cermet 0.082 0.064 714 0.98547 37 0.99943
Washinton 0.078 0.073 1205 0.97585 61 0.99902
Steel
Fissure

0.102 0.091 264 0.99752 18 0.99995

BloodCells 0.074 0.065 572 0.99235 6 0.99992

290 Rambabu and Chakrabarti

transformation is introduced early in the proposed method,
which leads to a decrease of the number of search points.
Moreover, it facilitates synchronizing the process of
propagating the labels in the non-minimal plateau, which
has more than one closely located regional minima. On the
other hand, the flooding-based technique [26] adopts a
depth-first label propagation procedure, requiring sixteen
additional supporting pixels for labeling the eight nearest
neighbors of a central pixel under consideration. Thus, only
one regional minimum is processed at a time. The
drawback of the flooding-based method is that no label
synchronization in label propagation is possible in a non-
minima plateau (thick gradient) which has more than one
closely located regional minimum. Out of the more than
one possible local minima surrounding a non-minima
plateau, one selects the one with the lowest value to flood
the plateau in order to contain over-segmentation problem.
Additionally, the proposed hillclimbing method requires
three raster scans in contrast to four raster scans involved in
the flooding-based method [26]. The degree of mismatch
for the proposed method, as borne out by Table 3, is
considerably less than that in case of the flooding-based
method [26].

5 Proposed Prototype Architecture and its FPGA
Implementation

This section presents a detailed discussion on a prototype
architecture for implementing the improved hillclimbing
technique proposed in this chapter. Moreover, an FPGA
implementation of the architecture is briefly described.

5.1 Prototype Architecture

The block diagram of the architecture that implements the
improved watershed algorithm is shown in Fig. 5. This
architecture consists of four image RAM blocks, which are
meant to hold the input image (GRADIENT INPUT
IMAGE RAM), the output image of labels (LABEL
OUTPUT IMAGE RAM), the steepest neighbor values
(STEEPEST LOWER IMAGE RAM) and the lower
distances (DISTANCE IMAGE RAM), two FIFO Queues,
Minima/Non-minima Detection block, Distance Compari-
son block, Conditional Flooding block, four counters
namely Address Counter (up), Label Counter (up), Distance
Counter(up) and Wave_Length Counter(down), and a
Control Unit. The control unit is a finite state machine

3

 1
 2

 8

 1
 2

 8

 0

 1

0

R
E

G

ADD

REM

R
E

G

1

CLK

2 s COMP_SUB

(a)

(b)

Figure 6 (a). The block diagram of the NAG block. (b). Schematic diagram for generating address of N1.

An Efficient Hillclimbing-Based Watershed Algorithm 291291

(FSM) that controls the overall process including the
initialization of RAMs and FIFOs, detection of Plateau of
Minima and Non-minima, labeling of Local Minima and
Computation of Lower Distance, and finally the Flooding
process. Raster scan can be performed by using the Address
Counter. A control signal scan_over is generated, when the
Address Counter reaches the last pixel address (max_ima-
ge_size) of image. The Wave_Length Counter is used to
assign the proper distance during the analysis of the non-
minima plateaus (or Lower Distance Computation process).
Initially, it will be loaded with the contents of FIFO_Q2.
The Wave_Length Counter is always decremented when-
ever a pixel is dequeued from FIFO_Q2. When the
Wave_Length Counter reaches the value 0, a control signal
flag_wlc is enabled. Description of the individual blocks
follows next.

5.1.1 Neighbor Address Generation Block

The neighborhood addresses are generated in parallel
through addition/ subtraction of the Image_Width W and

the C_address as shown in Fig. 6. Binary addresses are
used to generate the addresses of all the neighbors. The
width of the image is known to the user and is stored in a
register Image_Width. If the center pixel C in an image
belongs to a boundary, some neighbor addresses may be
incorrectly computed. Therefore, all these neighbor
addresses are compared with the boundary conditions and
the corresponding flags are generated, which shows the
validity of the neighbors address. Through neighbor
selection signal sel_N, any neighbor address can be
selected.

The schematic diagram of the circuitry required to
correctly generate the address of a pixel N1 is given in
Fig. 6b. The circuit blocks labeled ADD and 2’s COMP_-
SUB are used to generate the neighbor pixel address
(N_Addr_1) from the center pixel address (C_Address).
The block REM is a remainder circuit which is used to find
the validity of the generated neighbor address. If the center
pixel belongs to a boundary, the neighbor address may be
incorrectly computed. To prevent this, the remainder left on
dividing by the C_Address and the Image_Width is
computed. The remainder determines the validity of the
neighboring pixel (whether it is inside or outside the image)
as the read_flag is generated.

5.1.2 Minima/Non-minima Detection

This block diagram as shown in Fig. 7 is used to detect
whether the neighboring pixel belongs to a plateau or is a
center pixel belonging to a non-minima plateau. Two
control flags are generated on the basis of different
conditions. First, the control unit stores the center pixel

8

8

8

MAX_DIST

Flag_D

=

=

Figure 8 Distance comparison block.

1

0

INIT

MAX_DIST

8

8

8

Flag_M

Flag_N

CREG
=

=

 <

=

Figure 7 Minima/non-minima
detection block.

292 Rambabu and Chakrabarti

data of gradient image into a register CREG through the
demux. In following clock cycles, the neighbor pixel data
are available on the input_data and N_data inputs. The
C_dist input always contains the modified center pixel
distance.

The signal Flag_M is generated when the neighboring
pixel data (N_data) of the gradient image and the label
image (N_label) are equal to center pixel data (C_data) of
the gradient image and the initialized value of label image
INIT respectively. It indicates that the neighboring pixel
belongs to its plateau and not visited previously. This status
signal causes the control unit to generate the necessary
signal to enqueue the address of the neighbor pixel into
FIFO_Q1.

The signal Flag_N is generated when the neighbor pixel
data (N_data) of gradient image is less than its center pixel
data (C_data), and the center pixel data of distance image is
equal to MAX_DIST. It indicates that the center pixel
belongs to the non-minima plateau and it is an outer pixel.
This status signal causes the control unit to generate the
necessary signals to enqueue the address of the outer pixel
into FIFO_Q2.

5.1.3 Distance Comparison Block

The distance comparison block shown in Fig. 8 detects
whether the neighboring pixel belongs to a non-minima

plateau for which no distance is assigned. The control
signal Flag_D is generated when the neighboring pixel
label data (N_label) and the distance image data (N_dist)
are equal to the label counter value and the initialized value
of the distance image MAX_DIST respectively. It indicates
that the neighboring pixel belongs to a non-minima plateau
and no distance is assigned to it. This signal makes the
control unit generate the necessary signal to enqueue the
address of the neighboring pixel into FIFO_Q2 for further
exploration and assignment of the current distance value of
the WAVE_LENGTH_COUNTER to the distance image
pixel.

5.1.4 Conditional Flooding Block

The block diagram shown in Fig. 9 detects whether the
neighboring pixel has the steepest arc to the center pixel or
has lower distance equal to one more than that of the center
pixel if both are on a plateau of non-minima. At first, the
center pixel distance is assigned to a register DREG
through Demux. In the next clock cycle, the neighbor pixel
data is compared with the center pixel data as N_data with
NARM, sl_data with C_data, and dist_data must be 1 or
equal to DREG þ1. A control signal flag (Flag_F) is
generated when the above condition is met, which decides
the propagation of the label of the center pixel to its
neighbors.

5.1.5 Control Unit (FSM)

The control unit (FSM) generates the reset signal to all the
blocks as shown in the complete architecture of Fig. 5.
Moreover, it generates the signals to control the MUXex

8

8

8

A
D

D

D
R

E
G

0

1

1

Flag_F

Figure 9 Conditional flooding block.

Table 4 Comparison between simulation time of hardware imple-
mentation and software implementation.

Test image
(30� 30)

Software time
(msec)

Hardware time
(μsec)

Claire 16 30.16
Tennis 16 29.04
Heart 12 28.74
Akiyo 10 28.45
MRI Brain 20 35.42
Cermet 20 34.96

Table 6 Design statistics for the entire architecture.

Timing summary

Minimum period 20.056 ns
Maximum frequency 49.86 MHz
Maximum combinational path delay 17.152 ns
Maximum net delay: 8.65 ns

Table 5 Design statistics for the entire architecture.

Hardware elements No. of elements % of utilization

Number of slices 489 out of 1,200 40
Total number slice registers 261 out of 2,400 25
Total number 4 input LUTs 827 out of 2,400 52
Number of bonded IOBs 18 out of 166 20
Number of block RAMs 5 out of 10 50

An Efficient Hillclimbing-Based Watershed Algorithm 293293

and the DEMUXes, read, write, enable signals for FIFOs,
RAMs and load, enable, reset signal for counters on the
basis of the control signals generated through “Detection of
Minima/Non-minima” block, “Distance Comparison”
block, “Conditional Flooding” block and the signals
generated through FIFOs (f1_empty, f2_empty). After
computing the watershed segmentation, a DONE signal is
set to 1.

5.2 FPGA Implementation

The proposed architecture described in section 5.1 has been
described in VHDL [29, 30] and simulated by Modelsim,
and synthesized under the Xilinx ISE4.1i system targeted to
virtex FPGA series device. The proposed architecture has
been simulated for various test images of size (30�30). An
image of size greater than 30� 30 requires more than one
chip for its implementation. Due to limitations of the
memory on the virtex device, the FPGA implementation
has been limited to an image of size 30� 30. In this design,
the block RAMs are configured with 8-bit data lines and 9-
bit address lines. For these address lines a 9-bit up counter
is required to generate addresses or ADDRESS COUNT-
ER, and other counter like LABEL COUNTER, DIS-
TANCE COUNTER are configured as 8-bit up counters.

The entire design has been simulated on ModelSim
Xilinx 5.5b. In the first clock cycle, a reset signal has been
applied on an input pin of FPGA. In the second cycle, the
control unit (FSM) will reset all counters, block RAMs and
FIFOs. Also a DONE signal is set to 0 by the control unit.
From the third cycle onwards, data on DIN pin will be
stored in GRADIENT INPUT IMAGE DATA RAM
corresponding to the address generated by the Address
Counter. A Scan_Over control signal will become 1 when
Address Counter reaches the last address (MAX_IMAGE_-
SIZE) of the image. The control signal DONE is set to 1
when the entire watershed computation is completed.

Tests were run assuming a clock frequency of 50 MHz.
The simulation results obtained for various test images are
given in Table 4. From the simulation results, the hardware
implementation is seen to be faster than the software
version by an order of 3. The software results shown in
Table 4 are achieved using Linux environment on a
Pentium IV 1.8 GHz processor system. The entire design
has been simulated, synthesized at gate level and then
implemented on the device XCV100-6PQ240. The perfor-
mance of the FPGA implementation is limited to 49.86
MHz in XCV100-6PQ240. By using sharing of resources
such as FIFOs, counters, muxes and demuxes, and by
employing a single FSM for the control unit, this design has
less hardware requirement compared to the architecture [26]
required to implement the improved flooding-based water-
shed algorithm. FPGA design summary of the entire

architecture discussed in Section 5 is accommodated in
Tables 5 and 6. The design utilizes almost 40% of CLBs
and 25% of Registers.

6 Conclusions

The present paper proposes an improved watershed
transform method based on hillclimbing simulation and its
prototype architecture. By avoiding time-consuming lower
complete transformation, the proposed algorithm has been
shown to perform better for same input images compared to
the original algorithm due to Moga [14]. Computation of
the lower complete image is avoided in the present
algorithm at the cost of two additional comparisons in the
flooding process. Further reduction of the overall compu-
tation time has been achieved by adopting some other
modifications, namely employment of two FIFO queues
and computation of the steepest lower neighbor image
during the process of detection of minima/non-minima plateau.
The paper analyzes the complexity of then proposed algorithm,
which requires only 3n comparison operations as against an
aggregate of 5n operations including 3n comparisons, n
multiplications and n additions required by the conventional
algorithm [14], where n is the dimension of the image. A
quantitative measure of accuracy of the segmentation results
produced on various images by the proposed algorithm has
been provided. The paper also describes a prototype hardware
architecture for an effective realization of the proposed
algorithm. The architecture has been synthesized in an
appropriate FPGA environment. Relevant design statistics of
the FPGA implementation of the architecture are given.

Acknowledgement The authors are grateful to the anonymous
reviewers for their constructive suggestion on improvement of the
paper.

References

1. Haralick, R. & Shapiro, L. (1985). Image segmentation techni-
ques. Computer Vision, Graphics, Image Processing, 29(1), 100–
132, January.

2. Pal, N. R., & Pal, S. K. (1993). A review on image segmentation
techniques. Pattern Recognition, 26(9), 1277–1294.

3. Pratt, W. K. (2003). Image segmentation (3rd Ed., ch. 17 pp. 551–
588). John Willey and sons, INC.

4. Weska, J. S. (1978). A survey of threshold selection techniques.
Computer Graphics and Image Processing, 7(2), 259–265, April.

5. Mardia, K. & Hainsworth, T. (1988). A spatial thresholding
method for image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 10, 919–927.

6. Sankur, B., Abak, A. T., & Baris, U. (1999). Assessment of
thresholding algorithms for document processing,” in Proceedings
of IEEE International Conference on Image Processing, 1 (pp.
580–584). Japan: Kobe, October.

294 Rambabu and Chakrabarti

7. Prager, J. M. (1980). Extracting and labeling boundary segments
in natural scenes. IEEE Transactions on Pattern Recognition and
Machine Intelligence, 2(1), 16–27.

8. Perkins, W. A. (1980). Area segmentation of images using edge
points. IEEE Transactions on Pattern Recognition and Machine
Intelligence, 2(1), 8–15.

9. Canny, J. (1986). A computational approach to edge detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-8, 679–698.

10. Beaulieu, J. M., & Goldberg, M. (1989). Hierarchy in picture
segmentation: a stepwise optimization approach. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 11(2), 150–163.

11. Wu, X. (1993). Adaptive split-and-merge segmentation based on
piecewise least-square approximation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 15, 808–815, August.

12. Beucher, S. & Meyer, F. (1993). The morphological approach to
segmentation: The watershed transformation. In E. R. Dougherty
(Ed.), Mathematical morphology in image processing (pp. 433–
481). New York: Marcel Dekker Inc.

13. Chang, Y. L., & Li, X. (1994). Adaptive image region growing.
IEEE Transactions on Image Processing, 3(6), 868–873.

14. Moga, A. N. (1997). Parallel watershed algorithms for image
segmentation. Ph.D. dissertation, Tampere University of Technol-
ogy, Tampere, Finland, February.

15. Roerdink, J. B. T. M., & Meijster, A. (2001). The watershed
transform: Definitions, algorithms and parallelization strategies.
Fundamenta Informaticae, 41, 187–228.

16. Derin, H., & Elliott, H. (1987). Modeling and segmentation of noisy
and textured images using gibbs random fields. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 9, 39–55.

17. Srinivas, C., & Srinath, M. D. (1989). Compound gaussian
markov random field model for image segmentation,” in Interna-
tional Conference on Acoustics, Speech, and Signal Processing,
vol. 3 (pp. 1586–1589). UK: Glasgow, May.

18. Dubes, R. C., Jain, A. K., Nadabar, S. G., & Chen, C. C. (1990).
MRF model-based algorithms for image segmentation,” in
Proceedings of 10th International Conference on Pattern Recog-
nition, 1 (pp. 808–814). Atlantic City, NJ, USA, June.

19. Kuria, T. (1991). An efficient agglomerative clustering algorithm
using a heap. Pattern Recognition, 24(3), 205–209.

20. Ohm, J. R., & Ma, P. (1997). Feature-based cluster segmentation
of image sequences. in Proc. IEEE international Conference on
Image Processing (pp. 178–181).

21. Pauwels, J., & Frederix, G. (1999). Finding salient regions in
images. Computer Vision and Image Understanding, 75, 73–85.

22. Vincent, L., & Soillé, P. (1991). Watersheds in digital spaces: An
efficient algorithm based on immersion simulations. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 13(6), 583–598.

23. Meyer, F., & Beucher, S. (1990). Morphological segmentation.
Journal of Visual Communication and Image Representation, 1
(1), 21–45.

24. Meyer, F. (1994). Topographic distance and watershed lines.
Signal Processing, 38(1), 113–125, July.

25. Viero, T. (1996). Algorithms for image sequence filtering, coding
and image segmentation. Ph.D. dissertation, Tampere University
of Technology. Finland: Tampere, January.

26. Rambabu, C., Chakrabarti, I. & Mahanta, A. (2004). A novel
flooding-based watershed algorithm and its prototype hardware
architecture. IEE Proceedings - Vision, Image and Signal
Processing, 151(3), 224–234, June.

27. Wang, D. (1997). A multiscale gradient algorithm for image
segmentation using watersheds. Pattern Recognition, 30(12),
2043–2052, January.

28. Huang, Q., & Dom, B. (1995). Quantitative methods for
evaluating image segmentation. in IEEE International conference
on Image Processing, 3 (pp. 53–56). Washington D. C., October.

29. Bhaskar, J. (1999). VHDL primer (3rd Ed). Prentice Hall.
30. Perry, D. L. (2001). VHDL (3rd Ed). Tata McGraw-Hill

Publishing Company Limited.

C. Rambabu received his B.E degree in Electronics and Communi-
cation Engineering from AU, India in 1995, M. Tech in Automation
and Computer Vision from E&ECE, IIT Kharagpur, India in 1998 and
Ph.D. from IIT Guwahati, India in 2005. From 2005 to 2006, he
worked as a Research Fellow in UVR Lab, GIST, South Korea. He is
currently employed as a Research Fellow at Bioinformatics Institute
(BII), Imaging Group, Singapore. His areas of interest are computer
vision, image/video processing, Multi-dimensional Microscopic image
analysis and VLSI Signal processing. He has published several papers
in international journals and conferences in these areas.

Indrajit Chakrabarti received his B.E. and M.E. degrees in
Electronics and Telecommunication Engineering from Jadavpur
University, India in 1987 and 1990. Subsequently, he received Ph.D.
from Indian Institute of Technology (IIT) Kharagpur, India in 1997.
From 1998 to 2004, he worked as an Assistant Professor and later as
an Associate Professor in the Department of Electronics and
Communication Engineering, IIT Guwahati. He is presently serving
as an Associate Professor in the Department of Electronics and
Electrical Communication Engineering, IIT Kharagpur. His areas of
interest include VLSI architectures for image processing, digital signal
processing and telecommunication.

An Efficient Hillclimbing-Based Watershed Algorithm 295295

	An Efficient Hillclimbing-based Watershed Algorithm and its Prototype Hardware Architecture
	Abstract
	Introduction
	Hillclimbing Simulation
	Proposed Hillclimbing Simulation
	Detection and Labeling of Local Minima
	Flooding of Non-Minima
	Complexity Analysis
	Minima detection and its labeling
	Flooding process
	Analysis of Conventional Hillclimbing Technique [14]

	Experimental Results
	Comparison with the Flooding-based Method

	Proposed Prototype Architecture and its FPGA Implementation
	Prototype Architecture
	Neighbor Address Generation Block
	Minima/Non-minima Detection
	Distance Comparison Block
	Conditional Flooding Block
	Control Unit (FSM)

	FPGA Implementation

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

